
Proceedings of Machine Learning Research 227:1225–1238, 2023 MIDL 2023 – Full paper track

Automatic Patient-level Diagnosis of Prostate Disease with
Fused 3D MRI and Tabular Clinical Data

Oleksii Bashkanov∗1 oleksii.bashkanov@ovgu.de

Marko Rak1 rak@isg.cs.ovgu.de

Lucas Engelage2 lucas.engelage@altaklinik.de

Christian Hansen1 christian.hansen@ovgu.de
1 Faculty of Computer Science and Research Campus STIMULATE, University of Magdeburg,

39106, Germany
2 ALTA Klinik, Bielefeld, 33602, Germany

Abstract

Computer-aided diagnosis systems for automatic prostate cancer diagnosis can provide radi-
ologists with decision support during image reading. However, in this case, patient-relevant
information often remains unexploited due to the greater focus on the image recognition
side, with various imaging devices and modalities, while omitting other potentially valuable
clinical data. Therefore, our work investigates the performance of recent methods for the
fusion of rich image data and heterogeneous tabular data. Those data may include patient
demographics as well as laboratory data, e.g., prostate-specific antigen (PSA). Experi-
ments on the large dataset (3800 subjects) indicated that when using the fusion method
with demographic data in clinically significant prostate cancer (csPCa) detection tasks,
the mean area under the receiver operating characteristic curve (ROC AUC) has improved
significantly from 0.736 to 0.765. We also observed that the näıve concatenation performs
similarly or even better than the state-of-the-art fusion modules. We also achieved better
prediction quality in grading prostate disease by including more samples from longitudinal
PSA profiles in the tabular feature set. Thus, by including the three last PSA samples per
patient, the best-performing model has reached AUC of 0.794 and a quadratic weighted
kappa score (QWK) of 0.464, which constitutes a significant improvement compared with
the image-only method, with ROC AUC of 0.736 and QWK of 0.342.

Keywords: Computer-assisted diagnosis, prostate cancer, disease prediction, convolu-
tional neural networks, tabular clinical data.

1. Introduction

Prostate cancer (PCa) is the second most diagnosed cancer among men in more than half
of the world’s countries, with an incidence rate approximately three times higher in transi-
tioned countries than in transitioning countries (Sung et al., 2021). Despite the widespread
nature of PCa, the understanding of the etiology of prostate cancer remains largely un-
known, aside from factors such as aging, family history, and some genetic mutations (Sung
et al., 2021). By studying machine learning methods to combine data from multiple sources,
we could not only increase diagnostic predictive performance but also potentially approach
a better understanding of the etiology of prostate diseases.
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Prostate-specific antigen (PSA) test is a common cancer screening method due to strong
evidence that higher PSA levels are associated with a more advanced PCa status (higher
Gleason Score) (Izumi et al., 2015). However, its levels can be elevated not only due to
prostate cancer, but also due to related conditions such as chronic prostatitis or benign
prostatic hyperplasia (Cabarkapa et al., 2016). As it often causes unnecessary biopsies and
leads to overdiagnosis and subsequent overtreatment, the PSA marker should be treated
carefully and should be considered alongside other markers such as patient demographics.
It is desirable that patients have multiple PSA samples; however, they are not straight-
forward to summarize (e.g., via PSA kinetics) because they act as irregular time series.
Despite the clear evidence that PSA kinetics are crucial to understanding the prognosis of
advanced prostate cancer, according to (Vickers and Brewster, 2012), PSA changes over
time provide little to no value in the diagnosis of prostate cancer.

Alongside other clinical parameters, multiparametric magnetic resonance (MR) imaging
continues to gain wider clinical acceptance in the PCa diagnostic routine, as it can greatly
improve cancer detection quality. MR screening enables the planning of targeted treatment
or biopsies; in some cases, it may allow biopsies to be avoided altogether because of the
higher PCa detection specificity than the PSA screening method.

