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Abstract
Computational models of sequential attention often use recurrent neural networks, which
may lead to information loss over accumulated glimpses and an inability to dynamically
reweigh glimpses at each step. Addressing the former limitation should result in greater
performance, while addressing the latter should enable greater interpretability. In this
work, we propose a biologically-inspired model of sequential attention for image classifi-
cation. Specifically, our algorithm contextualizes the history of observed locations from
within an image to inform future gaze points, akin to scanpaths in the biological visual
system. We achieve this by using a transformer-based memory module coupled with a rein-
forcement learning-based learning algorithm, improving both task performance and model
interpretability. In addition to empirically evaluating our approach on classical vision tasks,
we demonstrate the robustness of our algorithm to di↵erent initial locations in the image
and provide interpretations of sampled locations from within the trajectory.
Keywords: sequential attention, transformers, interpretability, reinforcement learning

1. Introduction

The human visual system constantly receives a vast amount of data, with estimates ranging
from 108 and 109 bits of information per second Borji and Itti (2012); Koch et al. (2006).
Given the sheer volume of this input, it is crucial to have some mechanisms in place for
filtering out extraneous or erroneous data to e↵ectively process it in real-time. To accomplish
this task, the visual system relies on advanced cognitive processes and forms of dynamic
attention. Underlying this fundamental principle are evolved mechanisms for selection based
on some notion of relevance.

The basis for many computational models of attention build on the pinnacle work of
Treisman and Gelade (1980), who proposed the “Feature Integration Theory”. Intuitively,
this theory suggests that attention can be directed towards visually distinct regions or
features that stand out in comparison to their surroundings. The importance, relating to
human perception, is that the entire visual scene is not processed at once. Rather, we
selectively build an internal representation based on localized information. A given location
or memory of previous locations may be informative for where to look next, where the
total history of locations may influence scene interpretations. However, in recent years, the
primary focus of most neural models is on improving on or learning salient features, or the
relationships thereof, rather than on identifying the sequential shifts of attention that are
used for inference Borji and Itti (2012); Riche et al. (2013).

In this work, we take inspiration from biological models of visual attention for describing
global scene understanding with visual scanpaths or trajectories. We propose a memory-
based sequential model of attention1 leveraging the transformer Vaswani et al. (2017); Doso-
vitskiy et al. (2020) to contextualize the history of local information to learn “where to look”

1. https://github.com/stockeh/memory-sequential-attention
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Figure 1: High-level architectural overview of our proposed model. A predicted location
lt�1 samples a glimpse, gt, from an input image, x. The glimpse is added to a
memory store, �, where a masked transformer block computes a hidden state, ht.
The hidden state is used to emit the next location, lt, a predicted class, yt, and
baseline estimate, bt.

for classifying a visual scene (Figure 1). A hybrid approach of reinforcement learning and
data likelihood estimation is used to find a control strategy with an optimal trajectory over
a visual scene. The result is a performant model that promotes interpretability, enabling
the assessment of influence from individual locations for a given task. It also enables the
interpretations of interactions between these locations from the distribution of self-attention
weights. Results are evaluated on classical vision tasks, demonstrating the validity of our
approach and shows competitive performance.

The remainder of this work is organized as follows. An overview on the cognitive theo-
ries and neural models of attention, as they relate to this work, are provided in Section 2.
In Section 3 we detail our methodology and specifics of our proposed architecture. We
then evaluate our experimental results in Section 4. In Section 5 we discuss network in-
terpretations and make comparisons with a vision transformer. Lastly, concluding remarks
summarizing our work are made in Section 6.

2. Background and Related Work

To get a better intuition of computational models of attention, we first review these concepts
as a cognitive process, where the fundamental theories on visual control from psychology
and neuroscience are introduced. Thereafter, we discuss neural models of attention and
how they relate to this work.

