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Abstract

The use of supervised deep learning techniques to detect pathologies in brain MRI scans
can be challenging due to the diversity of brain anatomy and the need for large, pixel-level
annotated data sets. An alternative approach is to use unsupervised anomaly detection,
which only requires sample-level labels of healthy brain anatomy to create a reference
representation. This reference representation can then be compared to unhealthy brain
anatomy in a pixel-wise manner to identify abnormalities. To accomplish this, generative
models are needed to create anatomically consistent MRI scans of healthy brains. While
recent diffusion models have shown promise in this task, accurately generating the complex
structure of the human brain remains a challenge. In this paper, we propose a method that
reformulates the generation task of diffusion models as a patch-based estimation of healthy
brain anatomy, using spatial context to guide and improve reconstruction. We evaluate
our approach on data of tumors and multiple sclerosis lesions and demonstrate a relative
improvement of 25.1% in segmentation performance compared to existing baselines.

1. Introduction

Over the last decades, significant effort has been put into developing support tools that
can assist radiologists in assessing medical images (Kawamoto et al., 2005). Convolutional
neural networks (CNNs) have proven successful in this task due to their ability to process
images effectively (Shen et al., 2017). However, supervised approaches that use CNNs have
limitations, such as the need for large amounts of expert-annotated training data and the
challenge of learning from noisy or imbalanced data (Ellis et al., 2022; Karimi et al., 2020;
Johnson and Khoshgoftaar, 2019).
Unsupervised anomaly detection (UAD) is an alternative approach that can be trained with
healthy samples only, eliminating the need for pixel-level annotations. During training,
UAD models typically focus on reconstructing images from a healthy training distribution.
When unseen, unhealthy anatomy is encountered at test time, high values in the pixel-wise
reconstruction error indicate abnormalities.
Recently, denoising diffusion probabilistic models (DDPM) (Ho et al., 2020) have emerged as
a state-of-the-art approach for image generation. As a result, they have also been applied
to the problem of unsupervised anomaly detection (UAD) in brain MRI (Wyatt et al.,
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2022; Pinaya et al., 2022a). DDPMs work by adding noise to an input image, then using a
trained model to remove the noise and estimate or reconstruct the original image. Hence,
in contrast to most autoencoder-based approaches, DDPMs preserve spatial information in
their hidden representation of the input which is important for the image generation process
(Rombach et al., 2022). However, applying noise to the entire image at once can make it
difficult to accurately reconstruct the complex structure of the brain. To address this issue,
we introduce patched DDPMs (pDDPMs) for UAD in brain MRI. In pDDPMs, we apply
the forward diffusion process only on a small part of the input image and use the whole,
partly noised image in the backward process to recover the noised patch. At test time, we
use the trained pDDPM to sequentially noise and denoise a sliding patch within the input
image and then stitch the individual denoised patches to reconstruct the entire image.
We evaluate our method on the public BraTS21 and MSLUB data sets and show that it
significantly (p < 0.05) improves the tumor segmentation performance.

-

-

Figure 1: Schematic drawing of our method. From left to right: A patch is sampled within
the input image, noise is added to that patch in the forward process and removed
in the backward process. During evaluation, we stitch all patches and calculate
the pixel-wise error as anomaly map ∆AS .

