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Abstract
Flexible behavior requires rapid planning, but planning requires a good internal model
of the environment. Learning this model by trial-and-error is impractical when acting
in complex environments. How do humans plan action sequences e�ciently when there
is uncertainty about model components? To address this, we asked human participants
to navigate complex mazes in virtual reality. We found that the paths taken to gather
rewards were close to optimal even though participants had no prior knowledge of these
environments. Based on the sequential eye movement patterns observed when participants
mentally compute a path before navigating, we develop an algorithm that is capable of
rapidly planning under uncertainty by active sensing i.e., visually sampling information
about the structure of the environment. New eye movements are chosen in an iterative
manner by following the gradient of a dynamic value map which is updated based on
the previous eye movement, until the planning process reaches convergence. In addition
to bearing hallmarks of human navigational planning, the proposed algorithm is sample-
e�cient such that the number of visual samples needed for planning scales linearly with
the path length regardless of the size of the state space.

Keywords: model-based reinforcement learning, sequential decision-making, navigation,
maze, gaze

1. Introduction

Planning, or the ability to flexibly choose a sequence of actions in a goal-dependent manner,
is a cornerstone of human intelligence. Signatures of human planning have been documented
in a variety of sequential decision-making paradigms ranging from simple two-step decision-
making tasks (Daw et al., 2011; Miller et al., 2017; da Silva and Hare, 2020) to more
complex, multi-step navigation tasks (Simon and Daw, 2011; Anggraini et al., 2018; Zhu
et al., 2022; de Cothi et al., 2022). A wealth of data suggests that human planning exhibits
two key properties – computational e�ciency i.e., the convergence time of the planning
algorithm should not scale rapidly with the size of the state space (Kool et al., 2017), and
noise robustness i.e., the algorithm should overcome any uncertainty in the representation
about the model of the world (Hudson et al., 2008; Alhussein and Smith, 2021).

Early models of planning in artificial intelligence systems were formulated as heuristic
forward search algorithms (Hart et al., 1968; Pearl, 1984; Korf, 1985) or their backward
counterparts (LaValle, 2006) that operated on symbolic world models. The use of appro-
priate heuristics allows for focusing computations on the task-relevant parts of the state
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space, making these algorithms computationally e�cient. However, since these models ex-
press transition dynamics in symbolic terms, they are not inherently capable of dealing with
subjective uncertainty in the transition dynamics.

An alternative formulation of the planning problem using the framework of Markov
Decision Process (MDP) has emerged as a standard approach to deal with stochastic tran-
sition dynamics (Sutton and Barto, 2017). Planning in the MDP framework is typically
solved via dynamic programming (DP) algorithms such as value iteration or policy iter-
ation (Bellman, 1957; Howard, 1960) which entail alternating between policy evaluation
and policy improvement. Unlike heuristic search, DP algorithms converge to the optimal
solution even if the transition dynamics are stochastic. Model-based planning algorithms
such as Dyna (Sutton, 1991; Moerland et al., 2020) allow for reducing stochasticity due to
subjective uncertainty about the transition dynamics (epistemic uncertainty) by perform-
ing model updates in conjunction with policy updates. However, a common drawback of
DP algorithms is that the policy updates are performed across the entire state space in an
undirected manner, making them much less computationally e�cient than heuristic search.