2.1. Biological Visual Attention

Classical studies in cognitive psychology and neuroscience isolate selective attentional con-
trol to follow two predominate theories in vision Theeuwes (2010); Failing and Theeuwes
(2018). The first is a top-down process (also called endogenous or goal-directed), whereby
control is volitional and activated by the observer. This may use one’s belief and ‘inter-
nal’ factors to control attention. On the contrary, a bottom-up (also called exogenous or
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stimulus-driven) theory suggests control is involuntarily driven by factors external to the
observer. Stimuli that are physically salient due to their inherent properties relative to
the surrounding environment are likely to capture attention. Here, the salience of a stim-
ulus is defined by low-level visual characteristics, including modalities of color, intensity,
orientation, and motion Itti and Koch (2001).

Both theories of attentional control are shown to work in tandem for selective attention,
but these processes alone do not fully explain the range of phenomena related to atten-
tion. Only recently, however, the dichotomy of top-down and bottom-up control has been
challenged with evidence for additional factors that control visual selection, such as reward-
based history e↵ects Failing and Theeuwes (2018); Awh et al. (2012). The underlying idea
is that past episodes of attentional selection can strongly influence current selection above
and beyond top-down and bottom-up processing. This is particularly evident in studying
the interactions between rewards and attention, where rewards can shape both perceptual
and attentional processes, prioritizing certain stimuli and modifying spatial and temporal
attentional selection.

The processes of top-down, bottom-up, and reward-based history also control both
covert and overt processing of visual information Kowler (2011); Failing and Theeuwes
(2018); Zhao et al. (2012). Covert attention refers to the internal processing of visual in-
formation without any saccadic eye-movements, the rapid eye-movements that occur when
shifting gaze between locations. This allows for parallel processing and quick interpreta-
tions of visual information. It is intuitively used to monitor the environment and guide
eye-movements, allowing us to attend to a target without fixation.

Overt attention, on the other hand, is associated with a fixation as eye-movements
direct attention to di↵erent locations in the environment or visual scene. Attentional focus,
therefore, occurs within the line of sight of the fovea, the central part of the retina responsible
for sharp, central vision. Overt attention is an intentional and conscious process that allows
us to focus on specific stimuli in the scene, often to gather more detailed information related
to a given task.

2.2. Computational Models of Attention

As early as 1987, Koch and Ullman conceptualized a feed-forward model to aggregate salient
features based on color, intensity, and orientation in order to compute a saliency map
emphasizing conspicuous locations. A “winner-take-all” approach, based on the concept of
inhibition of return Tipper et al. (2003), is then utilized to shift the focus of attention to the
next salient region. This approach was later implemented and validated as a computational
model for use with digital images Niebur and Koch (1995); Itti et al. (1998); Itti and Koch
(2001).

Since these early works in the field, much e↵ort has been devoted to modeling saliency
maps and the development of attention for predictive vision tasks. These are often con-
trolled through a combination of top-down and bottom-up processes, and involve internal
computations within the model. We define the category of spatial and contextual attention
as feed-forward methods. The importance of discussing these methods is as a precursor to
motivate sequential attention.
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Soft spatial attention methods resolve salient features with a continuous-value mask.
This can occur in the spatial domain Song et al. (2022); Woo et al. (2018); Xu et al. (2015)
or as a special extension over channels Hu et al. (2018); Woo et al. (2018). In contrast, hard
attention localizes and crops selective regions to process for the relevant task. This can
be done by learning a transformation over the input Jaderberg et al. (2015), with region
proposals Anderson et al. (2018), or by learning a masking strategy Li et al. (2020); Wang
et al. (2018).

Contextual attention is inspired by the relationship between top-down and bottom-up
visual cues that explain attentional deployment. In this context, the guidance of selection
bias over values (sensory inputs) with attention pooling considers the interactions of a given
query (top-down, volitional cue) and a set of keys (bottom-up, nonvolitional cues). This
relationship is more commonly modeled with scaled dot-product attentional pooling, moti-
vating the transformer architecture Vaswani et al. (2017). A natural extension from natural
language to visual scenes was proposed by Dosovitskiy et al. (2020). As a result, atten-
tion weights correspond to the contextual relationships of individual locations. However,
such locations consider the entire input, which may be irrelevant for the task, and incur
unnecessary computations.

