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Abstract

Accurate gaze estimation is integral to a myriad of applications, from augmented reality
to non-verbal communication analysis. However, the performance of gaze estimation models
is often compromised by adverse conditions such as poor lighting, artifacts, low-resolution
imagery, etc. To counter these challenges, we introduce the eye gaze estimation with self-
improving features (EG-SIF) method, a novel approach that enhances model robustness
and performance in suboptimal conditions. The EG-SIF method innovatively segregates eye
images by quality, synthesizing pairs of high-quality and corresponding degraded images.
It leverages a multitask training paradigm that emphasizes image enhancement through
reconstruction from impaired versions. This strategy is not only pioneering in the realm
of data segregation based on image quality but also introduces a transformative multitask
framework that integrates image enhancement as an auxiliary task. We implement adaptive
binning and mixed regression with intermediate supervision to refine capability of our model
further. Empirical evidence demonstrates that our EG-SIF method significantly reduces the
angular error in gaze estimation on challenging datasets such as MPIIGaze, improving from
4.64◦ to 4.53◦, and on RTGene, from 7.44◦ to 7.41◦, thereby setting a new benchmark in the
field. Our contributions lay the foundation for future eye appearance based gaze estimation
models that can operate reliably despite the presence of image quality adversities.
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1. Introduction

Eye gaze is a fundamental non-verbal communication cue that encapsulates many insights
about human intent, shaping the landscape of numerous applications across diverse do-
mains such as human-computer interaction (Zhang et al., 2019; Li et al., 2019; Wang et al.,
2015), driver monitoring system, reading analysis (Beymer and Russell, 2005), screening for
dyslexia, augmented reality (Patney et al., 2016), etc. and hence the need of estimating the
eye gaze accurately.

Appearance-based methods using convolutional neural networks (CNNs) that directly
estimates human gaze from images captured by cameras are the most commonly used as
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Figure 1: Segregated good and adverse images in MPIIGaze and RT-Gene dataset.

they provide better gaze estimation performance (Murthy and Biswas, 2021; Cheng et al.,
2020). From images, gaze can be estimated through full face or head of a subject or
only through eye images. In applications, where considering privacy risks are important,
working on face images for training the model is difficult. Moreover, in applications like
driver monitoring, eye images are preferred over face images as it needs real-time estimation
on the edge devices with low computational capability.

Nevertheless, the presence of inherent adverse factors, such as inadequate lighting con-
ditions, subjects’ head movements away from the camera during eye image acquisition, etc.
results in the introduction of noise and compromised resolution in certain images within the
dataset. We hypothesize that datasets like MPIIGaze (Zhang et al., 2017) and RT-GENE
(Fischer et al., 2018) contain a subset of images affected by these adversities, significantly
impacting the accuracy of gaze estimation. Therefore, it becomes imperative for gaze esti-
mation methods to robustly identify and address these challenges.

In order to model a robust CNN architecture, we propose an eye gaze estimation with
self improving features (EG-SIF) method for learning noise independent features. Our
methods consists of three main parts: 1. Segregating the dataset into two disjoint sets i.e.,
good images that are relatively free from adverse effects and the adverse quality images. 2.
A transformation that generates adverse quality image given an image from the good set
by transferring the noise distribution of the image from the adverse set. 3. A multitask
end-to-end training framework with image enhancement as an auxiliary task along with
gaze estimation to make network robust towards noise. This type of segregation of varying
quality images and training them in different way has been accomplished for the first time in
this paper. With the proposed method,1 it is observed that model is able to perform better
on adverse quality images and also able to surpass the current state-of-the-art methods.

The main contributions of this paper are summarized in the following:

• We propose a novel framework for gaze estimation that can operate reliably even in
case of image quality adversities.

• Data segregation into two disjoint sets based on quality of images in the dataset for
the first time.

1. https://github.com/vasu-dev/EG_SIF/
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• A novel end to end training framework with image enhancement at the core as an
auxiliary task to make the network robust to noise.

• Adaptive binning based mixed regression with intermediate supervision for the first
time in gaze estimation.

• With the above proposed methods we are able to obtain the state-of-the-art perfor-
mance on benchmark datasets that lay the foundation for future eye appearance based
gaze estimation models.