2. Related work and our contribution

Studies on planning have shown that humans minimize computational complexity using
strategies such as pruning and decomposition of decision trees (Huys et al., 2012; Solway
et al., 2014; Huys et al., 2015), resource-rational planning (Callaway et al., 2018; Ho et al.,
2020), or by constructing simplified mental representations of the world (Ho et al., 2022).
While such insights help identify useful model classes, they are insu�cient to construct a
granular algorithm of human planning at the level of individual planning steps. Moreover,
above studies do not account for representational noise and thus do not explain how we
might plan when our model of the environment is imprecise or wrong. Humans rely on
structured eye movements to reduce uncertainty in simple discrimination/detection tasks
(Renninger et al., 2007; Yang et al., 2016; Hoppe and Rothkopf, 2019) but it is not yet clear if
and how such strategies are used when planning action sequences in complex environments.
Recently, recurrent neural network models have been used to explain human eye movements
during memory-guided (Lakshminarasimhan et al., 2018; Stavropoulos et al., 2023) and
maze-solving (Li et al., 2023; Kadner et al., 2023) paradigms. Such models help identify
the computational objective driving eye movements but do not explain the mechanisms by
which individual eye movements are chosen in real time.

To develop a granular, algorithmic theory of human planning that accommodates a role
for active sensing, here we first analyzed data gathered from a free-form behavioral experi-
ment in which human participants used a joystick to navigate mazes in virtual reality. We
found that nearly all trials comprised of an initial planning phase during which participants
visually explored a small set of relevant states before navigating to the goal suggesting that
planning was performed ahead of time via active sensing rather than in real time. Further-
more, visual exploration of those states unfolded in a sequential manner until participants
were able to successfully connect the start and goal states. Based on this spatiotemporal
pattern of visual sampling, we propose an algorithm for planning under uncertainty by ac-
tive sensing whereby an internal model of the world is updated in conjunction with planning
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steps in an incremental fashion by visually sampling new states along the local gradient of
the subjective value landscape.

In the following sections, we provide the mathematical foundations of navigational plan-
ning in the MDP framework, describe key results of the human behavioral experiments, de-
scribe the planning algorithm, evaluate its performance, and analyze the sample e�ciency.

3. Preliminaries

Navigation can be formulated as a Markov decision process (MDP) described by the tuple
M = hS,A, P,R, s0i whose elements denote, respectively, a finite state space S, a finite
action space A, a state transition distribution P (s0|s, a), a reward function R(s), and an
initial state s0 2 S. Given that an agent is in state s 2 S, the agent may execute an action
a 2 A in order to bring about a change in state from s to s0 with probability P (s0|s, a) and
harvest a reward R(s). In the case that an agent is tasked with navigating to a goal state
sG where the agent would receive a reward, the reward function R(s) = �(s� sG)� 1 such
that the reward is concentrated in the goal state. Given this formulation, we may compute
the optimal policy ⇡⇤(a|s), which describes the actions that an agent should take from each
state in order to reach the goal state in the fewest possible number of steps. The optimal
policy may be derived by computing optimal state values V⇤(s), defined as the expected
future rewards to be earned when an agent begins in state s and acts in accordance with
the policy ⇡⇤. The optimal value function must satisfy the Bellman optimality equation:

V⇤(s) = max
a

X

s0

P (s0|s, a)[R(s) + V⇤(s
0)] (1)

The optimal policy is given by the argument a that maximizes the right-hand side of
Equation 1. Intuitively, the optimal policy corresponds to ascending the value function
V ⇤(s) where the value gradient is most steep. The standard approach to solve the Bell-
man optimality equation is through dynamic programming (DP) algorithms such as value
iteration or policy iteration. These algorithms proceed by choosing a random policy ⇡(s|a)
and repeatedly applying elements of the above equation – policy evaluation and policy
improvement – in alternation until convergence. Since each application propagates value
between neighboring states, this operation is typically referred to as a Bellman backup or
just ‘Backup’. The policy evaluation step computes the state-value function V⇡(s) when
acting according to policy ⇡:

V⇡(s) =
X

a

⇡(a|s)
X

s0

P (s0|s, a)[R(s) + V⇡(s
0)] (2)

The solution to Equation 2, given by V⇡(s) = (I�P⇡)�1R(s), is the value function used
for the policy improvement step in policy iteration. In the policy improvement step, a new
policy ⇡0(a|s) = �(a� a⇤(s)) is chosen such that:

a⇤(s) = argmax
a

X

s0

P (s0|s, a)[R(s) + V⇡(s
0)] (3)