Deep learning is well suited for multimodal learning problems due to their flexibility.
This means that, in conjunction with multiple MR modalities, tabular data could also be
represented as input (Cui et al., 2022). Here, the main challenge lies in the architecture of
convolutional neural networks (CNN), as those contain significantly higher and denser para-
metric capacity than needed for non-image data. The intuitive way to integrate both is to
concatenate image-based features outputted by the CNN with tabular features directly. Af-
ter that, fully connected layers or other downstream classifier can be applied (Esmaeilzadeh
et al., 2018; Mobadersany et al., 2018; El-Sappagh et al., 2020; Mehta et al., 2021).

A different, more promising research direction in this context is attention-based fusion
methods, where image and tabublar data can interact more interconnectedly at the archi-
tectural level (Cui et al., 2022). Duanmu et al. (2020), for instance, proposed to upscale
tabular features with a fully connected layer to match the number of post-downscaling CNN
features, which allows one to perform channel-wise multiplication. This approach outper-
formed the pure image-based model as well as simple concatenations with tabular data.
Feature-wise Linear Modulation (FiLM) was introduced by (Perez et al., 2018) to dynam-
ically scale and shift the CNN features conditioned by non-image information. It was also
adopted for disentangled representation learning and for segmentation in the medical do-
main (Chartsias et al., 2019; Jacenków et al., 2020; Lemay et al., 2021). Given that idea, the
dynamic affine transform (DAFT) module was proposed (Pölsterl et al., 2021; Wolf et al.,
2022). The main feature of the DAFT module is that it adapts the scaling and shifting
parameters depending on both image-based and tabular features. The authors hypothesize
that DAFT provides a two-way information exchange between two modalities, whereas in
FiLM only the tabular modality informs the image modality one-directionally.

There is little research on multimodal information fusion in the prostate diagnosis do-
main. In Mehta et al. (2021)’s work, the fusion is done on the last feature level by con-
catenating individually produced feature vectors by each imaging modality and tabular
information. Later, feature selection in the resulting vector and multiple levels of support
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vector machines were applied to predict the probability of csPCa. However, in this case,
neither multimodal CNNs nor tabular data inform each other.

In this work, we explore previously named state-of-the-art methods for patient-level
prostate disease classification with multiparametric MRI and tabular data. Our work is not
limited to binary classification of clinically significant PCa; we also predict prostate disease
by means of multiclass classification to give a broader picture of performance. Furthermore,
we discuss the case of variable-length PSA data and its impact on performance, including
the cases where PSA data is missing.

2. Methods

2.1. Neural network

As we operate at the patient’s level, it is rational to consider 3D neural network architectures
because they can capture the entire context of the prostate gland in contrast to 2D/2.5D
architectures, where a single or couple of neighboring slices are given. 3D MR images of
the prostate are usually highly anisotropic; our architecture must account for that. We opt
for a lightweight version of ResNet (He et al., 2016). The configuration of the kernel and
stride size in residual blocks was adjusted according to the encoder of the self-configurable
segmentation network nnU-Net (Isensee et al., 2021). Due to the amount and nature of the
data, we reduced the capacity of the model and started with four convolution filters and
doubled them in the next residual block, resulting in 55,923 learnable parameters in total.

We augmented this CNN backbone with discussed state-of-the-art modules. Namely,
with plain concatenation and linear / non-linear classification on the tabular input side, by
an upscale feature module as in Duanmu et al. (2020), by linear modulation modules FiLM
(Perez et al., 2018) and DAFT (Pölsterl et al., 2021), as can be seen in Figure 1. While most
state-of-the-art approaches introduced tabular features along the CNN backbone densely,
in DAFT these features were introduced only ones, before the last residual block. Pölsterl
et al. (2021) argued that, in the early CNN layers, the features are rather primitive and thus
do not match the information concepts of the tabular data. On the other hand, one could
argue that early dense fusions leverage interconnection between image-based and tabular
features. We closed this knowledge gap experimentally, comparing the performance of the
late-fusion and dense-fusion (at every residual block) of the FiLM and DAFT modules. In
terms of a local position on the fusion modules in the residual blocks, the FiLM and DAFT
empirically favored placement before the first convolution.