2. Related work

Gaze estimation: Traditional methodologies predominantly focus on the identification
and analysis of ocular movement patterns, encompassing phenomena such as fixations,
saccades, and smooth pursuits. In contrast, model-based approaches concentrate on the
extraction of geometric attributes like pupil centre, contours, and eye corners (Park et al.,
2018). With the advancements in deep learning techniques and the abundance of data,
appearance-based methods have emerged as a dominant paradigm. They focus on learning
a non-linear mapping between the eye image and the associated gaze (Tan et al., 2002).
Appearance-based methods can be further divided on the basis of the input provided: eye
images or full-face images.

Features from eye images: Early deep-learning methods (Zhang et al., 2015) provided
a single-eye greyscale low-resolution image in conjunction with head pose information to
estimate the gaze from the features. As computational resources burgeoned, deeper net-
works (Zhang et al., 2017) based on a vanilla VGG-16 or ResNet, were designed to push
the boundaries of gaze estimation accuracy. Subsequently, it was found that concatenating
features from two eyes yielded better accuracy (Fischer et al., 2018), after which even a
four-stream network (Cheng et al., 2018) was built to extract features. (Chen and Shi,
2019) uses dilated convolutions as a means to extract high-level eye features, which effi-
ciently increases the receptive field size of the convolutional filters without reducing spatial
resolution.

Features from face images: In the realm of gaze estimation, researchers have recognized
the potential richness of information contained within facial images, which encompass de-
tails such as head pose and offer higher-resolution representations compared to individual
eye images and thus recently more attention has moved towards face image-based gaze esti-
mation. (Krafka et al., 2016) was one of the first attempts where the face image along with
the left and right eye images were used to estimate gaze. Various facial and eye detectors are
used to crop out the region of interest. In (Abdelrahman et al., 2022) they divide the gaze
range into discrete bins converting the regression problem to a classification problem along-
side running independent networks for different components of 2D gaze (yaw and pitch).
Gaze-360 (Kellnhofer et al., 2019) used a pinball loss function to predict error quantiles,
indicating confidence in the prediction. However, studies found that just concatenating
the features is insufficient and attention-based mechanisms came into the picture. (Cheng
et al., 2020) argues that the weights of two eye features are determined by face images due
to their specific task, so they assign weights with the guidance of facial features. Recently
(Murthy and Biswas, 2021) used an attention branch in parallel to feature extraction to
eventually attain weighted eye features and to be used with the face features. More recently
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Figure 2: Our Proposed Network Architecture. The network consists of four main
components, the encoder block, image enhancement head, the gaze head and a adabins
module. The input to the network is a normalized eye crop of spatial dimension H x W

and the output is the 3D Gaze (Yaw and Pitch).

transformer-based models (Cheng and Lu, 2021; Yu et al., 2021) have also been applied to
test their efficacy in attending to features and generating diverse features. To the best of
our knowledge, we are the first ones to utilise deep supervision to aggregate multi-layer
features for supervision.

Attempts have been made to utilise additional information like eye landmark features
(Wu et al., 2019), and pupil centre (Lee et al., 2020) to improve gaze estimation accuracy.
But eye appearance varies much across different people thus making the task of cross-person
testing extremely difficult. To solve this either calibrated methods are used or invariant
features are obtained via the network. (Park et al., 2018) convert the original eye images
into a unified gaze representation, which is a pictorial representation of the eyeball, the iris
and the pupil and further regress the gaze from the representation. FAZE (Park et al.,
2019) uses an autoencoder to learn the compact latent representation of gaze, head pose
and appearance. They introduce a geometric constraint on gaze representations, i.e., the
rotation matrix between the two given images transforms the gaze representation of one
image to another. Further, they train a highly adaptable gaze estimation network through
meta-learning. The network can be converted into a person-specific network once training
with target person samples. Nowadays more attention has moved towards gaze redirection
(via rotation equivariance (Jin et al., 2023) or NeRFs (Ruzzi et al., 2023)), synthesis and
scene-based understanding of gaze.

Image enhancement: Data-driven methods are largely categorized into two branches,
namely CNN-based and GAN-based methods. The nature of architecture is not of much
interest in the context of this work, but the variation in loss functions plays a crucial role.
(Zhao et al., 2017) discusses the effectiveness of using a mixed loss which accommodates
both structural similarity-based losses and simple error functions (l1andl2)
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(a) (b)

(c) (d)

Figure 3: (a) RMSE contrast distribution for MPIIGaze, higlighting the long tail and
corresponding images (b) RMSE contrast distribution for RTGene (c) Blur coefficient dis-
tribution for MPIIGaze, highlighting low blur coefficient area along with corresponding
images(d) Blur coefficient distribution for RTGene.