Instead of identifying fixation zones through salient, bottom-up or top-down features,
some studies consider attention as a sequential decision making process Larochelle and
Hinton (2010); Mnih et al. (2014); Ba et al. (2014); Welleck et al. (2017); Elsayed et al.
(2019); Kumari and Chakravarthy (2022); Schwinn et al. (2022), as we do here. In certain
cases, we can model the reward-based history e↵ects of visual control to direct the learning
of trajectories that are task relevant with reinforcement learning. The task of where to
attend, therefore, becomes a sequential learning problem with covert sampling of a sensory
scene.

Many works build on the foundational work from Mnih et al. (2014), where a recurrent
neural network accumulates information over time to decide how to act. The primary
transfer of temporal information is combined through the hidden state of the recurrence.
As such, the final step class prediction relies on the accumulation of state representations.
This can lead to information loss as states are accumulated and prior representations are
unable to be dynamically re-weighted.

In this work, we replace the recurrence with a single transformer encoder comprised of
multiple self-attention heads. To an extent, this is similar to the work from Dosovitskiy
et al. (2020), who introduce the vision transformer using patches that equally span the visual
scene. However, our approach samples patches one at a time from continuous locations
within the environment. This sampling reduces the overall sequence length and results in
features that can be dynamically and contextually attended.

3. Memory-Based Sequential Attention

Instead of processing the entire image x at once, we sample smaller patches, or glimpses,
for sequential decision making. Our proposed model (Figure 1) stores the memory of pre-
viously visited glimpses from a trajectory, and contextualizes their relationships to learn a
strategy of “where to look”. This approach uses reinforcement learning and data likelihood
estimation to optimize for classification tasks.
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3.1. Preliminaries

The recurrent model of visual attention (RAM) Mnih et al. (2014) relies on a recurrent
neural network to sample glimpses. At each time step t, the agent observes a glimpse of
the environment from a particular continuous-valued location, lt = (it, jt), and accumulates
this over time to determine a location for the next step. A scalar reward is emitted at
each step, where in a classification setting, a positive value is given if the class is correctly
predicted. The goal is, therefore, to select a sequence of observations from the environment
that maximize the total cumulative reward.

In this work, we replace the recurrent network state representation with a modified
vision transformer (detailed in Section 3.2). However, we leverage from RAM the following
network components:

Glimpse Network The previous location lt�1 is used to sample a retina-like representa-
tion (or glimpse) ⇢(x, lt�1) from the full image, x, providing the agent only a partial view
of the scene at time t. An initial location is set as l0 = (0, 0) or drawn randomly within
some range between [�1, 1], where (�1,�1) is the top left and (1, 1) is the bottom right.
The resolution of a glimpse is defined by the number of scales, s, composing high- and
progressively lower-resolution regions around the location, stacked as separate channels.

We use non-linear, fully-connected layers to extract the embedding of a given glimpse
and model “what” it represents. We also use the transformed location to capture “where”
the glimpse is located. We then combine the output of these two models, capturing the
“what-where” combination, through a subsequent non-linear transform to create a glimpse
feature vector represented by gt = fg(x, lt�1; ✓g).

Location Network At every timestep, a location, lt, is emitted by the location network,
fl(ht; ✓l), using the hidden state, ht, of the model as calculated in Section 3.2. The location
is stochastically sampled from a parameterized Gaussian distribution with fixed variance
as lt ⇠ p(·|fl(ht; ✓l)), where the mean of the i, j coordinates are estimated by the location
network. In the context of reinforcement learning, we sample values from the location policy,
where the policy function maps the current observation of the environment (in this case,
the hidden state, ht) to the action to be taken by the agent (the continuous-valued location,
lt). During training, the log probabilities of the sampled locations are used to update the
network.