2.2. Dataset

Image data Our data set includes 3800 multiparametric MR studies of biopsy-näıve
patients from ALTA Klinik (Bielefeld, Germany). All scans were obtained according to the
recommendations of PI-RADS v2. All patients gave their informed consent to use their
images for research purposes. The anisotropic spacing for the T2-weighted sequences is
around 0.5 × 0.5 × 3.2mm3 and 1.0 × 1.0 × 3.2mm3 for the apparent diffusion coefficient
(ADC). Both image modalities were resampled to 0.5× 0.5× 3.0mm3 and cropped to form
a central 140 × 140 × 20 tensor. T2-weighted images were normalized by the Z-score per
sample, while the intensity of the ADC was clipped at a value of 3000 and normalized to
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Figure 1: Main elements of the examined architectures: a) Adopted 3D ResNet-like back-
bone with 2 fusion points; b) Residual block; c) Fusion block with linear feature
modulation (FiLM/DAFT). Dashed lines with low and high frequency depict the
mutually exclusive flow of the data for FiLM and DAFT blocks, respectively.

the [0; 1] range to preserve its quantitative properties. Random cropping and horizontal
flipping with probability of 0.5 were used to augment the data spacially during training.
As for intensity-based augmentation we used Gaussian smoothing with anisotropic filter of
([0.1, 2], [0.1, 2], [0.1, 2/6]) and random Gaussian noise with σ of 0.1 and zero mean.

Tabular data Our tabular data consist of year of birth, age, weight, height, and body
mass index of the patient. For each feature, we introduced a binary one that indicates
whether a value is missing. Thus, we have 10 features in total. For missing values, we
used features sample mean w.r.t. the train split, which agrees with Jarrett et al. (2019)
and Pölsterl et al. (2021). All non-binary features were treated as numerical and were
normalized with the Z-score of non-missing samples from the current training split. During
experiments, we varied the length of the PSA history, covering the latest one, two or three
PSA values before MRI acquisition. Table 5 in Appendix B provides an overview of tabular
data.

Clinical annotations Before biopsy, prostate MRIs were evaluated according to PI-
RADS scores to reflect the reader’s interpretation of the probability that csPCa is present.
The aggressiveness of the prostate cancer was retrieved from the results of the histopatho-
logical examination, which is well-suited as ground truth for predictive modeling. The
aggressiveness was expressed through the Gleason Score (GS), which covers the two scores
of the most prevalent cancerous tissue patterns. The following scores are possible: GS6,
GS7a, GS7b, GS8, GS9, and GS10. Gleason scores of GS7a and above mark clinically
significant cancer. Biopsy examinations can also indicate a related condition, chronic pro-
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statitis, and thus express even finer granularity in low-risk cases. Therefore, we included
prostatitis as an additional target variable. Moreover, it is one of the common triggers for
false positive csPCa findings during the interpretation of MRI (Epstein et al., 2016). On
the aggressiveness scale, we defined the prostatitis as less severe than GS6. As we operated
at the patient level and not at the instance level for the related MR study, the highest-grade
tumour (index lesion) for each subject was identified. A class distribution breakdown can
be found in Table 4 in Appendix B.

2.3. Experimental setup

We applied a five-fold cross-validation scheme with hold-out test set of 640 cases. For each
fold, it resulted in approximately 2,520 training cases and 640 validation cases. We stratified
all the splits by target prostate diseases to ensure a similar distribution for each class. We
also made sure that the data from the same patient remain in the same split. The reported
performance is averaged across five folds using a hold-out test set.