3. Gaze estimation using self improving features

In this section, we discuss the details of gaze estimation using self improving features. It
consists of 3 parts as discussed in detail in the following subsections:

3.1. Image segregation

The first step is to identify and segregate the entire training set I into two disjoint subsets
S and F , where si ∈ S are images with lower adverse effects and of high quality and fi ∈ F
are with poor quality. For this, we did some preliminary analysis on the image properties
namely RMSE contrast and blur co-efficient on both the datasets, namely MPIIGaze and
RT-Gene. The intuition behind this is that eye images with high constrast indicate noise
and high blur leads to loss of essential information needed for gaze estimation. The results
of this study are depicted in the Figure 3. As it can be seen in the Figure, there is significant
number of images in the long tail of datasets in terms of both RMSE and blurriness.
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Based on the above analysis, the segregation function y : I → {s, f} that maps each
image to its respective category is defined as:

yi =

{
f, if RMSE-contrast(i) > λr and Blur-coefficient(i) < λc

s, otherwise
(1)

where,

Blur − coefficient(i) = V ariance(Laplacian(i)) (2)

and

RMSE − contrast(i) =
√
(pj − µ)2/n (3)

whereas, pj is the intensity of jth pixel of image i, µ is the mean intensity value of i and
n is the total number of pixels in i.

It is observed that high RMSE-contrast and low blur-coefficient values resulted in a
noisy images. In case of MPIIGaze, we observed that images with RMSE Constrast > 75
(Fig. 3(a)) and Blur coefficient < 200 (Fig. 3(c)) fall into the subset F , hence, λr is fixed
at 75 and λc at 200. whereas, for RT-Gene λr at 10 (Fig.3(b)) and λc at 10 (Fig. 3(d)).
With careful analysis of the baseline models on these segregation, we found that most of
them perform poorly on adverse images. As it can be seen in Table 1, in both MPIIGaze
and RT-Gene dataset the angular error trained on baseline (ResNet-18) for adverse images
is significantly higher than the overall average.

Dataset Total Good Adverse

MPIIGaze 5.59 5.53 5.79
RT-Gene 8.9 8.83 9.61

Table 1: Angular errors on average, good, and adverse subsets of the
datasets using baseline.

To test that the segregation of good and adverse is accurate, a comparative study was
done assessing the entropies of the subsets as shown in Table 2. Inferences were run on 3
pre-trained models with similar architectures and the uncertainty in gaze prediction was
used as the basis to calculate the entropy of an image. The analysis revealed a lateral
positive shift in the distribution of the entropies of adverse images as compared to the good
images.

3.2. Good and adverse pair generation

Once the training set I is segregated into the two disjoint subsets, I = S ∪ F and S∩F = Φ,
we use the images from S and the noise distribution from set F through histogram matching
H(f, s) to generate adverse samples (similar to image in set F ) from S. We take a random
pair of images (sj ∈ S, fi ∈ F ) from both the sets and then generate a adverse quality
image as a linear combination of the matched histogram H(fi, sj), that transfers the pixel
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Data split Joint entropy

Good 6.2 ± 2.1

Adverse 7.3 ± 2.4

Table 2: Joint entropy calculated on the segregated good and adverse set for MPIIGaze
using mean ± standard deviation of 3 different runs

Figure 4: Conversion of a source image into a noisy image using the properties of a
reference image as well as salt-n-pepper noise.

distribution, salt-n-pepper noise (Ns) for high contrast generation and Gaussian noise (Ng)
for blur effect as given in the equation below:

f
′
ij = H(fi, sj) + αNs + βNg (4)

where, sj ∈ S; fi ∈ F ; α, β ∈ [0, 1]

Now we have a pair(f
′
ij , sj) of good image(sj) and a corresponding generated adverse

image(f
′
ij) with the same gaze direction but added noise. This acts as a training pair for

image denoising/enhancement. Fig. 4 shows the transition of a good image to a adverse
image. As it can be noted that the transformed good images are poor in quality.

