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Abstract

Denoising diffusion models have recently achieved state-of-the-art performance in many
image-generation tasks. They do, however, require a large amount of computational re-
sources. This limits their application to medical tasks, where we often deal with large 3D
volumes, like high-resolution three-dimensional data. In this work, we present a number of
different ways to reduce the resource consumption for 3D diffusion models and apply them
to a dataset of 3D images. The main contribution of this paper is the memory-efficient
patch-based diffusion model PatchDDM, which can be applied to the total volume during
inference while the training is performed only on patches. While the proposed diffusion
model can be applied to any image generation task, we evaluate the method on the tu-
mor segmentation task of the BraTS2020 dataset and demonstrate that we can generate
meaningful three-dimensional segmentations.
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1. Introduction

Denoising diffusion models (Ho et al., 2020; Nichol and Dhariwal, 2021) have lately shown
an impressive performance in image generation and experienced increasing popularity in
medical image analysis (Kazerouni et al., 2022). However, the processing of large three-
dimensional (3D) volumes, which often is required in medical applications, is still a chal-
lenge. Limitations related to the computational resources only allow the processing of small
3D volumes, which impedes the processing of high-resolution magnetic resonance (MR) or
computer tomography (CT) scans.

Contribution In this work, we introduce architectural changes to the state-of-the-art
diffusion model implementation (Nichol and Dhariwal, 2021), enabling to train on large 3D
volumes with commonly available GPUs. We adapt the U-Net-like architecture to improve
the speed and memory efficiency. Furthermore, we propose a novel method illustrated in Fig-
ure 1. With this method, the diffusion model is trained only on coordinate-encoded patches
of the input volume, which reduces the memory consumption and speeds up the training
process. During sampling, the proposed method allows processing large volumes in their full
resolution without needing to split them up into patches. To evaluate our method, we per-
form diffusion model based image segmentation (Wolleb et al., 2022b) that has previously
been proposed for 2D segmentation on the BraTS2020 dataset (Menze et al., 2014; Bakas
et al., 2017, 2018). The code is available at github.com/florentinbieder/PatchDDM-3D.
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Figure 1: Overview of our proposed method PatchDDM. The diffusion model is optimized
in memory efficiency and speed by training only on coordinate-encoded patches.
The input consists of noised xt, the volumes b that are to be segmented and which
are provided as a condition for the segmentation, as well as a coordinate encoding
CE for the patches. During sampling, the whole 3D volume can be processed at
once.

Related Work Denoising diffusion models have seen a quick adoption in research, replac-
ing the more traditional generative models in many tasks such as such as unconditional and
conditional image generation (Ho et al., 2020; Song et al., 2021; Nichol and Dhariwal, 2021),
text-to-image translation (Nichol et al., 2021; Saharia et al., 2022b; Ramesh et al., 2021;
Kim et al., 2022) and inpainting (Ramesh et al., 2021; Nichol et al., 2021). Diffusion models
have also been used for various applications in the medical field, for instance, for anomaly
detection (Wolleb et al., 2022a), synthetic image generation (Dorjsembe et al., 2022; Peng
et al., 2022) and segmentation (Guo et al., 2022; Wu et al., 2022; Wolleb et al., 2022b).
Medical images, however, often are 3D volumes, such as MR- or CT-scans. These volumes
create challenges regarding the memory consumption of processing methods. Consequently,
many of the current methods are limited to two-dimensional (2D) slices only (Wu et al.,
2022; Wolleb et al., 2022b; Guo et al., 2022) or to 3D volumes restricted to a limited reso-
lution of at most 128× 128× 128 (Khader et al., 2022; Peng et al., 2022; Dorjsembe et al.,
2022). To the best of our knowledge, we are the first to tackle the challenge of applying
denoising diffusion models to large 3D volumes.