The DP algorithm converges when ⇡0 = ⇡ = ⇡⇤ or equivalently when V⇡ = V⇡0 = V⇤.
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4. Results

4.1. Behavioral task

To model human planning, we used data from a virtual reality (VR) task in which par-
ticipants navigated to cued reward locations in hexagonal mazes. The experiments used a
head-mounted VR system (HTC Vive Pro) with a wide field of view to provide an immersive
experience. Participants (n = 13) viewed the environment from a first-person perspective
and freely rotated in a swivel chair and used an analog joystick to control their forward and
backward motion along the direction in which they were facing (Figure 1A). The program
recorded their position in the virtual maze as well as their gaze using a built-in eye tracker.
To facilitate quantitative analyses, mazes were designed with a hidden underlying triangular
tessellation where each triangular unit constituted a state in a discrete state space (Sup-
plementary Figure 1A) but this discretization was invisible to participants. A fraction of
the edges of the tessellation was chosen to be impassable barriers (obstacles). Participants
could take actions using the joystick to achieve transitions between adjacent states which
were not separated by obstacles. Critically, participants experienced a relatively high van-
tage point and were able to gaze over the tops of all of the obstacles to gather information
about distal transitions through visual exploration (Figure 1A). On each trial, participants
had to collect a reward by navigating to a random reward location drawn uniformly from
all states in the maze. They had to locate the reward (a banana) and navigate to it after
which a new reward for the next trial was spawned without breaking the continuity of the
task. In separate blocks, participants navigated to 50 goals in each of five di↵erent mazes
of variable complexity (Supplementary methods). The simplest of these was an open maze
that required no planning, while the rest were structured.

4.2. Signatures of planning

We found that participants navigated to the goal along optimal trajectories in all mazes
even though they had no prior experience in any of them i.e., they did not have a model
of the environment (Figure 1B; summarized in Supplementary Figure 1B). This suggests
that they planned their trajectories before navigating, as confirmed by their velocity traces
which showed that participants were typically stationary for a brief period at the beginning
of each trial (‘planning period’) and then navigated without stopping (Figure 1C). Planning
duration increased with navigation duration in structured (but not open) mazes implying
that planning in these mazes was e↵ortful and that the complexity of planning increased
with the path length (Figure 1D).

4.3. Active sensing strategy

Since participants did not have a model of the environment at the beginning of the trial, we
reasoned that they built a model by visually exploring the maze during the planning period
i.e., by active sensing. Therefore, the source of algorithmic complexity is twofold: sample
complexity associated with the number of visual samples needed to build a su�ciently good
model, and computational complexity associated with performing Bellman backups to infer
a good policy. Since random visual exploration is sample ine�cient, we hypothesized that
participant’s active sensing strategy could be dictated by task demands. To test this, we
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Figure 1: Human behavior. A. Humans navigated in unfamiliar mazes using a joystick.
B. An example trial: navigated trajectory (color) with the optimal trajectory
overlaid (dashed). Open and solid circles denote starting location and reward
location respectively. C. Trials typically comprised an initial planning period
followed by a navigation period. D. Mean planning duration as a function of
mean navigation duration across trials. E. Example trials showing gaze positions
during planning (yellow dots) and the trajectories navigated subsequently (blue
traces). F. Mean sweeping duration as a function of mean navigation duration.
G. Mean planning duration as a function of experience.

analyzed their gaze positions during the planning period relative to the trajectory taken
while navigating and found two salient features. In the spatial domain, there was a striking
correspondence between the two in structured (but not open) mazes suggesting that the
active sensing strategy was trial-specific (Figure 1E). Note that this correspondence was not
perfect since the trajectories are determined only after the planning process is complete. In
the temporal domain, participants performed visual sweeps during which they sampled the
states that comprised the trajectory in a sequential manner (Supplementary Figure 2). The
total duration of these sweeps increased with the navigation duration since more states need
to be traversed as trajectories get longer (Figure 1F). Finally, we note that the planning
duration was stable across trials within a block (Figure 1G) suggesting that information
gathered about the model was not consolidate across trials but rather learned from scratch
on each trial. This is most likely because even the least complex among the structured
mazes had a fairly complex transition structure and the points of view di↵ered across trials.