3.3. Multitask network architecture

It has been observed in numerous studies (Park et al., 2019) that gaze estimation accuracy
suffers significantly during cross-person testing, thus the architecture is primarily designed
to be robust to such settings. The proposed EG-SIF network draws inspiration from the
proven attributes of the U-Net (Ronneberger et al., 2015) architecture, including the en-
coder’s proficiency in capturing multi-scale contextual information, the utility of skip con-
nections for preserving fine-grained details of learned features and the robustness towards
noise. We modify it into a multi-task network with 2 task-specific decoder heads focus-
ing on gaze estimation and image enhancement/denoising (refer to Fig. 2). The rationale
underlying this multi-task approach lies in the intuition that regressing gaze coordinates
from a denoised image is more tractable, thus the reconstruction head forces the encoder to
learn self-improving features which effectively serve as proxy features of a denoised image.
These information-dense features from the encoder are subsequently fed into the gaze head
to predict 3D gaze. Following the ideology of (Abdelrahman et al., 2022) we model the
horizontal(yaw) and vertical(pitch) components separately by using independent regressors
or fully connected layers. This allows the network to capture the unique characteristics of
each component independently. They also suggests that this improves the learning of the
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network as it now has two signals that backpropagate. Additionally, we use the following
elements to increase the robustness of the network:

1. Cross-parameter sharing: To provide both high-level spatial features and deep
features for gaze estimation, parameter sharing across the heads inspired from Wang
et al. (2020) was utilised (refer to Algorithm 1 for details). This ensures multi-layer
information sharing and also encourages the generalisation of the network as it pro-
motes the network to learn common features and representations that are useful for
both tasks. Additionally, parameter sharing augments the network’s capacity to learn
noise independent features that possess meaningful attributes across distinct scales or
layers of the architecture.

Algorithm 1 Cross-feature sharing

y : (Features from Gaze Head)
x : (Features from Reconstruction Head)
z = Concat(x, y)
ig = F3(y, z) (Intermediate Gaze Features)
ir = F4(x, z) (Intermediate Reconstruction Features)
z1 = Concat(x, ig)
z2 = Concat(y, ir)
Where: Fi represents a simple CNN block and in case of intermediate features, help in
cross-fusion, and zi are the latent features which further propagate into the decoders

2. Adabins: Initially proposed by (Abdelrahman et al., 2022), gaze bin classification
converts the regression task into a simpler classification task which can serve as a
coarse estimation of the final gaze. However, using fixed predefined bins might not
prove effective for the datasets in consideration since most of the gaze directions are
distributed near the origin and have a sparse population near the ends. Thus we
propose to use Adaptive bins (Adabins) for gaze bin classification inspired by their
recent success in depth estimation (Bhat et al., 2021). Adaptive binning allows for the
dynamic adjustment of bin boundaries based on the characteristics of the gaze data.
This adaptability ensures that bins are optimized to capture gaze patterns effectively
for a given dataset or user, enhancing the accuracy of gaze estimation. Additionally,
Adaptive binning can create bins that are finer in regions with high gaze density and
coarser in regions with sparse gaze data (refer to Fig. 5). Once the bins are obtained,
the bin centres (b(c)) are calculated and scaled accordingly.

b(ci) = gmin + (gmax − gmin)

(
bi +

bi+1 − bi
2

)
(5)

Where: gmax and gmin are the minimum and maximum gaze values corresponding to
the dataset, and bi is the predicted bin width

A parallel, fully connected layer (x) is then utilized for generating predictions associ-
ated with each bin. These predictions are subjected to a softmax activation function,
resulting in the assignment of probability scores to each individual bin. A coarse gaze
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Figure 5: Example showing comparison b/w uniform and adaptive bins, as can be seen
from the figure using adaptive bins can lead to better results as the bins are adapted to

each input image individually.

is calculated as the expectation of the bin centres. The final gaze is calculated by
adding a multi-layered perceptron (MLP) on top of the predictions regressing a single
value.

Gcoarse =
N∑
i=1

b(ci) · Softmax(xi) (6)

3.3.1. Loss functions

Many Convolutional Neural Network (CNN)-based models for gaze estimation commonly
output predictions in the form of 3D gaze direction angles, typically represented in spherical
coordinates as yaw and pitch. They frequently employ the mean-squared error (l2 loss) for
penalizing their networks. We propose the following loss function for training the EG-SIF
network:

1. Reconstruction loss: Based on (Zhao et al., 2017) we use the suggested mixed
loss. The mixed loss allows one to strike a balance between pixel-level accuracy
(sharpness) and perceptual quality. l2 loss (MSE) alone tends to produce overly
smooth images because it primarily penalizes pixel-wise differences. The inclusion of
multi-scale SSIM(Structural Similarity) helps mitigate this issue by encouraging the
preservation of structural and textural details. The overall reconstruction loss is:

LR = λLMSE + (1− λ)LSSIM (7)

Where, λ is a weight factor
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2. Gaze-estimation loss: We utilize both regression and classification losses along with
a regularization loss on the gaze heads.

