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Abstract

Performance of deep learning algorithms varies due to their development data and training
method, but also due to several stochastic processes during training. Due to these random
factors, a single training run may not accurately reflect the performance of a given train-
ing method. Statistical comparisons in literature between different deep learning training
methods typically ignore this performance variation between training runs and incorrectly
claim significance of changes in training method. We hypothesize that the impact of such
performance variation is substantial, such that it may invalidate biomedical competition
leaderboards and some scientific papers. To test this, we investigate the reproducibility of
training deep learning algorithms for medical image analysis. We repeated training runs
from prior scientific studies: three diagnostic tasks (pancreatic cancer detection in CT,
clinically significant prostate cancer detection in MRI, and lung nodule malignancy risk
estimation in low-dose CT) and two organ segmentation tasks (pancreas segmentation in
CT and prostate segmentation in MRI). A previously published top-performing algorithm
for each task was trained multiple times to determine the variance in model performance.
For all three diagnostic algorithms, performance variation from retraining was significant
compared to data variance. Statistically comparing independently trained algorithms from
the same training method using the same dataset should follow the null hypothesis, but we
observed claimed significance with a p-value below 0.05 in 15% of comparisons with con-
ventional testing (paired bootstrapping). We conclude that variance in model performance
due to retraining is substantial and should be accounted for.
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1. Introduction

As the population ages and demographic shifts occur, the healthcare industry is facing an
increasing workload (Christensen et al., 2009). To meet this demand, the use of Artificial
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Intelligence (AI) algorithms, specifically medical image analysis algorithms, is becoming in-
creasingly important. Implementation of such algorithms requires a good understanding of
performance on unseen cases. International competitions, so-called (grand) challenges, pro-
vide a way to assess and compare the performance of multiple algorithms on identical data
sets, providing bias-free evaluation. In challenges, the goal is to identify the best method-
ology to address a given task, but the difference in performance between top submissions is
typically small.

Related research has focused on the repeatability of the AI training method, which
requires code sharing, public data, and correct training environment specification (Simkó
et al., 2022). We focus on training AI models when these criteria are met, investigating
the performance reproducibility of training deep learning-based medical image analysis al-
gorithms. Performance of deep learning models can vary significantly due to the stochastic
processes during training, as demonstrated in previous studies for natural image classi-
fication and segmentation, natural language modeling, and regression with a multi-layer
perceptron (Bouthillier et al., 2021; Picard, 2021; Summers and Dinneen, 2021; Frankle
and Carbin, 2018; Reimers and Gurevych, 2017). This variability makes it challenging to
accurately assess the performance of a deep learning training method, because retraining
the same algorithm on the same dataset results in a different performance each time. In
particular, for deep learning in medical imaging, comparisons with radiologists or alter-
native training methods can vary widely depending on the specific training run. If this
variance is large, the conclusions of non-inferiority compared to radiologists or superiority
of methodological changes in a training pipeline can depend on the specific training run.

By comparing model performance between different training runs, we aim to investigate
the reproducibility of training deep-learning models for medical image analysis. We con-
sider three diagnostic tasks: pancreatic cancer (PaC) detection in CT (Alves et al., 2021),
clinically significant prostate cancer (csPCa) detection in biparametric MRI (Bosma et al.,
2021), and lung nodule malignancy (LNm) risk estimation in low-dose CT (Venkadesh et al.,
2021). These tasks are clinically relevant, span both MR and CT, and include 3 out of the
8 most deadly cancers (Sung et al., 2021). We included two organ segmentation tasks:
pancreas segmentation in CT (Alves et al., 2021) and whole-gland prostate segmentation in
biparametric MRI (Saha et al., 2022). Previously published top-performing algorithms are
trained multiple times on the same data, to determine the variation in performance due to
random weight initialization, random data sampling, and random data augmentation.

Understanding performance variation is crucial to identify technological improvements
in training pipelines, as it allows us to differentiate the added benefit of proposed methodolo-
gies from stochastic factors (e.g. “lucky” weight initialization). This is particularly relevant
in the context of biomedical competitions, so-called (grand) challenges. In challenges the
difference in performance between top submissions is typically small, and the ultimate goal
is to identify the best methodology to address a given task. By understanding the variance
in performance of deep learning-based medical image analysis algorithms, we can make more
informed conclusions about effectiveness, and guide future research in this area.
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2. Materials and Methods

2.1. Datasets and Algorithms

For the task of csPCa detection, the datasets consisted of biparametric MRI (axial T2-
weighted, high b-value diffusion-weighted imaging, and apparent diffusion coefficient maps).
The training dataset consisted of 3050 cases (1080 malignant) with 1,315 PI-RADS ≥ 4
lesions. The test dataset contained 300 cases (88 malignant) from an external institution,
with 97 histopathology-confirmed malignant (ISUP ≥ 2) lesions. The algorithm used was
a previously established deep learning-based method that takes an MRI scan as input and
produces lesion candidates with malignancy likelihood scores as output. This algorithm
was trained using the nnU-Net framework (Isensee et al., 2020) and consists of an ensemble
of 5 models, obtained by training 3D U-Net models with 5-fold cross-validation and cross-
entropy loss. The algorithm extracted lesion candidates with malignancy scores from the
softmax predictions. See (Bosma et al., 2021) for additional details on the dataset and
algorithm.