In our experiments, two tasks were considered: 1) binary prediction of the probability
associated with the presence of csPCa in the prostate gland and 2) full-grain multiclass
prediction of prostate diseases, including prostatitis and GS classification. For these tasks,
binary cross-entropy and categorical cross-entropy were optimized using Adam with decou-
pled weight decay (AdamW) (Loshchilov and Hutter, 2018) with learning rate of 5.5×10−3

and weight decay 1 × 10−4. We trained our models with batch size of 256 for 80 epochs.
The best model was selected based on validation task-specific metrics: area under curve of
receiver operating characteristic (ROC AUC) for prediction of csPCa and the combination
of ROC AUC and the quadratic weighted kappa score (QWK) for prostate diseases grading.
We seeded all random operations (data augmentation, batch sampler, optimizer) to ensure
an adequate experimental control.

2.4. Evaluation

For evaluation, we reported precision (P), recall (R), ROC AUC, PR AUC, accuracy (ACC)
and QWK where appropriate for the binary and multiclass predictions. To make the results
of binary and multiclass tasks results comparable, we furthermore mapped the multiclass
task into binary csPCa classification by summing the probabilities of Gleason scores of
GS7a and above.

3. Fusion methods

Experiments We compare DAFT and FiLM with the baseline and unimodal approaches.
For models with tabular features only, we used logistic regression as classifier, while for
models with image-based features only, we used our ResNet. For the Concat-1FC model,
tabular features are concatenated with the image features before the final classification
layer. In 1FC-Concat-1FC, tabular features are fed into a fully connected layer with non-
linear ReLU activation. Then, similar to Concat-1FC, we concatenate processed features
with the image features. In 1FC-Concat-1FC, FiLM and DAFT tabular features go through
non-linear transformations with the bottleneck size of 4. Linear modulation in FiLM and
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DAFT is applied directly without activation. We also include the variant of Duanmu et al.
(2020).

To test the impact of dense fusion of tabular features for DAFT and FiLM, we introduce
the FiLM Dense and DAFT Dense as dense variants of the FiLM and DAFT methods. As
ResNet consists of 4 residual blocks, we can define up to 4 fusion points (FPs). This allows
us to test how early in CNN the features should be modulated by tabular data. Each of the
dense-fusion methods has 3 variants with 4, 3, 2 fusion points at 4, 3, and 2 last residual
blocks accordingly. For the sake of visualization, Figure 1 shows 3D ResNet with 2 fusion
points in the last two residual blocks. It should be noted that FiLM/DAFT Dense with
4 FPs refers to the original approach (Perez et al., 2018), while the simple FiLM/DAFT
notation refers to the fusion in one place as in (Pölsterl et al., 2021).

Results The results for multiclass and binary tasks are presented in Table 1 and Table 3
in Appendix 3, respectively. For both tasks, we observed a clear performance boost when
introducing demographic profiles of patients into the Concat-1FC or 1FC-Concat-1FC mod-
els. The DAFT method almost reached the performance of the best performing method
1FC-Concat-1FC on both tasks. However, in relation to the FiLM it performed only slightly
better. Unexpectedly, most dense-fusion methods failed to outperform image-only methods,
except DAFT with fusion at the last two residual blocks. Table 1 shows no considerable
difference between FiLM Dense FPs-4, DAFT Dense FPs-4, and logistic regression in tab-
ular data. The ablation results on dense fusion with different FPs provided a clear trend in
favor of a late single fusion point on both tasks. These findings may indicate that too nar-
row interconnectedness between image-based and tabular features may actually undermine
the overall CNNs performance, specifically when tabular data is only weakly correlated

Table 1: Performance for multiclass tasks averaged accross five folds on hold-out test set.
Column T marks the linear (L) / non-linear (NL) transformation of tabular data.
Column FPs shows the number of fusion points, where FP > 1 means dense fusion.

csPCa AUC
Multiclass T FPs ROC PR Precision Recall ACC QWK

Logistic regression L - 0.651 0.505 0.607 0.584 0.636 0.227
ResNet - - 0.736 0.611 0.679 0.684 0.685 0.342
Concat-1FC L 1 0.767 0.644 0.701 0.706 0.695 0.376
1FC-Concat-1FC NL 1 0.773 0.711 0.706 0.665 0.721 0.419
Duanmu et al. (2020) NL 4 0.720 0.601 0.659 0.654 0.677 0.312