2. Method

We explore how denoising diffusion implicit models (DDIMs) presented in Section 2.1 can
be improved regarding memory efficiency and time consumption. The required architectural
changes are presented in Section 2.2. We present the training and sampling scheme of our
method PatchDDM in Section 2.3. For evaluation, we use the segmentation approach using
denoising diffusion models presented in Section 2.4.
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2.1. Denoising Diffusion Models

In the following, we will use the notation introduced by (Ho et al., 2020). Denoising diffusion
models rely on an iterative noising and denoising process. The forward noising process q is
given by

q(xt | xt−1) = N (xt;
√
1− βtxt−1, βtI) (1)

where βt is a predefined sequence of variances. We can directly compute xt from a given x0
with

q(xt | x0) := N (xt;
√
αtx0, (1− αt)I) (2)

with αt := 1 − βt and αt :=
∏t

s=1 αs. This corresponds to degrading the input image by
adding Gaussian noise. For image generation tasks we are interested in the reverse process
pϑ.

pϑ,t(xt−1 | xt) = N (xt−1;µϑ,t(xt),Σϑ,t(xt)) (3)

Both µϑ,t and Σϑ,t can be estimated by a U-Net-based network εϑ,t with parameters ϑ. The
loss used to train the network εϑ,t can be written as

∥ε− εϑ,t(xt, t)∥2 = ∥ε− εϑ,t(
√
αtx0 +

√
1− αtε, t)∥2, with ε ∼ N (0, I). (4)

Using the DDIM (Song et al., 2021) sampling scheme, we can define

xt−1 =
√

αt−1

(
xt −

√
1− αtεϑ,t(xt)√

αt

)
+
√
1− αt−1εϑ,t(xt), (5)

where εϑ(xt) is the output of the network. This sampling scheme has the advantage that
the denoising process is deterministic and we do not need to sample random vectors in every
step. Thus, the only source of stochasticity during inference originates from the random
initial sample xT which is sampled from N (0, I). During inference, a sequence of images xi
for i = T, T − 1, . . . , 0 of decreasing noise level is being generated, the initial xT is sampled
from a standard normal distribution N (0, I).

2.2. Architecture

We adapt the 2D-U-Net-based network architecture proposed by (Ho et al., 2020; Nichol
and Dhariwal, 2021) and used by (Nichol et al., 2021; Bansal et al., 2022; Wu et al., 2022;
Song et al., 2021) for the application on 3D data. The previously proposed architecture
features two or three residual convolutional blocks at each down- and upsampling step.
Furthermore, it uses attention blocks at multiple resolutions as well as in the bottleneck.
(Saharia et al., 2022a) determined that adding global self attention can slightly improve the
quality of the generated images as compared to an increase in convolutional blocks. For
3D data, the attention blocks use disproportionally more memory, which made it infeasible
to use them on current hardware, which is why we removed them completely. The second
fundamental change we implemented was the use of additive skip connections, as shown
in Figure 2. In the previous architecture as well as in the original U-Net implementation
(Ronneberger et al., 2015), the skip connection uses concatenation to combine xs from the
encoder with the upsampled tensors xu from the lower resolution path of the decoder. This
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Figure 2: The architecture of the U-Net-like network with averaging skip connections. In
the original network as well as in the U-Net the

⊕
operator is a concatenation

x = (xs, xu), in our case it is an averaging operator x = (xs + xu)/2.

implies that the decoder requires significantly more resources than the encoder, especially
at the highest resolution levels.

To alleviate this issue, we propose to average them as x = 1
f (xs+xu) with f = 2. Unlike

in ResNet (He et al., 2016), where the skip connections are added (f = 1), we found the
averaging to be crucial for avoiding numerical issues like exploding gradients. Intuitively
this can be justified by considering xs and xu as random variables with xu, xs iid. N (0, σ2).
Therefore, 1

f (xu + xs) ∼ N (0, 2
f2σ

2). This means that for f = 1 (the summation as in

ResNet), each concatenation the variance doubles. To prevent the variance from increasing
should chose f ⩾

√
2. We chose heuristically f = 2, i.e. averaging.