For the task of PaC detection, the datasets consisted of contrast-enhanced CT scans in
the portal-venous phase. The training dataset consisted of 242 cases (119 malignant) with
119 histopathology-confirmed malignant lesions. The test dataset contained 361 cases (281
malignant) from two external institutions, with 281 histopathology-confirmed malignant
lesions (Simpson et al., 2019; Roth et al., 2016). The algorithm used was a previously
established deep learning-based method that takes a CT scan as input and produces lesion
candidates with malignancy likelihood scores as output. This algorithm was trained using
the nnU-Net framework and consists of an ensemble of 5 models, obtained by training 3D
U-Net models with 5-fold cross-validation and cross-entropy loss. The algorithm extracted
lesion candidates with malignancy scores from the softmax predictions. See (Alves et al.,
2021) for additional details on the dataset and algorithm.

For the task of LNm risk estimation, the datasets consisted of low-dose screening CT
scans. The training dataset consisted of 5282 cases (686 malignant) with 16077 lesions
(1249 malignant). The test set contained 602 cases (62 malignant) from an external insti-
tution, with 883 lesions (65 malignant). For each dataset, the reference standard was set by
histopathological confirmation for malignant lesions, and at least 2-year stability for benign
lesions. The algorithm used was an ensemble of 20 models, obtained by training one 2D and
one 3D convolutional neural network, each with 10-fold cross-validation. This algorithm is
a deep learning-based method that takes a CT scan and the nodule coordinates as input
and produces a malignancy likelihood score as output and has been previously reported in
(Venkadesh et al., 2021). See (Venkadesh et al., 2021) for additional details on the dataset
and algorithm.

For prostate segmentation, the datasets consisted of biparametric MRI scans. The
training dataset consisted of 198 cases from the ProstateX dataset (Armato III et al., 2018)
with prostate segmentations from experienced radiologists (Cuocolo et al., 2021), as well as
101 institutional cases. Testing was performed with 139 cases with prostate segmentations
by experienced radiologists from the Prostate158 training dataset (Adams et al., 2022).
The algorithm used was a vanilla nnU-Net algorithm that takes an MRI scan as input and
produces a prostate segmentation as output. This algorithm was trained using the nnU-Net
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framework and consists of an ensemble of 5 models, obtained by training 3D U-Net models
with 5-fold cross-validation. The preprocessing pipeline was taken from (Saha et al., 2022).

For pancreas segmentation, the same dataset and training method were used as for PaC
detection. Unlike the algorithm for PaC detection, the model checkpoints in the ensemble
were the final checkpoints, as per the default for segmentation in the nnU-Net framework.

2.2. Evaluation

Malignancy-detection algorithms were evaluated at both case-level diagnosis and lesion-level
detection. The case-level diagnosis performance was evaluated using the Area Under the
Receiver Operating Characteristic (AUROC) metric. To evaluate the lesion-level detection
performance of csPCa or PaC, the 3D detection maps of non-overlapping, non-connected
lesions with an associated malignancy-risk score were evaluated using the Average Precision
(AP) metric. True positives required a minimum overlap of 0.10 Intersection over Union
(IoU) in 3D with the ground-truth annotation. False positives were defined as predictions
with no or insufficient overlap, regardless of size or location. When multiple predictions had
sufficient overlap, only the prediction with the largest overlap was counted as a true positive,
while all other overlapping predictions were discarded. An overview of this evaluation
pipeline is shown in Figure 1. To evaluate the lesion-level risk estimation performance of
LNm, the AP and lesion-level AUROC were calculated for the predefined set of lesions.
Segmentation performance was evaluated using the Dice similarity coefficient (DSC).