2. Recent Work

In recent research on UAD in brain MRI, various architectures have been examined. Au-
toencoders (AE) and variational autoencoders (VAE) have demonstrated reliable training
and fast inference, but their blurry reconstructions have hindered their effectiveness in
UAD, as noted in (Baur et al., 2021). Therefore, research often focuses on understanding
the image context better by adding spatial latent dimensions (Baur et al., 2018), multi-
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resolution (Baur et al., 2020b), skip connections together with dropout (Baur et al., 2020a),
or a denoising task as regularization (Kascenas et al., 2022). Similarly, modifications to
VAEs aim to enforce the use of spatial context by spatial erasing (Zimmerer et al., 2019)
or utilizing 3D information (Bengs et al., 2021; Behrendt et al., 2022). Other approaches
propose restoration methods (Chen et al., 2020), uncertainty estimation (Sato et al., 2019),
adversarial autoencoders (Chen and Konukoglu, 2018) or the use of encoder activation maps
(Silva-Rodŕıguez et al., 2022). Also, vector-quantized VAEs have been proposed (Pinaya
et al., 2022b). As an alternative to AE-based architectures, generative adversarial networks
(GANs) have been applied to the problem of UAD (Schlegl et al., 2019). However, the
unstable training nature of GANs makes their application very challenging. Furthermore,
GANs suffer from mode collapse and often fail to preserve anatomical coherence (Baur et al.,
2021). To alleviate this, inpainting approaches have been proposed that use the generator
to inpaint erased patches during training (Nguyen et al., 2021). Lately, DDPMs have shown
to be a promising approach for the task of UAD in brain MRI as they have scalable and
stable training properties while generating sharp images of high quality (Wolleb et al., 2022;
Wyatt et al., 2022; Sanchez et al., 2022; Pinaya et al., 2022a). While these approaches aim
to estimate the entire brain anatomy at once, patch-based DDPMs have been proposed for
image restoration (Özdenizci and Legenstein, 2023) and image inpainting (Lugmayr et al.,
2022) in the domain of generic images. Patch-based DDPMs are a promising approach
also for brain MRI reconstruction, as global context information about individual brain
structure and appearance could be incorporated while estimating individual patches. How-
ever, current patch-based approaches either neglect the surrounding context of each patch
(Özdenizci and Legenstein, 2023) or reconstruct patches from a fully noised image, which
also impacts the surrounding context (Lugmayr et al., 2022). Thus, it is of interest to
develop patch-based DDPMs that consider both the individual patch and its unperturbed
surrounding context for the task of UAD in brain MRI.

3. Method

We apply the diffusion process of DDPMs in a patch-wise fashion, meaning that given the
input image x ∈ RC,W,H with C channels, width W and height H, we add noise to a patch
pk ∈ RC,h,w with h < H,w < W and k = [1, ...,K]. Subsequently, we reconstruct the
patch to achieve a local estimate of the brain anatomy. Hereby, our motivation is a better
understanding of image context by denoising image patches based on their unperturbed
surrounding. Furthermore, we hypothesize that this would also lead to better anatomical
coherence in the overall reconstruction of individual brains. As at test time anomalies
can appear anywhere in the brain, we need to add and remove noise to the whole brain
anatomy with our patch-wise approach. Therefore, we use a sliding window approach where
we subsequently add noise to and remove noise from individual patches at positions that
are evenly spaced across the image. Having covered the entire input image, we stitch all
individual patch reconstructions into one image. This strategy allows estimating each local
region in the input by using the spatial context of its surrounding which is assumed to be
particularly helpful if the patch covers an anomaly. Our approach is shown in Figure 1.
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3.1. DDPMs

In DDPMs, first, the image structure is gradually destroyed by noise and subsequently, the
reverse denoising process is learned. During the forward process, adding noise ϵ ∼ N (0, I)
to x0 follows a predefined schedule β1, ..., βT :

xt ∼ q(xt|x0) = N (
√
ᾱtx0, (1− ᾱt)I),with ᾱt =

∏t

s=0
(1− βt). (1)

The time step t is sampled from t ∼ Uniform(1, ..., T ) and controls how much noise is
added to x0. For t = T the image is replaced by pure Gaussian noise xt = ϵ ∼ N (0, I) and
for t = 0, xt becomes x0.
In the backward process, the goal is to reverse the forward process and to recover x0.

x0 ∼ pθ(xt)
∏T

t=1
pθ(xt−1|xt),with pθ(xt−1|xt) = N (µθ(xt, t),Σθ(xt, t)). (2)

µθ andΣθ are estimated by a neural network with parameters θ. Following (Ho et al., 2020),
we use an Unet (Ronneberger et al., 2015) for this task and keepΣθ(xt, t) =

1−αt−1

1−αt
βtI fixed.

To derive a tractable loss function, the variational lower bound (VLB) is used. By applying
reformulations, Bayes rule and by conditioning q(xt−1|xt) on x0, minimizing the VLB can
be approximated by the simpler loss derivation Lsimple = ||ϵ− ϵθ(xt, t)||2. In this work, we
utilize the l1-error and change the objective to directly estimate xrec

0 ∼ pθ(x0|xt, t), leading
to Lrec = |x0 − xrec

0 |. For sampling images with DDPMs, typically step-wise denoising is
applied for all time steps starting from t = T . As this comes at the cost of long sampling
times, in this work we directly estimate xrec

0 ∼ pθ(x0|xt, t) at a fixed time step ttest. This
simplification is possible since we do not aim to generate new images from noise but are
interested in reconstructing a given image.