Classification Network Similar to the location network, we use the hidden state, ht, to
predict a class by passing it through an additional network that outputs the softmax over a
set of possible classes. Specifically, we represent this as yt = argmaxc p(c | fy(ht; ✓y)) from
which a class is selected.

3.2. Contextual Attention over Memory

Discovering the next best location of where to look or interpreting what has been seen over
some sequence is a complex task. It is not always the case that every observed location is
relevant. However, the relationship between di↵erent regions, or even from a single location,
may be informative for a given task. This assumes ample exploration of the visual scene
with memory of what has already been observed.
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Using the glimpses, or multi-resolution patches, that we sample from the visual scene
(as described in Section 3.1), we populate a memory store, � = {g0, . . . , gk}, that bu↵ers
the history of all observed glimpses in the trajectory. Treating each glimpse as a token, we
use self-attention to contextualize their relationship and highlight important locations to
compute an embedding, ht 2 Rd, that is used to emit the next location or class prediction. A
traditional vision transformer Dosovitskiy et al. (2020) will partition an image, x 2 Rc⇥h⇥w,
into n equally divisible patches of size p such that n = (w/p) ·(h/p) with dimension d = p2c.
However, � has a sequence length k ⌧ n from sequentially concatenated glimpses with an
embedding dimension d from the glimpse network.

The set of tokens in memory have a standard sine-cosine positional encoding added
with a padding of zero-valued vectors to have a fixed length k. Let matrix X 2 Rk⇥d

be the new row-wise concatenation of the tokens. We begin to compute ht with a single
transformer block composed of multi-head self-attention (MSA) and a residual point-wise
fully-connected network (FCN) as,

Z = FCN(MSA(X)) such that (1)

MSA(X) = [O1,O2, . . . ,Oh]W
O, (2)

where h is the number of heads, W
O

2 Rhv⇥d are trainable weights, [·] is the column-
wise concatenation, and Oi 2 Rk⇥v is the output of the i-th attention head with latent
dimension v < d. We introduce a mask M 2 Rk⇥k to ignore the padded and yet to be
observed locations and compute each head as,

Oi = AiVi such that (3)

Ai = softmax
�
(QiK

>
i +M)/

p

d
�
2 Rk⇥k. (4)

This mask e↵ectively pushes the attention weights of padded locations, across all batches,
in the softmax toward zero with,

M⇤,j =

(
�1 if j � t

0 otherwise
(5)

The queries, Qi, keys, Ki, and values, Vi are found via a linear projection of X by,

Qi = XW
Q
i , Ki = XW

K
i , Vi = XW

V
i , (6)

with trainable weight matrices WQ
i ,W

K
i ,WV

i 2 Rd⇥v.
The FCN is a two layer residual network separated by the ReLU activation, �, and

dropout (p = 0.2) that takes as input the layer normalized (LN) residual output from
above, defined by X̄ = LN(X+MSA(X)). We then compute this as,

FCN(X̄) = LN(X̄+ �(X̄W
R)WS), (7)

where W
R

2 Rd⇥m and W
S

2 Rm⇥d such that m > d. The output is reshaped from
k ⇥ d ! kd and linearly projected into ht = ZW

z with W
z
2 Rdk⇥d (see Equation (1)).

This hidden state is used for the subsequent network components and repeats at every
timestep with an updated � until termination.
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Note that the e↵ective padding and masking steps could be left without (in Equation (4))
by allowing � to have a dynamic sequence length. The output of scaled-dot product atten-
tion will also have a variable length. Thus, we can compute the mean over the sequences to
obtain a d-dimensional vector, yielding ht. However, we find this approach to be insu�cient
as the re-weighted glimpse extrema are important indicators for ht.

3.3. Training Procedure

We view the problem of “where to look” as a control problem, or Partially Observed Markov
Decision Process (POMDP), where the next transition only depends on the current state
(i.e., memory of previous glimpses) and action (i.e., continuous-valued location). The
objective, as a reinforcement learning problem, is to learn a strategy or sequence of actions
that maximizes the cumulative reinforcements along a trajectory. At each timestep an agent
selects an action, at 2 A, in the current state, st, according to its policy. A scalar reward
r(st, at) is received and then transitions to the next state st+1 following the probability
st+1 ⇠ P (·|st, at).