Taken together, the spatiotemporal pattern of gaze during planning suggests that the
sampling strategy was: (i) influenced by the starting and reward locations, and (ii) informed
by a heuristic which encouraged the exploration to evolve sequentially. In the next section,
we propose an algorithm for planning by active sensing that incorporates this sparse sam-
pling strategy to update the world model. However, we do not exactly know how humans
reduce the computational complexity i.e., how are their backups organized? We make a
parsimonious assumption that Bellman backups are performed only for the set of sam-
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pled states and immediately after each model update. We demonstrate that this minimal
assumption is su�cient to generate a successful plan.

4.4. Planning algorithm

Based on the observations from human behavior, we developed a planning algorithm whose
core components are described below and illustrated in Figure 2.

Model uncertainty. Without loss of generality, we consider navigation in deterministic
mazes such as the ones used in the human experiments. For these mazes, the transition
dynamics Ptrue(s0|s, a) = 1 if an action a allows a transition from state s to a neighboring
state s0 and Ptrue(s0|s, a) = 0 otherwise. In case an action fails to bring about a change
of state due to the presence of an obstacle, then Ptrue(s0|s, a) = �(s0 � s). Note that if
the agent has a perfect model of the environment, the subjective transition dynamics upon
which the planning algorithm operates would be identical to these deterministic transition
dynamics. In the other extreme scenario where the agent has no knowledge of the model,
Pnoise(s0|s, a) = Pnoise(s|s, a) = 1

2
, corresponding to equal probabilities of success and failure

of an action to bring about a change of state from s to s0. In practice, the subjective
model might be somewhere in-between and we capture this by assuming that the subjective
transition model is a weighted sum of the true and noisy transition models:

P (s0|s, a) = (1� ↵)Ptrue(s
0|s, a) + ↵Pnoise(s

0|s, a) (4)

where ↵ 2 [0, 1] denotes the level of uncertainty.

Update
transition

model,
Pk(s’|s, a)

Init. 
P, V, �, s0

Stop if 
sk+1=sG

Update
value

function,
Vk(s)

Update
policy,

Start,s0

Goal,sG

Sampled 
gaze

Draw gaze
sample, sk+1

Draw gaze
sample, sk

Iter.
k-1

...

...

�k(a|s)

Figure 2: Planning algorithm. Each iteration of the algorithm updates the transition
model locally around the state sampled by the gaze. The updated transition
model is used to update the value function based on the current policy before
performing a policy update.

6



Planning By Active Sensing

‘Online’ update. In standard DP algorithms, policy improvements (equation (3)) are
performed for all states s 2 S. This ignores knowledge of the initial state s0 making them
undirected and thus computationally ine�cient. In contrast, adaptive real-time dynamic
programming (RTDP) algorithm and its variants restrict model/policy updates to a single
state and proceed by acting according to the current best policy at that state i.e., they
interleave steps of planning and action selection. For this reason, they are considered as
online planning strategies. We adopt a similar approach in our algorithm albeit with a
subtle but important di↵erence. Like human participants, we endow our agents with active
sensing to learn about the consequences of actions at distal states by visually sampling
them without physically navigating to those states. Although the resulting model/policy
update equations at the sampled states are mathematically equivalent to online algorithms
that perform the selected actions, we interpret them as simulated actions rather than real
actions. This allows the agent to stay put at s0 throughout planning. This di↵erence can
be formally expressed by defining a simulated MDP fM that is identical to the ground MDP
M, running the algorithm on fM to determine a policy e⇡, and then finally setting ⇡ = e⇡
before applying it on the ground. We skip this formalism to keep notations simple.