3.2. Patched DDPMs

As aforementioned, with patched DDPMs, we apply the forward and backward process in a
patched fashion. During training, we sample the patches either at random positions or from
a fixed grid defined as follows. We partition x into K patch regions that are evenly spaced
across x. The number of possible patch regions in x is derived as K = ⌈W−w

w ⌉+ ⌈H−h
h ⌉+2,

where ⌈.⌉ denotes the ceiling operation. From this grid, we uniformly sample an index k.
During the forward step of the diffusion process, i.e., the noising step we sample the noised
image xt only at the given patch position pk. Consider Mp ∈ RC,H,W a binary mask where
the pixels that overlap with pk are set to one and pixels that do not overlap with pk are
set to zero. We obtain the partly noised image as

x̃t = xt ⊙Mp + x0 ⊙ ¬Mp (3)

where ⊙ denotes element-wise multiplication. In the backward process, x̃t is fed to the
denoising network to estimate the given noise area. The denoised image is derived as
x̃rec
0 ∼ pθ(x0|x̃t, t). To train the patch-wise denoising task, we optionally use an objective

function Lp adapted from Lrec, where we calculate Lp = |(x0 − x̃rec
0 ) ⊙Mp| based on the

noised region within pk, ignoring the surrounding area.
During Evaluation, for every k ∈ [0, ...,K], we subsequently perform the diffusion process
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based on the patch pk. After the reconstruction of all patch regions, we use the reconstructed
patches [prec

0 , ...,prec
K ] and stitch them with respect to their original position in the input

image to retain the full reconstruction of x0. In the case of overlapping patches, we average
the overlapping regions of the reconstructed patches.

4. Experimental setup

4.1. Data

We use the publicly available IXI data set as healthy reference distribution for training.
The IXI data set consists of 560 pairs of T1 and T2-weighted brain MRI scans, acquired
in three different hospital sites. From the training data, we use 158 samples for testing
and partition the remaining data set into 5 folds of 358 training samples and 44 validation
samples for cross-validation and stratify the sampling by the age of the patients.
For evaluation, we utilize two publicly available data sets, namely the Multimodal Brain
Tumor Segmentation Challenge 2021 (BraTS21) data set (Baid et al., 2021; Bakas et al.,
2017; Menze et al., 2014), and the multiple sclerosis data set from the University Hospital
of Ljubljana (MSLUB) (Lesjak et al., 2018).
The BraTS21 data set consists of 1251 brain MRI scans of four different weightings (T1,
T1-CE, T2, FLAIR). We split the data set into an unhealthy validation set of 100 samples
and an unhealthy test set of 1151 samples. The MSLUB data set consists of brain MRI scans
of 30 patients with multiple sclerosis (MS). For each patient T1, T2, and FLAIR-weighted
scans are available. We split the data into an unhealthy validation set of 10 samples and
an unhealthy test set of 20 samples. For both evaluation data sets, expert annotations in
form of pixel-wise segmentation maps are available.
Across our experiments, we utilize T2-weighted images from all data sets. To align all
MRI scans we register the brain scans to the SRI24-Atlas (Rohlfing et al., 2010) by affine
transformations. Next, we apply skull stripping with HD-BET (Isensee et al., 2019). Note
that these steps are already applied to the BraTS21 data set by default. Subsequently,
we remove black borders, leading to a fixed resolution of [192 × 192 × 160] voxels. Lastly,
we perform a bias field correction. To save computational resources, we reduce the volume
resolution by a factor of two resulting in [96×96×80] voxels and remove 15 top and bottom
slices parallel to the transverse plane.

4.2. Implementation Details

We evaluate our proposed method pDDPM, against multiple established baselines for UAD
in brain MRI. These include AE, VAE (Baur et al., 2021), their sequential extension SVAE
(Behrendt et al., 2022), and denoising AEs DAE (Kascenas et al., 2022). We also compare
simple thresholding Thresh (Meissen et al., 2022), and the GAN-based f-AnoGAN (Schlegl
et al., 2019). Additionally, we chose DDPM (Wyatt et al., 2022) as a counterpart to our
proposed method. We implement all baselines based on their original publications with the
following individual adaptations that have been shown to improve training stability and
performance. For VAE and SVAE, we set the value of βV AE to 0.001. For f-AnoGAN, we
set the latent size to 128 and the learning rate to 1e− 4.
For DDPM and pDDPM, we utilize structured simplex noise, rather than Gaussian noise,
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as it is known to better capture the natural frequency distribution of MRI images (Wyatt
et al., 2022). For training, we uniformly sample t ∈ [1, T ] with T = 1000, and at test
time, we choose a fixed value of ttest = T