• Coarse and direct gaze-estimation loss: The standard MSE loss is used to penalise
both the directly regressed gaze and the calculated coarse gaze.

MSE(y, p) =
1

N

N∑
i=1

(yi − pi)
2 (8)

Whereas pi is the regressed or calculated gaze and yi is the ground truth value

• Gaze classification loss: To penalise the predicted bin class, the standard cross-
entropy loss is used.

H(y, p) = −
∑
i

yi log pi (9)

Whereas, pi is the predicted class vector and yi is the ground truth one hot class
label

• Bin-width regularisation: This novel loss acts as a form of regularization, dis-
couraging extreme values of bin widths. This can help prevent over-fitting and
improve the generalization performance of a model.

LimitLoss(LL) = max (0,max(b(ci))− weight · threshold) (10)

Whereas, the threshold is set as the validation score of the previous epoch

The overall gaze-estimation loss can be represented as:

LG = α · (LL+H(y, p)) + β ·MSEcoarse(y, p) +MSEdirect(y, p) (11)

Where: alpha and beta are hyper parameters for loss-weighting

Thus the final loss for the network becomes:

LEG−SIF = ρLG + (1− ρ)LR (12)

Where: ρ is again a hyperparameter

4. Experiments and results

4.1. Datasets

With the development of appearance-based gaze estimation methods, many large-scale
datasets with variations in gaze direction, head pose and appearance have been proposed.
In order to assess the network, we train and evaluate our model on two popular datasets:
MPIIGaze (Zhang et al., 2017) and RT-Gene dataset(Fischer et al., 2018).

MPIIGaze is the most popular dataset for gaze-estimation methods. It contains a
total of 213,659 images (for each eye) obtained from 15 different subjects, collected over
several months thus providing variations in illumination. The dataset contains normalised
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eye images for corresponding face images, which is of our main interest. It also consists of
a standard evaluation set which comprises 3,000 images (1,500 left-eye and 1,500 right-eye
images) for each subject. The standard testing practice for the MPIIGaze dataset is the
leave-one-out setting to check the model accuracy in a cross-person fashion.

Figure 6: Results of using different hyperparamters(α, β) for MPIIGaze.

RT-Gene dataset was collected in a controlled laboratory environment, ensuring high-
quality data. The dataset includes eye-tracking data obtained from participants using
head-mounted eye-tracking glasses resulting in a much higher variation in the gaze angle
distribution. It contains 122,531 inpainted and original images (229,116 distinct eye crops)
acquired from 15 distinct subjects. Since the inpainted images are heavily noised images
as reported by (Murthy and Biswas, 2021), we use original images for training and testing.
The standard testing practice for RT-Gene is using a 3-fold cross-validation.

4.2. Data pre-processing

We use normalised eye images of 36x60 resolution for both datasets and do not make use
of any other additional information (e.g. full-face image, head pose vector) to obtain the
results. The ground truth class labels for the images were calculated during training. As a
result, the dataset had both class labels and continuous gaze labels making them suitable
for our proposed overall loss function. A total of 30,966 adverse images were obtained in
the MPIIGaze dataset leaving 396,352 training and validation samples. In the case of the
RT-Gene dataset, 18,971 adverse samples and 103,650 training and validation samples were
used respectively. The generated good-adverse pairs are such that the adverse samples
of a certain subject inherit noise properties from all the available subjects making the
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Network architecture Angular error

Baseline (Resnet-18) 5.6 ± 0.9

Reconstruction 5.31 ± 0.52

Reconstruction + cross-param sharing 5.06 ± 0.77

Table 3: Angular errors on model trained using the generated adverse dataset
demonstrating the effectiveness of the mixed-loss and cross-parameter sharing on

MPIIGaze. The results reported are mean ± standard deviation in evaluating cross
persons.

dataset more exhaustive. Another modification was to horizontally invert right eye images
to align geometrically similar features with left eye, thus making it easier to train a model.
Horizontally inverting left eye images without inverting right eye images is strongly expected
to yield similar results.

4.3. Training and results

We performed leave-one-out cross-validation on the MPIIGaze dataset using the proposed
models. The entire dataset apart from the held-out set was used for training and the held-
out set was used for validation. All the experiments were done using a yytorch framework
utilising adam optimiser. With a simple grid search initial learning rate was fixed at 0.001
and a multi-step decay with a decay constant at 0.5. Dropout was used for fully connected
layers with a dropout probability of 0.25. We train the network for 25 epochs each using
a batch size of 512. Loss weights(α, β) were changed and the performance was monitored
and compared with the state-of-the-art. Downsampling and cross-parameter sharing were
done twice in the network. For all the conducted experiments the hyperparameters were
fixed at ρ = 0.5, λ = 0.5.