The savings in memory from replacing the concatenation with the averaging allow us
to increase the network width, i.e. the number of channels within the whole network, by a
factor of 1.61, while preserving the total memory usage.

Furthermore, the resulting network architecture allows for training on varying input
sizes. This property is crucial for our proposed patch-based method. For all of our experi-
ments, we use the same network configuration.

2.3. Patch-based Approach with Coordinate-encoding

To benefit from the lower requirements of computational resources but still to operate on
the original resolution, we propose a novel patch-based training method named PatchDDM
that trains on randomly sampled patches of the input but can afterwards be applied to the
full resolution volume during inference. This means for the training we can benefit from
using smaller inputs, which means we need fewer computations per iteration as well as less
memory. For the inference, however, we can pass the entire input volume at once without
having to sample patches and reassemble them. This means no boundary artifacts due to
the separate padding of the patches within the CNN are introduced, and also the stitching
artifacts that that can appear in traditional patch-based approaches are eliminated.

To add information about the position of the patch, we condition the network on the
position of the sampled patch. We implemented this by concatenating a grid of Cartesian
coordinates to the input. Each coordinate is represented by one channel as a linear gradient
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ranging from -1 to 1. This is similar to the method proposed in (Liu et al., 2018). They
propose to add the coordinates as additional channels before all convolutions.

In our case, we append the coordinates to the whole input just like in (Liu et al., 2018),
but then sample a patch, where the coordinates serve as a position encoding for the sampled
patch. An overview of this coordinate encoding is given in Figure 1. For the BraTS2020
data, the subject is centered within the volume. We use a patch sampling strategy, assigning
a higher probability to the center of the volume, as shown in Figure 6 in the Appendix A.

Baseline methods For our ablation study, we use two baselines with the same network
as our proposed approach, but without patch-based training. Furthermore, we also per-
formed an experiment with our patch based approach but without the proposed coordinate
encoding. The training did not converge and did not produce any usable results. Therefore,
we will not report any metrics from this experiment. The two baseline methods are the
following:

• Training on full resolution (FullRes): We implemented a distributed version of the
proposed architecture that splits the task to two GPUs if necessary. This allows for
training directly on full resolution (2563) data, given that the expensive specialized
GPU hardware is available.

• Training on half resolution (HalfRes): A straightforward way to reduce the require-
ments in terms of computational resources is training the model on downsampled data.
In our experiments, we downsampled the input image before passing it to the network,
but then upsampled the output of the network again to evaluate the performance on
the full size. For three spatial dimensions (i.e. 3D) this means that reducing the input
size from 2563 to 1283 results in a reduction of a factor of 8 in terms of memory and
computation time, allowing this model to be run on widely available GPUs.

2.4. Denoising Diffusion Models with Ensembling for Segmentation

In order to generate the segmentation of an input image b, we need to condition the gen-
eration of the segmentation mask x0 on that given image b. We will follow the method
proposed by (Wolleb et al., 2022b), where the input images b are being concatenated to ev-
ery xt as a condition. It was shown that ensembling several predicted segmentation masks
per input image increases the segmentation performance (Amit et al., 2021; Wolleb et al.,
2022b). An overview of this segmentation approach is given in Figure 3. An advantage
of the denoising diffusion based segmentation approach is the implicit ensembling we get
when using different samples xT from the noise distribution N (0, I), which can be used
to increase the performance and estimate the uncertainty. To evaluate the performance of
our proposed method PatchDDM described in Section 2.3 and the two baseline methods
FullRes and HalfRes, we apply our method to a segmentation task as proposed in (Wolleb
et al., 2022b). Therefore, we train our diffusion model to generate semantic segmentation
masks.
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Figure 3: The ground truth segmentation x0 is degraded by the noising process q. We train
a network to perform the denoising process pϑ, that is, given some noised image
xt, we train it to denoise it with the MR-sequences b as a condition.