Consider a stochastic policy ⇡✓, parameterized by a neural network, such that we aim to
maximize the expected return J(⇡✓) = E⌧⇠⇡✓ [R(⌧)]. We assume an episodic environment
with ⌧ = (s0, a0, . . . , sT+1) where we can estimate the expectation with a sample mean
given a set of trajectories, D = {⌧i}i=1,...,N . By the policy gradient theorem, and shown by
Williams (1992), we arrive at an approximation to derive the analytical gradient,

r✓J(⇡✓) ⇡
1

|D|

X

⌧2D

TX

t=0

r✓ log ⇡✓(at|st) (R(⌧)t � b(st)). (8)

In this approximation, we include a baseline that does not depend on the action, e.g., an
estimate of the value function b(st) = E⇡[R(⌧)t], to reduce variance and improve conver-
gence. We emit this baseline along with the next location lt. The gradient of this expected
return or learning rule (Equation (8)) is also referred to as REINFORCE with baseline

Following Mnih et al. (2014), only the location network is trained by maximizing J(⇡✓).
In doing so, the gradient information does not flow to any other network components. We
train a baseline network, for use with optimizing the locations, by minimizing the mean
squared error with the rewards at each step, Lb =

PT
t=0(bt�rt)2, again, restricting gradient

flow to the rest of the model. All other network components are updated to minimize the
cross entropy, Ly = �

PM
c=1 ti,c log(pi,c), with ground truth class labels.

4. Experiments

We evaluate our method for classification on MNIST and cluttered MNIST datasets. Us-
ing a predefined number of glimpses, we output our final class prediction at the last step.
During training, a reward of 1 is assigned if the target class is correctly predicted, and 0
otherwise, assigning all previous steps this value. Results are compared to di↵ering net-
work architectures of increased complexity. As a baseline we include a fully-connected and
convolutional network with ReLU non-linearities where we define the number of units and
filters in Table 1. We also compare results with a standard vision transformer Dosovitskiy
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Figure 2: The learned policy of our best models and distribution of attention weights. (top)
An example from MNIST and (bottom) from cluttered MNIST dataset. Columns
1-6 illustrate the trajectory of individual glimpses in red from the first timestep
on the left up to the point of prediction. Columns 7-11 visualize the distribution
of self-attention weights for each attention head with the associated mean in the
last column.

et al. (2020), which has a fixed patch size that equally subdivides an image over the entire
input space.

Our comparison and implementation of RAM follows the architecture as described by
Mnih et al. (2014). However, as there were no reported hyperparameters, our results slightly
di↵er from the original. In our approach, we maintain hyperparameter consistency with
replacement of the recurrent network for our memory-based transformer. A complete list of
parameter values (e.g., optimizer, training epochs, etc.) are saved and can be found in our
code repository. In the following experiments we use a single transformer block and vary
the number of self-attention heads between 1 and 4.

All models are implemented in PyTorch with experiments conducted on a single node
with an NVIDIA GeForce RTX 3090 (24GB), Intel i9-11900F (2.50GHz), and 128GB mem-
ory. All models have a similar number of trainable parameters.

4.1. MNIST Classification

We use the MNIST dataset, of size 28⇥28, to demonstrate the e↵ectiveness of our approach.
Data are partitioned into training (50000), validation (10000), and test (10000). The val-
idation data is only used for hyperparameter tuning. Evaluation results are summarized
in Table 1(a), where the top-1 classification error is reported on the test set. We use a
sequence length of k = 6 with a glimpse size of 8 ⇥ 8 and a scale s = 1 for our approach
and with RAM.

As we increase the number of self-attention heads from 1 to 4, we notice a steady decrease
in error that eventually plateaus around 1.00%. However, we find that our performance is
competitive to the implementation of RAM. Interestingly, we achieve a lower error than
that reported in their original paper (cf. Mnih et al. (2014), Table 12). We speculate this
is as a result of hyperparameter tuning.

