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Appendix A. Model details

On the first frame, the tracker initializes a series of tracks, one for each detection, represent-
ing the objects to be tracked. Each track represents the belief about an object’s position
variables (bounding box center, height, aspect ratio, and velocities) and appearance. New
observations are assigned deterministically to tracks/slots and update beliefs about position
and appearance.

We denote observations with o (position observations: o
pos, appearance observations:

o
app) and latent variables with z (position latent variables: zpos, appearance latent variables:

z
app).

A.1. Position model

Each track’s position state is an eight-dimensional variable (bounding box center, height,
aspect ratio, and velocities), which is updated with new observations by a Kalman filter.

On time step t, first the predicted posterior N (ẑposi,t , P̂
pos
t ) is computed with

ẑ
pos
i,t = Fz

pos
i,t�1 (6)

P̂
pos
t = FP

pos
t�1F

T +Q (7)

where z
pos
t�1, and P

pos
t�1 are the state vector and covariance of the posterior belief from

the previous frame, F is the state-transition matrix:

F =

2

66666666664

1 0 0 0 �t 0 0 0
0 1 0 0 0 �t 0 0
0 0 1 0 0 0 �t 0
0 0 0 1 0 0 0 �t
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

3

77777777775

and the covariance of the process noiseQ =
⇥
2.1, 2.1, 0.01, 2.1, 0.26, 0.26, 1⇥ 10�5, 0.26

⇤
I.

The new posterior for time step t is then updated as a combination of the predicted
posterior and the assigned new observation oj,t, weighted by the Kalman gain:

z
pos
i,t = (I�KtH)ẑposi,t +Ktoj,t (8)

P
pos
i,t = (I�KtH) P̂pos

i,t (9)

where H projects latent beliefs into the observation space:

H =

2

664

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

3

775
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The Kalman gain weighs the contribution of the predicted posterior belief and the
current observation to the new state belief, depending on the uncertainty in the predicted
posterior P̂pos

i,t and the uncertainty over the expected observation S
pos
i,t = HP̂

pos
i,t H

T +R
pos
j,t ,

where R
pos
j,t is the covariance matrix of the observation noise. Note that observation noise

is zero for the base model, constant (Rpos
j,t = R

pos) for the constant model, and a function
of the distance between fixation and observation position in the fixation model.

A.2. Appearance model

For each bounding box observation, the corresponding image crop is extracted and embed-
ded into a latent space to yield a 128-dimensional appearance observation (extracted via a
pre-trained re-identification model with a ResNet50 backbone). A track’s belief about the
object’s appearance is modeled as an empirical distribution over past observations of the
object. In particular, the Gaussian belief distribution N (zappi,t ,Papp

i,t ) is parameterized via
the precision-weighted mean z

app
t and covariance P

app
i,t over the past K (K = min{t, 10})

appearance embeddings. The precision weight of a sample in memory corresponds to the
inverse variance of the observation noise associated with the observation.

The predicted appearance observation for a particular track i at time-point t is then
modeled as N (ôappi,t ,Sapp

i,t ) with ô
app
i,t = z

app
i,t�1 and S

app
i,t = P

app
t�1 + R

app
j,t (the projection H

from latent into observation space is simply the identity matrix I).

A.3. Assignment

New observations are associated with those tracks that minimize the distances between the
tracker’s belief about object positions and appearances and the new observations.

In particular, we compute the distance dpos(i, j) between the tracker’s belief about
the i-th track’s position and the position of the j-th observation o

pos
j,t as the negative log

probability of the observation under the model’s probabilistic prediction of the object’s
position, N (ôposi,t , S

pos
i,t ), with ô

pos
i,t = Hẑ

pos
i,t as the predicted position in observation space.

dpos(i, j) =
1

2

⇣
(oposj,t � ô

pos
i,t )

T
⇣
S
pos
i,t

⌘�1
(oposi,t � ô

pos
i,t ) + log |Spos

i,t |+ k log(2⇡)
⌘

(10)