FiLM Dense NL 4 0.627 0.473 0.595 0.591 0.621 0.235
FiLM Dense NL 3 0.713 0.580 0.65 0.649 0.667 0.302
FiLM Dense NL 2 0.730 0.603 0.664 0.661 0.682 0.339
FiLM NL 1 0.746 0.620 0.691 0.691 0.707 0.392

DAFT Dense NL 4 0.650 0.510 0.602 0.590 0.631 0.200
DAFT Dense NL 3 0.728 0.589 0.676 0.674 0.690 0.319
DAFT Dense NL 2 0.747 0.590 0.688 0.694 0.694 0.360
DAFT NL 1 0.763 0.618 0.706 0.704 0.719 0.380
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to the task which one is trying to optimize. As another dense fusion candidate, Duanmu
et al. (2020) performed slightly better, but could not yet outperform image-only ResNet.
Given that the tabular data should complement the model and not misguide it, or findings
suggested that the late fusion should be favored particularly in cases where the tabular
performance is significantly lower than that of the image-only model. However, more ex-
periments on this matter with different relation between image and tabular modalities are
needed, e.g., when the tabular features serve as a main decision-driving force, whereas image
data provide supplementary information.

4. PSA profiles

Experiments We investigate the impact of PSA profile on the classification performance
of prostate diseases. The longer the PSA history, i.e., the more PSA values available, the
smaller the fraction of subjects with a history of that length. This may lead to either a
small training data set or a large fraction of missing values. Regarding our data set, we
report results for a history of at most three PSA samples, which still gives enough patients
for training. To be precise, the fraction of patients with missing PSA samples for one,
two, and three PSA samples is 21%, 27%, and 38%, respectively. Since PSA samples are
distributed differently over time for each patient, we included the patient’s age at the time
of PSA collection as indicating feature. This age feature helps to reflect the intra-patient
progression of PSA, as well as the inter-patient relation throughout the whole cohort. As
a single model will not provide us with a reliable trend in this experiment, we decided to
validate it with all models defined previously except FiLM Dense and DAFT Dense.

Results In Table 2 we can observe a clear trend that indicates a significant increase in
diagnostic performance when using one or two PSA samples. However, with a sample size
of three, the performance started to stagnate and no substantial differences were found.
We assume that this might be due to a higher fraction of missing samples in longer PSA
profiles. Possibly, samples that are not up to date add only little value to diagnostic de-
tection because they do not indicate an actual state of the patient but rather serve to
show the progression of PSA. Despite the clear benefits of using PSA information with
the fusion method of (Duanmu et al., 2020), it still does not reach the performance of
the image-only model. These results also indicate that, when using PSA information, the
Concat-1FC and 1FC-Concat-1FC methods slightly outperformed the methods with linear
modulation: FiLM and DAFT, but there is no significant difference between Concat-1FC
and 1FC-Concat-1FC. However, in this case, the DAFT approach shows superior perfor-
mance over the FiLM, indicating that image feature modulation derived from two sources
is more effective than when only tabular data inform these features.

5. Conclusion

Reliable decision making in clinical routines is never possible without taking into account
multiple data sources that can differ drastically in their kind of representation. This is es-
pecially true for the diagnosis of prostate disease. Our work aims to make one step towards
an automatic computer-assisted diagnosis at the patient level by combining MR images,
patient demographics, and PSA profiles. As a proof of concept, we compared the baseline
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Table 2: Performance on multiclass tasks across five folds on hold-out test set. Column
PSAs indicate the number of samples from the PSA profile used for training.

csPCa AUC
PSAs ROC PR Precision Recall ACC QWK

ResNet 0 0.736 0.611 0.679 0.684 0.685 0.342

Logistic regression

0 0.651 0.505 0.607 0.584 0.636 0.227
1 0.671 0.576 0.621 0.596 0.647 0.271
2 0.698 0.601 0.644 0.619 0.665 0.340
3 0.704 0.616 0.648 0.620 0.668 0.339