The vision transformer uses a patch size of 7⇥ 7 that equally spans the image domain.
The number of heads are equal to our best performing model with the same linear transform

2. O�cially reported top-1 classification error of 1.07%.
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Table 1: Classification results where s is the glimpse scale, h is the number of attention
heads, and k is the number of sequential glimpses.

(a) MNIST

Model Error

FC, 2 layers [256, 256] 2.20

CNN, 2 layers [16, 32] 1.17

ViT, 7 ⇥ 7, 4h 3.48

RAM, 6 k, 8 ⇥ 8, 1 s 0.94

Ours, 6 k, 8 ⇥ 8, 1 s, 1 h 1.29

Ours, 6 k, 8 ⇥ 8, 1 s, 2 h 1.11

Ours, 6 k, 8 ⇥ 8, 1 s, 4 h 1.05

(b) Cluttered & Translated MNIST

Model Error

FC, 2 layers [256, 256] 56.82

CNN, 4 layers [8, 16, 32, 64] 6.71

ViT, 12 ⇥ 12, 4h 29.48

RAM, 6 k, 12 ⇥ 12, 3 s 6.43

Ours, 6 k, 12 ⇥ 12, 3 s, 1 h 7.89

Ours, 6 k, 12 ⇥ 12, 3 s, 2 h 7.47

Ours, 6 k, 12 ⇥ 12, 3 s, 4 h 6.20

Table 2: Policy error (mean± std) when permuting the starting location in our best model,
then following the learned policy. The last line is a stochastic policy that samples
a random action (location) at each step.

Position MNIST Cluttered

Random 1.12 ± 0.03 6.76 ± 0.07

Top-Middle 1.13 ± 0.05 7.13 ± 0.11

Top-Left 1.16 ± 0.03 7.02 ± 0.22

Center 1.20 ± 0.05 6.36 ± 0.19

Bottom-Middle 1.20 ± 0.07 7.32 ± 0.15

Bottom-Right 1.12 ± 0.05 6.74 ± 0.18

Random Policy 29.49 ± 0.28 25.66 ± 0.03

and feed-forward embedding dimensions. We find the performance is worse than all of our
tested models. This suggests that our learned policy is able to identify the most task-relevant
glimpses from a shorter sequence length.

The top row of Figure 2 shows a sample from our best performing model with a trajectory
learned by the policy. A red box surrounds the glimpse locations from each timestep as it
moves throughout the image. The model only observes the cropped information inside of this
box and all outside information is discarded. To the right are the distribution of attention
weights for each head with their associated mean. Attention weights are associated with
the most conspicuous location. We find locations over the digit with the highest attention
weights, whereas uninformative locations have low weight. This result validates our intuition
as to what locations represent a digit. Additional details for interpreting these weights are
made in Section 5.1, with more examples in Appendix A.
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4.2. Cluttered and Translated MNIST

To further test our approach we evaluate results on the cluttered MNIST dataset Fidjeland
(2015). This data contains an MNIST digit that is randomly translated within a 60 ⇥ 60
canvas. Four di↵erent 8 ⇥ 8 subpatches sampled from other random digits are added at
random locations. The presence of clutter as a form of noise make the task particularly
challenging. Compared to the centered MNIST data, accurate predictions are more depen-
dent on a model that is invariant to translation and can learn to ignore the clutter that is
not task-relevant. Data are partitioned into training (50000), validation (10000), and test
(10000).

Table 1(b) shows the classification results from the di↵erent architectures. For our
model and our RAM implementation, we use a glimpse size of 12⇥12 with s = 3 to capture
multi-resolution features over a sequence length of k = 6. Similarly, the vision transformer
uses the same patch size with 4 self-attention heads. The benefits of our model is especially
noticed when comparing to the vision transformer. RAM and our model achieve less than
7% error, while the vision transformer achieves about 29.5% error with the same number
of attention heads.