Figure 1: Evaluation strategy for detection and diagnosis of csPCa or PaC. (Top) Lesion-
level detection involves predicting a 3D map of non-overlapping, non-connected
lesions with a likelihood score for each lesion. (Bottom) Case-level risk score is
computed using the predicted lesion detection map. Lesion-level detection maps
and case-level risk scores are compared with the ground truth to evaluate the
algorithm.
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2.3. Statistical Analysis

Many studies employ paired bootstrapping to estimate the probability that a given training
method outperforms an alternative training method. When we perform this statistical test
between different training runs of a given training method, the null hypothesis holds by
definition (the performance is not different, since the models are trained with the same
training pipeline). As such, we can investigate the calibration of paired bootstrapping by
looking at the p-values from paired bootstrapping between training runs in our experiments.
If a statistical test is well-calibrated, the p-values obtained from comparisons under the null
hypothesis should be uniformly distributed (i.e, 5% of the comparisons should have a p-
value below 0.05, 1% of the comparisons should have a p-value below 0.01, etc.). We check
whether paired bootstrapping is well-calibrated by comparing different training runs from
the same training pipeline. See Appendix B for details.

To compare training methods with empirical rigor, the performance variance due to the
stochasticity in the training pipeline should be accounted for. To achieve this, multiple
instances must be trained to construct the performance distribution of models trained with
a given training pipeline. The probability of one training method outperforming another
training method can then be computed using a permutation test with the performance
metrics, as done in (Bosma et al., 2021) and described in Appendix C. This accounts for
the variance in model performance across training runs, and the number of training runs
(sample size) supporting the comparison. We check whether the permutation test with
performance metrics is well-calibrated by performing simulations, as detailed in Appendix
C.

2.4. Computational Resources

Training deep learning-based algorithms for medical image analysis is typically expensive.
We allowed a computational budget of approx. 4000 GPU hours on an RTX 2080 Ti to train
all methods. Training a nnU-Net ensemble with 5-fold cross-validation took approx. 180
GPU hours. Training the ensemble for LNm risk estimation took approx. 20 GPU hours.
We decided to train the nnU-Net ensembles 7 times, and the LNm ensemble 10 times, to
fit in the allotted computational budget. For computational feasibility we implemented the
following changes with respect to the original publication:

• Ensemble 5 models (single 5-fold cross-validation iteration) for csPCa detection, in-
stead of 15 models (three 5-fold cross-validation iterations) as in (Bosma et al., 2021),

• Ensemble 5 models (single 5-fold cross-validation iteration) for PaC detection, instead
of 10 models (two 5-fold cross-validation iterations) as in (Alves et al., 2021).

3. Results

Figure 2 shows the performance distribution of the five deep learning-based image analysis
algorithms investigated in this study. Each algorithm is an ensemble of 5 or 20 models,
and performance differences are a result of retraining the full ensemble, due to random
weight initialization, random data sampling, and random data augmentation. The results
show substantial variance in diagnostic performance: at case-level diagnostic performance
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(as measured by AUROC), csPCa diagnosis differed 2.3% between best and worst run,
PaC diagnosis differed 3.8% between best and worst run, and LNm diagnosis differed 1.7%
between best and worst run. Variance in segmentation performance was comparable for
prostate segmentation: DSC differed 1.9% between best and worst run. For pancreas seg-
mentation, the DSC differed only 0.2% between the best and worst run. In Appendix A an
overview of model performance variation is shown.
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Figure 2: Distribution of performances across training runs for clinically significant prostate
cancer (csPCa) detection, pancreas cancer (PaC) detection, lung nodule malig-
nancy (LNm) risk estimation, prostate segmentation and pancreas segmentation.
Malignancy-detection algorithms are evaluated at both case-level diagnosis (AU-
ROC) and lesion-level detection (AP). The x-axis represents the performance
metric, while the y-axis shows the frequency of performance within a particular
range. For lesion-level LNm classification, we included the lesion-level AUROC,
following (Venkadesh et al., 2021). For segmentation, we show the distribution of
Dice similarity coefficient (DSC) scores.
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Performing image analysis with ensembles of 5-20 models is not feasible in certain clinical
settings. For example, inference speed is essential for radiotherapy planning, real-time
tracking, or when compute is provided by a CPU. To aid radiologists, predictions need
to be presented quickly to achieve a good workflow, but cannot always be pre-computed.
Therefore, we show the performance distribution for individual models in Appendix A.

Paired bootstrapping claimed a p-value below 0.05 in 26/174 (15%) comparisons between
different trained ensembles. This means that paired bootstrapping claimed statistical sig-
nificance of a difference in model performance 3× more often than it should. For lower
p-values this mismatch was even worse: 3/174 (1.7%) comparisons had a p-value below
0.001, a miscalibration of 17×. See Appendix B for details.

In our simulations with the permutation test, we observed a p-value below 0.05 in
1, 418/30, 000 (4.7%) comparisons. This means that the permutation test claimed statistical
significance of a difference in model performance almost perfectly as often as it should. At
lower p-values the calibration remained very good: 292/30, 000 (1.0%) of the comparisons
had a p-value below 0.01, a near-perfect calibration. We observed a p-value below 0.001
for 20/30, 000 (0.07%) comparisons, claiming statistical significance 1.5× less often than it
should (i.e., a bit conservative). See Appendix C for details.