Similarly, the distance between distance dapp(i, j) between the tracker’s belief about
the i-th track’s appearance and the observed appearance is computed as the negative log
probability of the observed appearance embedding o

app
j,t under the model’s belief about the

track’s appearance ô
app
i,t and the associated uncertainty S

app
i,t

dapp(i, j) =
1

2

⇣
(oappj,t � ô

app
i,t )T

⇣
S
app
i,t

⌘�1
(oappi,t � ô

app
i,t ) + log |Sapp

i,t |+ k log(2⇡)
⌘

(11)

on each time step, the entries of the assignment cost matrixCt is computed as a weighted
sum of the position cost Dpos and the appearance costs Dapp between the i-th track and
the j-th observation.

ci,j = �dpos(i, j) + (1� �)dapp(i, j) (12)
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Appendix B. Object motion trajectories

Initial object positions were sampled randomly such that no object was occluded and ob-
jects had a minimal inter-object distance of half an object width. Initial angular motion
directions were sampled from a uniform distribution. Object speed was always constant.
Using rejection sampling, motion trajectories were sampled such that at the end of the
motion period, object centroids were separated by at least half an object distance.

Object motion dynamics could be either linear or following a complex generative motion
model. In the linear case, object positions were deterministically simulated forward using
the initial start position and motion vector. In the complex motion model, the angular
motion direction was perturbed on each frame. At the start of the motion, the motion
perturbation angle was sampled from a von Mises distribution centered on µ = 0 degrees
with a precision of  = 100.0 degrees. This motion perturbation angle was then applied for
the next T1 frames. At frame T1 + 1, a new motion perturbation angle was sampled from
the same von Mises distribution and applied for the next T2 frames. Intervals T1, T2, . . .
were sampled from a Poisson distribution with � = 10. Hence, on average every 10 frames,
the motion direction of the object changed. This procedure yielded complex but smooth
motion trajectories.

Appendix C. Human gaze tracking

Nine participants (7 female, mean ± age 26.9 ± 8.3) with normal or corrected-to-normal
vision were recruited from the participant pool of the Institute of Neuroscience and Psy-
chology, University of Glasgow. All participants gave informed consent and the study was
approved by the ethics committee of the College of Medical, Veterinary & Life Sciences of
the University of Glasgow. Participants viewed stimuli in the lab on a monitor (1920⇥1080
resolution, 60Hz refresh rate). Monocular gaze (left eye) was recorded at a sampling rate of
1000Hz using an infrared camera (Eyelink 1000, SR Research). The camera was positioned
under the display monitor facing the participants. Participants used a chin-rest, which
allowed us to control the distance between the eyes and the monitor (distance: 57cm) and
minimized head motion. The eye tracker was calibrated before each block.

Appendix D. Human gaze behavior reveals beliefs about tracked objects

Fixation behavior is a core feature of human visual inference enabling targeted sampling of
the environment. To gauge to what extent fixations are directly subserving the task rather
than being a behavior coincidental to the task, we plotted the distance of all objects to the
fixation center as a function of time in the trial and object type (Figure 5). We observe
that fixations were closer to targets compared to distractor objects in line with previous
findings (Hyönä et al., 2019). Moreover, fixation behavior revealed the underlying beliefs
of participants about target and distractor objects. In particular, distractor objects which
were (incorrectly) selected by participants in the responses period, were closer to the fixation
during the motion period compared to objects which were not selected. This demonstrates
the relevance of human fixation behavior for multiple object tracking.
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Figure 5: Fixation behavior is related to the tracking task. Average distance of
target (left) and non-target objects (right) to the fixation and as a function of
whether the object was believed to be a target object as indicated by the behav-
ioral response. Distance as a fraction of the vertical (horizontal) extent of the
motion area (i.e., relative to a motion area of 1⇥ 1).

19


	Introduction
	Related work
	Cognitive science
	Machine learning

	Methods
	Model
	Base model
	Observation noise model
	Fixation model

	Task
	Human behavior
	Model behavior

	Results
	Human behavioral phenomena
	Models without fixation
	Introducing gaze-following makes model behavior more human-like

	Limitations and future work
	Conclusion
	References
	Model details
	Position model
	Appearance model
	Assignment

	Object motion trajectories
	Human gaze tracking
	Human gaze behavior reveals beliefs about tracked objects