Greedy sampling for model and policy updates. Each iteration includes a model
update step in which the subjective transition matrix is updated locally around the chosen
state. Model updates are followed by policy evaluation, and policy update in the chosen
state. Updates are performed in the initial state s0 in the first iteration, and an action
a is simulated according to the best action for that state according to the current policy.
This determines a new sample state s1 for updating in the next iteration, following which
the best action is simulated in that state to determine s2 and so on until the kth sample
sk = sG. Since new samples are generated by simulating actions at the currently sam-
pled state, sampling takes place sequentially similar to human participants. However, since
greedy sampling corresponds to ascending the value gradient, the sampled sequence may be
sensitive to the assumptions we make about the value function before the transition model
is learned. We demonstrate that a simple initialization strategy that depends only on the
knowledge of the reward location works very well in practice (see below).

Model update. The transition model update in the kth iteration involves modifying
the subjective transition dynamics Pk�1 according to:

Pk(s
0|s, a) Pk�1(s

0|s, a) +Wk(s)�Pk�1(s
0|s, a) (5)

where �Pk�1(s0|s, a) = Ptrue(s0|s, a)�Pk�1(s0|s, a) and Wk(s) = e
�d(s,sk)2

2�2 is a Gaussian
weight profile that decays as a function of distance d(s, sk) from the state sk sampled in
the kth iteration. This weight profile was chosen to restrict information gathering to the
immediate vicinity of the sampled state and is meant to mimic the e↵ects of filtering by the
human fovea.

Initialization. The initial sample is assumed to be at the starting location s0. The
initial transition model P0 is given by equation (4) where we assumed ↵ = 1 which corre-
sponds to maximum uncertainty. The policy is initialized to be a random walk such that
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Figure 3: Model performance. A. Example simulation. Top row : The true transition
dynamics (left), and the corresponding optimal value function (middle) and opti-
mal policy (right) computed using the standard dynamic programming approach
for an example trial. Starting location and goal location are shown in green and
red respectively. Policy unfolding from the starting location is highlighted in
black. Middle row : The assumed transition dynamics, value function and (ran-
dom walk) policy at initialization (k = 0). Bottom row : Similar to middle panels,
but after convergence of the proposed algorithm (k = K). A video of the full sim-
ulation is available at https://tinyurl.com/planning-algo. B. Top: Comparison
of the path length of the policy determined by the algorithm against the opti-
mal path length across trials Middle: Path length (normalized by optimal, black)
and number of planning steps (cyan) as a function of initial model uncertainty.
Bottom: Success rate as a function of the number of planning steps.

⇡0(a|s) = 1/M 8s 2 S where M = 3 is the number of actions available in each state due
to triangular tessellation of the state space. These choices imply an initial value function
V⇡0(s) = (I � P0⇡0)�1R(s) where the reward function R(s) = �(s � sG) is the only term
that is trial-specific.

To understand how the algorithm plans a trajectory, consider the example task shown
in Figure 3A where the objective is to determine the optimal policy to navigate between the
states marked by the colored circles (from green to red). The panels in the top row show the