Results show the fully-connected network performs worst, whereas the convolutional
network performs significantly better with its inductive biases of translation invariance.
However, our memory-based attention model shows a slight advantage as we learn a policy
to avoid the clutter and focus on the di↵erent parts of the digit. We outperform RAM with
the advantage of having attention weights that bring insight to how these glimpses from
memory relate to each other.

As with the MNIST digits, we show an example trajectory and our model’s attention
weights in the bottom row of Figure 2. We find that for the last step class prediction,
the glimpses from memory attend primarily to those that are directly focused on the digit,
illustrating how our policy avoids the clutter while exploring the visual scene. Alternatively,
indices with near zero values are found where the high-resolution glimpse is not focused
directly on the digit.

4.3. Location Permutations

To evaluate model robustness we make inference with our best performing models and
compare the results to a random policy. The results for each dataset are shown in Table 2,
where the random policy has locations sampled from a uniform distribution at each step.
Each of the six starting positions tested herein follow the learned policy, but vary in where
the first glimpse is sampled. This e↵ectively shows the learned policy, with ⇠ 20% lower
error, optimally selects locations for the given task.

There are slight variations in classification accuracy for di↵erent starting locations. The
change is minimal with MNIST, but with the cluttered and translated MNIST dataset, there
is a noticeable influence. Namely, we find lower error when the initial glimpse is sampled
from the center of the image, and a higher error when sampling from the periphery. We
speculate this to be as a result of there being greater coverage of the multi-resolution
glimpse, with periphery information, that can more accurately resolves the high resolution
features in subsequent steps.
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Figure 3: Class specific trajectories of all MNIST test samples in black with the mean
trajectory overlaid. The mean glimpse locations, ⇥, all have a centered initial
position, then progress following the path from cyan to purple.

In Figure 3, we show how inference trajectories vary among MNIST test samples for
each class independently. By taking the trajectory mean, across all samples in each class,
we glean insights into the global path and policy they follow. The following observations
are based on this mean. Generally, for each class, the second glimpse is made at the top
of each digit with a trend, scanning down the image that follows. The di↵erences between
each class are evident and supported by the structure of the digit. Take, for example, class
‘6’, where the final glimpse moves right to sample the commonly enclosed circle of the digit.
Without this, the sampled glimpses are similar to a ‘1’. Class ‘3’ trajectories scan further
left, presumably to delineate between class ‘8’. Lastly, class ‘4’ trajectories are further
spread around the top of the digit.

Figure 4: (top) Sampled glimpse locations, ⇥, from within a trajectory, starting in cyan
and ending in purple. (middle) Mean self-attention weights computed over all
heads for glimpses g0�5, where yellow is 1 and black is 0. (bottom) Re-weighted
glimpse locations found by the accumulated attention weights.
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5. Discussion

In this section we discuss how our approach improves network interpretability/transparency
by reasoning over predictions, and then we make comparisons with the vision transformer.

5.1. Network Interpretations

Learning a strategy of where to look results in an interpretable process of decision making,
allowing for the assessment of influence from individual glimpses for a given task. Man-
ual review of these locations can help one reason about how the network arrives at the
prediction. This is as a result of reducing the problem to a subset of locations from the
entire scene, ignoring extraneous or erroneous data. However, it is also important to con-
sider how the network uses these locations beyond human intuition. In our approach, we
provide additional transparency by contextualizing over the observed glimpses in memory.
By inspecting the distribution of self-attention weights we can glean insights to how these
locations are attended to.

Figure 4 shows the final step trajectory for di↵erent MNIST digits. The mean over
attention heads is computed to capture comprehensive relevance. Along each axis are
weights corresponding to the relationship of each glimpse, such that the diagonal represents
how a glimpse attends to itself. Interestingly, we find that glimpse locations that are task
irrelevant, i.e., zero-valued locations or at locations with clutter, have little to no positional
significance in the sequence. By contrast, the locations centered on the most conspicuous
locations of the digit are largely attended to.