2 = 500. We choose a linear schedule for βt,
ranging from 1e− 4 to 2e− 2 and use an Unet similar to (Dhariwal and Nichol, 2021) as a
denoising network. For each channel dimension Cf ∈ [128, 128, 256], the Unet consists of a
stack of 3 residual layers and downsampling convolutions. This structure is mirrored in the
upsampling path with transposed convolutions. Skip connections connect the layers at each
resolution. In each residual block, groupnorm is used for normalization and SiLU (Elfwing
et al., 2018) acts as activation function before convolution. For time step conditioning,
the time step is first encoded using a sinusoidal position embedding and then projected to
a vector that matches the channel dimension. This is added to the feature representation
using scale-shift-norm (Perez et al., 2018) in each residual block. Unless specified otherwise,
all models are trained for a maximum of 1600 epochs, and the best model checkpoint, as
determined by performance on the healthy validation set, is used for testing. We process the
volumes in a slice-wise fashion, uniformly sampling slices with replacement during training
and iterating over all slices to reconstruct the full volume at test time. The models were
trained on NVIDIA V100 GPUs (32GB) using Adam as the optimizer, a learning rate of
1e− 5, and a batch size of 32. The code for this work is available at https://github.com/
FinnBehrendt/patched-Diffusion-Models-UAD.

4.3. Post-Processing and Anomaly Scoring

During training, all models aim to minimize the l1 error between the input and its re-
construction. At test time, we use the reconstruction error as a pixel-wise anomaly score
∆AS = |x0 − xrec

0 |, where high values indicate larger reconstruction errors and vice versa.
Given the hypothesis that the models will fail to reconstruct unhealthy brain anatomy,
we assume that anomalies are located at regions of high reconstruction errors. We apply
several post-processing steps that are commonly used in the literature (Baur et al., 2021;
Zimmerer et al., 2019). Before binarizing ∆AS , we use a median filter with kernel size
KM = 5 to smooth ∆AS and perform brain mask eroding for 3 iterations. Having binarized
∆AS , we apply a connected component analysis, removing segments with less than 7 vox-
els. To achieve a threshold for binarizing ∆AS , we perform a greedy search based on the
unhealthy validation set where the threshold is determined by iteratively calculating Dice
scores for different thresholds. The best threshold is then used to calculate the average Dice
score on the unhealthy test set (DICE). Furthermore, we report the average Area Under
Precision-Recall Curve (AUPRC) and report the mean absolute reconstruction error (l1) of
the test split from our healthy IXI data set.

4.4. Statistical Testing

For significance tests, we employ a permutation test from the MLXtend library (Raschka,
2018) with a significance level of α = 5% and 10,000 rounds of permutations. The test
calculates the two models’ mean difference of the Dice scores for each permutation. The
resulting p-value is determined by counting the number of times the mean differences were
equal to or greater than the sample differences, divided by the total number of permutations.
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Table 1: Comparison of the evaluated models with the best results highlighted in bold. fixed
sampling denotes that patch positions are sampled from a fixed grid, in contrast
to random sampling, where patch positions are randomly sampled. Lp denotes
calculating the reconstruction loss only on the patch region whereas Lrec denotes
calculating the reconstruction loss for the whole image. For all metrics, mean ±
standard deviation across the different folds are reported.

BraTS21 MSLUB IXI
Model DICE [%] AUPRC [%] DICE [%] AUPRC [%] l1 (1e− 3)

Thresh (Meissen et al., 2022) 19.69 20.27 6.21 4.23 145.12

AE (Baur et al., 2021) 32.87±1.25 31.07±1.75 7.10±0.68 5.58±0.26 30.55±0.27
VAE (Baur et al., 2021) 31.11±1.50 28.80±1.92 6.89±0.09 5.00±0.40 31.28±0.71
SVAE (Behrendt et al., 2022) 33.32±0.14 33.14±0.20 5.76±0.44 5.04±0.13 28.08±0.02
DAE (Kascenas et al., 2022) 37.05±1.42 44.99±1.72 3.56±0.91 5.35±0.45 10.12±0.26
f-AnoGAN (Schlegl et al., 2019) 24.16±2.94 22.05±3.05 4.18±1.18 4.01±0.90 45.30±2.98
DDPM (Wyatt et al., 2022) 40.67±1.21 49.78±1.02 6.42±1.60 7.44±0.52 13.46±0.65

pDDPM + random sampling + Lrec 44.47±2.34 48.84±2.71 9.41±0.96 9.13±1.13 14.08±0.77
pDDPM + fixed sampling + Lrec 47.81±1.15 52.38±1.17 10.47±1.27 10.58±0.85 12.12±0.76
pDDPM + fixed sampling + Lp 49.00±0.84 54.07±1.06 10.35±0.69 9.79±0.4 11.05±0.15