Concat-1FC

0 0.767 0.644 0.701 0.706 0.695 0.376
1 0.780 0.656 0.719 0.720 0.730 0.394
2 0.788 0.671 0.724 0.722 0.737 0.430
3 0.799 0.695 0.727 0.727 0.734 0.455

1FC-Concat-1FC

0 0.773 0.665 0.711 0.706 0.721 0.419
1 0.794 0.680 0.731 0.725 0.741 0.442
2 0.790 0.679 0.719 0.718 0.732 0.436
3 0.790 0.681 0.721 0.722 0.730 0.432

Duanmu et al. (2020)

0 0.720 0.601 0.659 0.654 0.677 0.312
1 0.727 0.612 0.655 0.648 0.674 0.383
2 0.699 0.573 0.634 0.622 0.657 0.328
3 0.730 0.619 0.663 0.653 0.681 0.377

FiLM

0 0.746 0.620 0.691 0.691 0.707 0.392
1 0.772 0.639 0.699 0.695 0.708 0.402
2 0.758 0.638 0.690 0.689 0.702 0.415
3 0.772 0.646 0.698 0.698 0.709 0.458

DAFT

0 0.763 0.618 0.706 0.704 0.719 0.380
1 0.789 0.666 0.716 0.711 0.725 0.462
2 0.793 0.668 0.724 0.727 0.733 0.457
3 0.794 0.676 0.716 0.714 0.722 0.464

model with five recent approaches for the diagnosis of csPCa and the grading of prostate
diseases (including prostatitis). We showed that the näıve concatenation approaches out-
performed the advanced state-of-the-art modules such as linear feature modulation by a
non-significant margin. In addition, the impact of dense fusion on the diagnostic perfor-
mance was analyzed. We found that dense fusion variants negatively affected the overall
performance as it probably put more emphasis on tabular data in our case. Moreover, our
research has highlighted the importance of PSA profiles and proposed a simple yet effective
way to incorporate PSA changes over time that are not straightforward to summarize. Fu-
ture work should focus on the impact of using segmentation of the four anatomical zones of
the prostate (Meyer et al., 2019) or periprostatic fat (Li et al., 2022) along with mpMRI and
their derived volumetric parameters as a tabular feature. Furthermore, the fitness of recent
time-series models and how they address missing values should be thoroughly investigated
in the context of PSA profiles and multimodal fusion.
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Appendix A. Additional results for experiments on fusion methods
(binary task)

Table 3: Performance for binary task averaged across five folds on hold-out test set.
Column T marks the linear (L) / non-linear (NL) transformation of tabular data.
Column FPs shows the number of fusion points, where FP > 1 means dense fusion.

csPCa AUC
Binary T FPs ROC PR Precision Recall ACC

Logistic regression L - 0.652 0.508 0.604 0.582 0.634
ResNet - - 0.736 0.611 0.663 0.647 0.650
Concat-1FC L 1 0.769 0.632 0.685 0.658 0.701
1FC-Concat-1FC NL 1 0.763 0.634 0.710 0.695 0.722
Duanmu et al. (2020) NL 4 0.724 0.576 0.651 0.629 0.672

FiLM Dense NL 4 0.644 0.506 0.609 0.586 0.638
FiLM Dense NL 3 0.721 0.587 0.656 0.653 0.673
FiLM Dense NL 2 0.726 0.592 0.663 0.641 0.673
FiLM NL 1 0.752 0.607 0.698 0.685 0.714

DAFT Dense NL 4 0.653 0.510 0.601 0.588 0.631
DAFT Dense NL 3 0.731 0.589 0.677 0.675 0.691
DAFT Dense NL 2 0.762 0.623 0.681 0.650 0.691
DAFT NL 1 0.765 0.626 0.704 0.689 0.716

Appendix B. Dataset overview

Table 4: Class distribution breakdown.

Prostatitis GS6 GS7a GS7b GS8 GS9+10 csPCa Total

1467 849 809 274 141 260 1484 3800

Table 5: Summary of the demographic and clinical characteristics of the patients.