8



Planning By Active Sensing

mathematical quantities determined by a standard dynamic programming (DP) approach
(policy iteration). This technique uses the true transition model (configuration of the maze,
top row – left) to calculate the optimal state value function (heat map, top row – middle)
and the corresponding optimal policy (vector field, top row – right). The value function
and policy determined by DP serves as the ground truth for assessing the performance
of the proposed algorithm. In contrast to DP techniques, we assume that the subjective
transition model to be noisy such that the resulting model is very fuzzy with transitions
between all neighbors having a probability close to 0.5 (middle row – left). Under this noisy
transition model, a naive random walk policy assumed at initialization (middle row – right)
evaluates to a value function that is markedly di↵erent from optimal (middle row – middle
panel) before any updates are applied. Despite this conservative initialization, the algorithm
converges to the true optimal policy (bottom row – right) unfolding from the start towards
the goal and the corresponding value function resembles the optimal value function (bottom
row – middle). In contrast, the subjective transition structure is still noisy in large swathes
of the state space outside of the regions sampled by the algorithm (bottom row – left).
Thus, the algorithm is able to determine the optimal policy with only a modest number of
samples. A closer inspection of the policy function determined by this algorithm shows that,
unlike the policy determined by dynamic programming, this policy is essentially random
everywhere except for the sampled states. This demonstrates the directed nature of this
algorithm imposed by the greedy sampling such that the final policy is only applicable to a
subset of the state space. The specific subset depends on the subjective transition model,
the starting state, and the goal state. Nevertheless, this specificity is precisely what makes
the planning algorithm achieve low sample and computational complexity. An animation
showing how the plan is gradually built up is available at https://tinyurl.com/planning-
algo. Figure 3B summarizes the performance of the algorithm. The algorithm converges
to the optimal solution on most trials (top) even when the model is completely unknown
(↵ = 1, middle) and across mazes of varying complexities (bottom).

The sampling strategy of the algorithm can be better understood by examining the
spatiotemporal dynamics of the samples sk (Figure 4A) alongside the dynamics of the state
value function, V (sk), of the sampled states (Figure 4B). Since the algorithm follows a
greedy sampling strategy that follows the spatial gradient of the value function, the value of
the sampled states generally increases. However, there is a precipitous drop in the middle
of planning after about k = 17 iterations in example 1 (left panel, black triangle). Why
does this happen? Notice that the new sample encountered on this iteration of planning
reveals a (previously unknown) obstacle preventing access towards the goal state. When
this new information about the transition model is used to perform model update (Equation
5), it results in downgrading of the values of the states a↵ected by that obstacle during the
policy evaluation step (Equation 2) which triggers a visual detour in the sampling strategy
after the policy improvement step (Equation 3). On the other hand, value increases mono-
tonically when samples are relatively unsurprising as in example 3 (right panel). Across
simulations, we found that non-monotonic value dynamics are more prevalent in the most
complex arena (65% of the trials) compared to the simplest one (12%). These findings illus-
trate how planning in the real-world can benefit from a rich interplay between information
gathering and incremental Bellman backups. Importantly, the subjective value dynamics
accompanying visual exploration can serve as a prediction for neuroscience experiments
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that probe the neural basis of visually-guided navigation at a single-trial resolution (Gulli
et al., 2020; Noel et al., 2022; Lakshminarasimhan et al., 2023). Specifically, we predict
that activity dynamics of neurons encoding the subjective value should follow a temporal
profile shown in Figure 4B when the spatiotemporal profile of gaze is given by Figure 4A.
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Figure 4: Interplay between information gathering and value updating. A. Spatial
locations (jittered to avoid overlap) sampled by the proposed algorithm during
three example trials. B. Subjective value of the sampled states, sk as a function
of planning iteration, k on the same trials. The example simulated in Figure 3
is shown in the leftmost panels. Note the decrease in value during the course of
planning in spite of following a greedy sampling strategy in two of these examples.
This decrease happens when newly gathered information unexpectedly reveals the
presence of a previously unknown obstacle on the path towards the goal. Large
red and cyan circles denote starting location and goal location. Gaze samples are
color coded to denote the sequence of planning iterations (blue to red).