To exemplify this intuition, we accumulate the mean attention weights of each column
to weigh each individual glimpse location. The last row of Figure 4 shows this result, where
the target regions of increased clarity correspond to the most attended locations in the
trajectory. Intuitively, the re-weighting of glimpse locations make sense as they show the
features that are most unique to a given digit.

Additional insights on the impact of subsequent glimpses are made by emitting the
class prediction after every timestep. This is helpful to understand more generally how the
inclusion of each glimpse contribute to the improvement in model performance. Figure 5
illustrates this result for our model as it compares to RAM on both datasets. With MNIST
(Figure 5(a)), we find a 31% and 19% average increase in accuracy after glimpses g1 and g2
are observed, respectively. For the cluttered dataset (Figure 5(b)), we find a 20% increase
in accuracy in the first glimpse and marginally higher accuracy following. These findings
indicate that our location policy can quickly identify locations that our model can contex-
tualize over for classification. Furthermore, displaying the general and steady increase in
performance that eventually plateaus with more glimpses.

5.2. Comparison to a Vision Transformer

Self-attention has a complexity of O(n2
· d) that is quadratic in the sequence length, n.

Standard vision transformers assume the image size is divisible by the patch size, p, to
compute the constant sequence length. The computational and memory cost, therefore, is
especially noticeable for a large image, as p decreases, and as the number of attention layers
increase. Pruning irrelevant tokens within hidden layers, e.g., with sparse transformers that
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(a) MNIST (b) Cluttered

Figure 5: Test accuracy emitted after each glimpse of our approach as it compares to RAM.
The shaded region emphasizes the performance improvements of early glimpses

use additional prediction networks Rao et al. (2021); Meng et al. (2022) or scoring functions
Xu et al. (2022); Yin et al. (2022); Liang et al. (2022), is one such way to reduce complexity.
However, these approaches still operate on the full-sized image as input and the non-linear
combination of tokens over layers makes it challenging to interpret their true representation.

In this work, we learn a control strategy to sequentially sample k ⌧ n ideal patch lo-
cations from the input, i.e., selecting relevant patches rather than removing them. This
improves interpretability of relevant tokens and more closely aligns our model to the bio-
logical visual system. Furthermore, we do not need to assume the number of patches is a
product of the image size, thus, allowing our method to scale to any size input.

Additionally, vision transformers do not have any inductive biases of translation or
scale invariance. This means that objects that have a relative change in their position
will result in a di↵erent response. While these aspects can be learned with ample data or
through augmentations, it can still hinder performance. This is evident when comparing a
convolutional network, that is translation invariant, to the vision transformer on cluttered
MNIST (Table 1(b)). By contrast, our location policy samples a glimpse along a trajectory
that is optimized for the task. This inherently results in features that are invariant to
translation by learning to ignore irrelevant locations. As such, our method benefits from
the properties of vision transformer models while also being translation invariant with a
shorter sequence length.

6. Conclusion

In this work we introduce a memory-based sequential attention model that combines infor-
mation over a subset of image locations for classification. Our proposed memory module
incorporates a transformer architecture, enabling contextualization of relationships among
sequential glimpses. This leads to the development of a more interpretable policy for select-
ing regions, optimized through reinforcement learning to maximize data likelihood. Con-
sequently, our approach yields improved network transparency by sequentially highlighting
informative region proposals.
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Our experimental results demonstrate that our model outperforms baseline architectures
in classical vision tasks. Although we do not achieve state-of-the-art performance, we
consider this work a significant step toward enhancing model interpretability, aligning more
closely with the principles of the biological visual system. This is especially pertinent to
bridge the gap between machine learning and practical applications domains such as medical
diagnoses and modeling weather and climate. In future work, we plan to apply our model to
data within these domains. Furthermore, we intend to explore the use of saliency measures
to guide initial glimpse locations, further reducing the overall sequence length. Lastly, we
would like to disentangle whether glimpse weights are most important for the next location
or output prediction by evaluating gradient based sensitivity measures.
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