Parameter Median (interquartile range) # of subjects % of subjects

Age, year 66 (60− 71) 3355 88
Year of birth, year 1950 (1956− 1944) 3355 88
Height, m 1.8 (1.75− 1.83) 2245 67
Weight, kg 88 (80− 95) 2245 67
BMI, kg/m2 27.2 (24.8− 29.32) 2245 67
PSA, ng 6.6 (4.7− 9.5) 3005, 2768, 2357* 79, 72, 62*

*Subjects with one, two and three last PSA samples before the MRI acquistion.
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Appendix C. Additional experiments with different backbone

To assess the generalization of the examined fusion methods, we changed the image-based
model to the modified ResNet without residual connections (ConvNet). Overall, ConvNet
performed slightly worse than ResNet as an image-based baseline and with the fusion meth-
ods. However, according to the results of the binary task in Table 6, the ConvNet follows the
same trend with respect to the inclusion of tabular data and the number of fusion points as
ResNet. Significant improvement was achieved by adding tabular information to the model.
Dense fusion models with 3 and 4 fusion points could not surpass the performance of the
image-only baseline model. Generally, as a fusion method, DAFT performed better than
FiLM and showed promising results even with two fusion points. Topologically different
NN models, such as the Vision Transformer (ViT), will be examined in future work.

Table 6: Performance for binary task averaged across five folds on hold-out test set using the
ConvNet model. Column T marks the linear (L) / non-linear (NL) transformation
of tabular data. Column FPs shows the number of fusion points, where FPs > 1
means dense fusion.

csPCa AUC
Binary T FPs ROC PR Precision Recall ACC

Logistic regression L - 0.652 0.508 0.604 0.582 0.634
ConvNet - - 0.727 0.585 0.656 0.617 0.670
1FC-Concat-1FC NL 1 0.759 0.630 0.679 0.654 0.675
Duanmu et al. (2020) NL 4 0.741 0.611 0.673 0.656 0.686

FiLM Dense NL 4 0.642 0.505 0.607 0.590 0.636
FiLM Dense NL 3 0.705 0.565 0.625 0.622 0.646
FiLM Dense NL 2 0.717 0.589 0.656 0.647 0.672
FiLM NL 1 0.752 0.626 0.706 0.622 0.676

DAFT Dense NL 4 0.706 0.569 0.652 0.642 0.670
DAFT Dense NL 3 0.716 0.589 0.662 0.659 0.678
DAFT Dense NL 2 0.747 0.605 0.685 0.688 0.696
DAFT NL 1 0.772 0.626 0.683 0.655 0.680

Appendix D. Qualitative visualization with Grad-CAM

Grad-CAM (Selvaraju et al., 2017) heat maps were used to visualize the important features
that contributed to the prediction for the binary task. As Figure 2 shows, cases a) and
b) benefited from tabular information where the image-based ResNet model misclassified
it. Subject c) was correctly classified by all models; however, the Grad-CAM emphasized
features more on the inside of the prostate gland than on the outer structures. Case d)
demonstrated that only FiLM and DAFT were correctly classified, while all heatmaps high-
light the same region. However, the tabular fusion misclassified case e), while the image
model predicted the correct class. For patient f), all models failed to predict the correct
class, even though the Grad-CAM could emphasize the relevant features more clearly.
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b)

Label 1 Prediction 0 Prediction 1 Prediction 1Prediction 1

Label 0 Prediction 1 Prediction 0 Prediction 0Prediction 0

a)

e)

Label 0 Prediction 0 Prediction 1 Prediction 1Prediction 1

Label 0 Prediction 0 Prediction 0 Prediction 0Prediction 0

с)

Label 1 Prediction 0 Prediction 0 Prediction 0Prediction 0

f)

Label 0 Prediction 1 Prediction 0 Prediction 0Prediction 1

d)

T2W ResNet FiLM DAFT1FC-Concat-1FC

Figure 2: Qualitative visualization of the learned features for the ResNet, 1FC-Concat-1FC,
FiLM, DAFT models with the Grad-CAM heat maps.
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