We utilize gaze angular error (θ) as the evaluation metric following most gaze estimation
methods. Assuming the ground-truth gaze direction is g ∈ R3 and the predicted gaze vector
is ĝ ∈ R3, the gaze angular error (θ) can be computed as:

θ = arccos

(
g · ĝ

∥g∥ · ∥ĝ∥

)
(13)

The initial experiments were undertaken to evaluate the comparative performance of
an encoder-gaze regressor network in contrast to an encoder equipped with two distinct
decoders—one for gaze estimation and the other for image enhancement/denoising (Table
3). The enhancement based experiment was additionally constrained structural similarity
loss along with the MSE. Notably, the introduction of cross-parameter sharing mechanisms
yielded a significant enhancement in the network’s performance, indicating the strong cor-
relation between the tasks.

In the context of cross-person evaluation, using proper augmentations while training
plays a pivotal role in enhancing the overall robustness of neural networks. The base aug-
mentations used were brightness (0.5,1.5), contrast (0.5, 1.5), saturation (0.5, 1.5), hue (-0.1,
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Augmentation type Angular error

Normal 4.9 ± 0.83

Patch 4.82 ± 0.64

Patch + SP noise 4.79 ± 0.48

Table 4: Angular errors on model trained using the generated adverse dataset
demonstrating the effectiveness of various augmentations on MPIIGaze. The results

reported are mean ± standard deviation in evaluating cross persons.

0.1).These adjustments were applied in a randomized manner with a combined probability
of 50%, imparting stochastic variability to the training data. Additionally guassian blur
with a mean of 5 and std (1,3) with 50% probability was applied. Later we incorporated a
customized patch augmentation technique. It helped the model focus on the pupil rather
than the surroundings.The proposed patch augmentation applies white patches on the edge
of an image with variable size at a variable position. This resulted in a slight increase in
the accuracy of the model and a decrease in the variance. Another finding while visual
inspection was that adding salt and pepper noise to the training images increases robust-
ness towards noise in the image. Table 4 shows the respective improvements by using a
combination of these augmentations.

Table 5 shows the effectiveness of adaptive bins(Adabins) over fixed bins. As proposed
by Abdelrahman et al. (2022), we use 28 bins for the MPIIGaze and 42 bins for RT-Gene.

Type of bins Angular error

Fixed 4.72 ± 0.52

Adaptive (adabins) 4.53 ± 0.46

Table 5: Angular errors on model trained using the generated adverse dataset
demonstrating the effectiveness of Adabins on MPIIGaze. The results reported are mean

± standard deviation in evaluating cross persons.

Table 6 shows the comparison of our method with other methods, as it can be seen the
proposed method EG-SIF produces significantly lower error on MPII dataset and slightly
better performance on RT-Gene dataset. This is in comparison to the current state-of-the-
art methods. Fig. 6 shows a comparative analysis of the effect of changing hyperparameters
and subject-wise performance. From this we can observe that the hyperparameters are very
sensitive to change in appearance and thus affect the average performance.

5. Conclusion

In this paper, we introduce, for the first time a method for eye gaze estimation with self-
improving features (EG-SIF). As we observe that eye crop based dataset for gaze estimation
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Model
Angular error

MPIIGaze RTGene

ARENet 5.02° -

RTGene 4.8° 8.6°

AGENet 4.64° 7.44°

Ours(EG-SIF) 4.53° 7.41°

Table 6: Performance comparison with state-of-the-art gaze estimation methods.

contains both good and adverse images due to various inherent reasons and the current state-
of-the-art methods do not explicitly focus on the image quality, hence compromising the
performance. EG-SIF segregates images based on their quality. Once images are segregated,
a transformation is defined to obtain adverse set of images from good images. This pair is
used in the multi-task model where the task is to enhance/denoise the generated adverse
image along with gaze estimation. Apart from this, methods including cross-parameter
sharing and adabins are proposed to increase the efficiency. On evaluation of our methods,
it is observed that it outperforms current state-of-the-art methods by a good margin. This
concludes that adverse quality images in the dataset require separate treatment which can
not only enhance the performance in the dataset but also during inference in real-time
condition during those adversities.
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