4.5. Model comparison

To test whether the particular strategy of sampling information in a sequential manner is in
fact e�cient, we constructed a variant of the algorithm in which the sampling strategy cor-
responded to random exploration. The policy updates still happened in a sequential manner
in this variant. Across simulations of trials across mazes used to test human participants,
we found that the median number of backups (planning steps) needed for convergence was
indeed substantially reduced when sampling was performed sequentially in a coordinated
manner with the policy updates (Figure 5A; sequential sampling: 16 ± 2 planning steps,
random sampling: 57± 6 planning steps).
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Figure 5: E�ciency of the proposed algorithm. A. Cumulative probability distribu-
tion of the number of backups across trials simulated using sequential information
sampling (proposed algorithm, black) and using random information sampling
(gray) strategies. Policy updates were performed sequentially in both cases. B.
Mean number of backups as a function of the total number of states in the simu-
lated mazes for the two algorithms shown in A. C. Number of planning steps of
the proposed algorithm, compared against those obtained when ablating (by ran-
domization) one feature of the algorithm (initialization, order of model updates,
order of Bellman backups).

Techniques that use incremental backups such as prioritized sweeping are particularly
useful for reducing the computational complexity of planning in large state spaces. Since
the proposed algorithm does not use a prioritization scheme, we wanted to know whether it
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could scale to large state spaces. To test this, we simulated trials by constructing mazes that
di↵ered in the total number of states ranging from 6 to 294. We found that the number of
planning steps increased only marginally with the number of states (Figure 5B – black), and
increase that was entirely accounted for by an increase in the average path length of trials
in larger mazes. Moreover, the algorithm outperformed the variant with random sampling
(Figure 5B – gray) suggesting that both sample e�ciency and computationally e�ciency
are robust to the size of the state space. Finally, we probed whether the performance of
the algorithm largely depended on appropriate initialization of the value function, ordering
of model updates according the the value-gradient heuristic, or the sequence of Bellman
backups by ablating each feature separately. We found that all three features were critical
for e�cient convergence (Figure 5C).

5. Limitations and future work

Although the proposed algorithm was successful at finding the optimal path in the envi-
ronments we tested, it may yield suboptimal policies under certain conditions. Since active
sensing is guided by local value gradients, one could construct mazes in which the initial
direction of the gradient pushes the exploration towards a long-winding path. A rigorous
theoretical treatment is required to understand the precise conditions under which this
strategy is reasonable. Another direction we have not yet explored is a systematic model
comparison against alternative algorithms such as prioritized sweeping or n-step look-ahead
which may also co-exist with active sensing. Moreover, it would be intriguing to investigate
how this algorithm is implemented neurally. Planning is associated with sequential neural
activity in the hippocampus (Brown et al., 2016; Miller et al., 2017; Mattar and Daw, 2018;
George et al., 2021; Zhu et al., 2023). Testing whether such neural dynamics could serve as
a substrate for planning by active sensing is an important topic for future work. Finally,
while the current study focused on visually-guided navigation, visual information might be
either unnecessary or insu�cient for some planning problems. Whether the proposed model
can inspire useful computational strategies in such settings remains to be seen.

6. Conclusion

Planning and active sensing have traditionally been modeled separately. Planning has tra-
ditionally been characterized as a covert, internal information search over past experiences
while active sensing is an overt, external search to gather new information. There is a
growing realization that these two search strategies may be intertwined for temporally ex-
tended behaviors under naturalistic conditions (Lakshminarasimhan et al., 2020; Hunt et al.,
2021). By analyzing gaze patterns, we find that human planning strategy during naviga-
tion is consistent with an algorithm in which both searches are coordinated and carried
out simultaneously around the same set of states, a strategy we refer to as ‘planning by
active sensing’. The algorithm di↵ers from traditional incremental approaches to dynamic
programming in that planning (policy update) is performed in conjunction with learning
(model update). It also di↵ers from architectural frameworks such as ‘Dyna’ that allow for
simultaneous learning and planning in that model updates are performed by visual sampling
rather than physically interacting with the world which could prove too costly. Instead, the
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strategy is conceptually similar to adaptive RTDP and identifies closely related real time
algorithms as a promising direction for achieving human-like planning in machines.
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