5. Results

Unless stated otherwise, for pDDPM, we use patch dimensions of h = w = H
2 = W

2 = 48.
The comparison of our pDDPM with the baseline models is shown in Table 1. Like DAE,
the DDPM shows relatively high performance on the BraTS21 data set, but its performance
on the MSLUB data set is moderate. In contrast, our pDDPM outperforms all baselines on
both data sets regarding DICE and AUPRC, with statistical significance for the BraTS21
data set (p < 0.05). Considering the reconstruction quality by means of l1 error on healthy
data, the DAE shows the lowest reconstruction error, followed by pDDPM.
Qualitatively, we observe smaller reconstruction errors from pDDPMs compared to DDPMs
for healthy brain anatomy as shown in Figure 2. Examples of reconstructions from other
baseline models can be found in Appendix 4. As seen in Figure 3, a patch size of 60 × 60
pixels results in the best performance. Additionally, there is a peak in performance when
the noise level at test time is ttest = 400. A visualization of different noise levels is provided
in Appendix B and ablation studies for the MSLUB data set are available in Appendix C.

Input ∆AS DDPM ∆AS pDDPM Ground Truth

Figure 2: Visualization of input, errormap and the ground truth for DDPM and pDDPM
for the Brats21 data set.
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Figure 3: DICE for different patch sizes (left) and noise levels at test time ttest (right) for
the BraTS21 data set. We report the average DICE across the 5 cross-validation
folds. Standard deviations are visualized as enveloping intervals.

6. Discussion & Conclusion

Our approach frames the reconstruction of healthy brain anatomy as patch-based denois-
ing, allowing to incorporate context information about individual brain structure and ap-
pearance when estimating brain anatomy. We show that pDDPMs outperform both their
non-patched counterparts and various baseline methods with significant differences for the
BraTS21 data set (p < 0.05).
Our results indicate that the image context around the noised patch can be used effec-
tively by the model to replace potential anomalies covered by noise patches with estimates
of healthy anatomy. From the performance improvements resulting from selecting patches
from fixed positions and minimizing Lp rather than Lrec, we conclude that it is helpful to
focus on pre-defined local patches during training. By stitching the individual patches, we
achieve sharp reconstructions without the downside of reconstructing too much unhealthy
anatomy. Note that this trade-off is influenced by both, the noise level ttest and the patch
size as shown in Figure 3. While our initial values for these hyper-parameters already show
robust performance improvements across both data sets, further tuning results in more op-
timal settings for certain anomalies. To enhance generalization across different anomalies,
employing an ensemble of different patch sizes and noise levels, as demonstrated in (Graham
et al., 2022), is a promising direction for future research. Evaluating the reconstruction qual-
ity by means of l1 error, DAE shows superior results to pDDPM. However, DAE is able to
reconstruct unhealthy anatomy which increases false negative predictions and thus decreases
the UAD performance. We observe that accurately identifying MS lesions in T2-weighted
MRI scans is challenging, and the limited number of samples makes it hard to achieve sta-
tistically significant results. However, our pDDPMs show promising improvements on the
MSLUB data set, suggesting that it could be useful to address the challenges of detecting
MS lesions. To further improve the UAD performance, using FLAIR-weighted MRI scans
or enriching the anomaly scoring by structural differences could be valuable.
Our proposed approach has shown promising results in terms of UAD performance, however,
it does have the drawback of an increase in inference time. While parallel computing could
alleviate the increase in inference time, future work could focus on guiding the denoising
process by spatial context more efficiently.
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Appendix A. Exemplary reconstructions for all Baselines

AE

VAE
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f-AnoGAN

DAE

DDPM

pDDPM

Figure 4: Qualitative evaluation of reconstructions from different models. From top to
bottom: AE, VAE, SVAE, f-AnoGAN, DAE, DDPM and pDDPM are presented.
From left to right, input, reconstruction, errormap, a heatmap of the errormap
and the ground truth annotation is shown
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Appendix B. Visualization of different noise levels

Figure 5: Training image from the IXI data set pertubed by simplex noise for different time
steps t = 0, 100, ..., 1000

Appendix C. Ablation Studies for MSLUB
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Figure 6: DICE for different patch sizes (left) and noise levels at test time ttest (right) for
the MSLUB data set. We report the average DICE across the 5 cross-validation
folds. Standard deviations are visualized as enveloping intervals.
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