3. Experiments

Dataset For our experiments, we used the BraTS2020 dataset (Menze et al., 2014; Bakas
et al., 2017, 2018). It contains 369 head MR-scans, each including four sequences (T1,
T1ce, T2, FLAIR) with a resolution of 1 × 1 × 1 mm3, resulting in a total scan size of
240× 240× 155, which we padded to a size of 256× 256× 256. The background voxels were
set to zero and the range between the first and 99th percentile was normalized to [0, 1]. We
used an 80%/10%/10% split for training, validation and testing. The label masks consist
of three classes, namely the Gadolinium-enhancing tumor, the peritumoral edema, and the
necrotic and non-enhancing tumor core. For the binary segmentation experiments, all three
classes were merged into one.

Training Details We performed our experiments on NVIDIA A100 GPUs with 40GB
of memory each. To directly train on the full resolution 2563 images, we distribute the
model over 2 GPUs. The methods HalfRes and PatchDDM were trained on one GPU
only. The optimizer we used was AdamW (Loshchilov and Hutter, 2017) with the default
parameters. We chose the learning rate lr = 10−5 by optimizing the average Dice coefficient
on the validation set after 150k optimization steps over a range of values between 10−6 and
10−3. We trained the models for the same amount of time for all experiments (420h). For
the evaluation, we selected the best-performing models based on the average Dice score on
the validation set based on a single evaluation, i.e., without ensembling. For the denoising
process, we set the number of steps to T = 1000 and use the affine variance schedule
proposed in (Ho et al., 2020) with β1 = 0.02, βT = 10−4.

Accelerated Sampling By default, we need T = 1000 denoising steps for the inference.
As shown in (Song et al., 2021), we can interpret the the DDIM denoising step (5) as the
Euler discretization of an ordinary differential equation (ODE).

This insight motivates the use of larger step sizes with respect to t during inference,
which allows for accelerated sampling. The drawback is that the output quality deteriorates
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with fewer samples. We investigate how we can trade off fewer sampling steps (larger step
sizes) and ensembling (more samples).

4. Results

In the following, we will assess the performance of our proposed model and compare it to
the two baseline approaches. For each model, we computed the average Dice score on the
validation set and used this to choose the best-performing checkpoint. We provide some
qualitative outputs in Figure 7 in the Appendix B.

To assess the training progress, we display the Dice score as well as the HD95 (Hausdorff
distance, 95th percentile) of PatchDDM over the course of the training in Figure 8 in the
Appendix C. The metrics of the best-performing checkpoint with respect to the Dice score
when using a single evaluation (no ensembling) is reported in Table 2 in Appendix D along
with the score of the state of the art nnU-Net (Isensee et al., 2021).

4.1. Segmentation Ensembling

To evaluate the impact of ensembling, we compute the Dice- and HD95-score of the three
methods (PatchDDM, FullRes, HalfRes) with respect to ensemble size, see Figure 4. Both
scores significantly improve using ensembles for our proposed PatchDDM and the FullRes
method. In Table 3 in Appendix E the metrics for different ensemble sizes are provided.
The curves show that ensembling can further improve the performance and get very close
to the best performing ensembles with an ensemble size of as small as five to nine.
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Figure 4: The evaluation metrics on the test set as a function of the ensemble size.

4.2. Computational Resources & Time Requirements

We report the memory consumption and the time required for one model evaluation for all
comparing methods. As displayed in Table 1, the training of FullRes needs close to 80GB
of memory. This requires at the time of writing still highly expensive hardware. The other
baseline HalfRes as well as our proposed PatchDDM method both need less than 12GB for
training and can therefore be trained on much cheaper and widely available hardware. The
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reduced resolution also results in a reduction in the number of computations, and therefore
a larger number of optimization steps that can be performed in a given time interval. A
drawback of our proposed method is the increased memory consumption and reduced speed
during inference, both of which are comparable to the FullRes model.

Table 1: Memory consumption in GB and time in seconds for one network evaluation.
The memory requirements for the distributed run also include a small amount of
overhead, as some arrays are duplicated on both GPUs.

Memory Time
Method Training Inference Training Inference

FullRes 78.5 25.7 2.12 1.01
HalfRes 10.5 4.90 0.351 0.124
PatchDDM 10.6 24.0 0.340 1.02

4.3. Ensembling and Accelerated Sampling

Figure 5 shows the trade-off between the ensemble size and the number of sampling steps.
With as little as 20 sampling steps (i.e. a step size of 50), the performance is already close
to the results obtained with T = 1000 steps, implying a speedup of a factor of 50. But
even with fewer step sizes, we can trade the number of steps for a greater ensemble size to
achieve a similar performance. Consequently, for a fixed budget of network evaluations (i.e.
steps), we can profit from using ensembling with accelerated sampling.
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Figure 5: The average Dice score and HD95 metric on the test set as a function of the
number of sampling steps and the ensemble size. The white sections indicate
that we did not evaluate that combination.
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5. Discussion

We propose PatchDDM, a novel patch-based diffusion model architecture that allows the
training of diffusion models on high-resolution 3D datasets. This enables denoising diffu-
sion models to be used for image analysis and -processing tasks in medicine on commonly
available hardware. We could demonstrate the effectiveness by applying it to a recently
developed segmentation framework for medical images. In the future, we would like to
investigate the performance of our proposed approach for tasks involving image generation.
Furthermore, we will investigate the role of the patch size used and whether it can be made
smaller for processing even higher resolution volumes. In order to preserve high quality,
(Karras et al., 2022) proposed using higher-order ODE solvers, like the Heun method, when
choosing larger step sizes. This might further reduce the number of iterations needed. Fi-
nally, it would be interesting to investigate an extension of this segmentation framework
that includes multiple classes.
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Appendix A. Sampling Distribution

p

xi

− 1 − 1/3 0 1/3 1

Figure 6: The sampling distribution was chosen empirically to favor the central patches.
The distribution p is defined over the normalized coordinates of admissible patches
(normalized to [−1, 1]) and can be interpreted as the probability density function
the sum X + Y of two random variables X ∼ U [−1/3, 1/3], Y ∼ U [−2/3, 2/3].
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Appendix B. Qualitative Results
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Figure 7: We display an axial slice of three volumes. The first column shows T1ce-sequence
and the ground truth segmentation. Then we display three outputs E1-E3 of the
ensemble for each of the models and finally the mean- and (normalized) variance
map across the ensemble of size 15.
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Appendix C. Training Progress
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Figure 8: Performance of our method PatchDDM on the validation- and test set over the
course of the training. The x-axis indicates the number of training iterations as
a multiple of 1000.

Appendix D. Single Evaluation Scores

Table 2: Segmentation scores of our methods and nnU-Net on different metrics on our test
set based on a single evaluation.

Method Dice HD95

FullRes 0.82± 0.12 16.80± 18.96
HalfRes 0.86± 0.09 6.61± 9.37
PatchDDM 0.88± 0.07 9.04± 8.75
nnU-Net 0.96± 0.02 1.24± 0.48
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Appendix E. Ensembling Scores

Table 3: Segmentation scores of the three methods with various ensemble sizes.

Method Ensemble size 1 3 5 7 15

FullRes Dice 0.821 0.846 0.849 0.851 0.856
HD95 16.80 9.91 8.00 7.72 8.13

HalfRes Dice 0.862 0.858 0.860 0.859 0.862
HD95 6.61 7.00 6.79 6.70 6.65

PatchDDM Dice 0.888 0.894 0.892 0.897 0.899
HD95 9.04 9.94 8.49 7.67 7.34
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