4. Discussion

Diagnostic performance of the algorithms varied significantly between training runs, even
though the training and evaluation datasets were fixed and each algorithm was an ensemble
of at least 5 models. Performance variation due to random weight initialization, random
data augmentation, and random data order obscures the true performance of the training
method when training only a single instance. As a result, researchers could perceive random
fluctuations in performance as evidence for methodological changes in the training pipeline,
potentially moving AI researchers in sub-optimal directions.

Prostate segmentation performance varied considerably between training runs, while
pancreas segmentation performance was very consistent. This may be a result of the un-
derlying modality: the MRI scans for prostate segmentation have lower resolution than
the CT scans for pancreas segmentation, resulting in a larger segmentation difference when
in/excluding a single slice in the segmentation. However, more segmentation tasks need to
be investigated to obtain a better understanding of performance variance between training
runs for segmentation algorithms.

Our experiments provide evidence that paired bootstrapping is not suitable for esti-
mating the probability that a given training method outperforms an alternative training
method. On the other hand, the permutation test with performance metrics accounts
for performance variation in the training method. We showed that the permutation test
is well-calibrated, and therefore valid to statistically compare training methods with em-
pirical rigor. However, comparing training pipelines using the permutation test can be
computationally expensive. Medical image analysis algorithms are often ensembles, which
must be trained 5 − 10× to obtain sufficient statistical power. Even if this computational
power is available, the question remains whether the environmental impact of the additional
computational resources is justified by the additional empirical rigor.
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Multiple training runs allow generalizing experimental results to the training method,
rather than the trained algorithm. However, the experimental outcomes are still specific
to the task, development dataset, test dataset, and evaluation metric. Changes in these
factors can change the outcome of experiments (Maier-Hein et al., 2018), so claims cannot
be generalized without accounting for these factors. We recommend authors to carefully
think about which claims can be made based on the performed experiments, as these claims
are likely limited to the specific trained algorithm, task, datasets, and evaluation method.

Within challenges, the top submissions often achieve performances in a narrow range.
Within one of our experiments, we performed the same task as done in the PI-CAI Chal-
lenge (csPCa detection), using similar data and with a comparable test set and evaluation
strategy. Between training runs of our algorithm at this task, we observed a standard de-
viation for the PI-CAI Ranking Score1 of σ = 0.013 between training runs. If we assume
this standard deviation for each submission of the PI-CAI Challenge, the probability that
the current #1 submission would place #1 again when each method is retrained, is only
38%. See Appendix D for details. Challenges with multiple datasets (e.g., the Medical Seg-
mentation Decathlon with 3 test datasets (Antonelli et al., 2021)) evaluate multiple runs,
implicitly accounting for training variance to some degree. However, our results suggest
that leaderboard rankings in typical medical image analysis challenges are not suitable to
find the best training method, and challenge leaderboards should be interpreted with this
nuance.

It is important to note that depending on the goal of a research project or (grand) chal-
lenge, the performance variance due to stochasticity in the training pipeline may or may not
be important. When developing an algorithm for use in clinical routine, the performance of
the trained algorithm matters, not the stability of the training method. Additionally, for
clinical deployment, factors such as robustness, interpretability, inference speed, uncertainty
quantification, and out-of-distribution detection are key. On the other hand, when bench-
marking training methods, introducing a new training pipeline, investigating preprocessing
or data augmentation techniques, or changing the dataset (e.g., comparing supervised with
semi-supervised learning, adding a new model input, or validating a reconstruction/super-
resolution model), accounting for the performance variation during training is crucial. This
variance must be accounted for because the downstream performance of the trained algo-
rithms is used to infer the effect of changes made prior to or within the training pipeline.

Despite the insightful findings, there are some limitations to this study. First, it was
unfortunately not possible to exactly reproduce the algorithms of the original publications.
The main reason was computational resource availability, as the original publications applied
ensembles with 10 − 20 independent models. Although this is not ideal, the introduced
changes were minor, and the algorithms remain top-performing and clinically relevant.
Secondly, more tasks could have been investigated. The set of tasks we chose is clinically
relevant and covers a wide variability of medical image analysis tasks, but could be improved
by including more types of tasks. Finally, we note that the manual pancreas segmentations of
the external test set are poor, which limits the ability to evaluate segmentation performance
accurately. This is important to consider when interpreting the pancreas segmentation
results, as it suggests that this experiment may not be as reliable as the other tasks.

1. The PI-CAI Ranking Score is the average of the case-level diagnostic AUROC and lesion-level AP.
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5. Conclusion

Diagnostic performance of the deep learning-based medical image analysis algorithms var-
ied significantly between training runs, while deep learning-based segmentation performance
was stable. The diagnostic performance varied due to random initialization, random data
augmentation, and random data order, obscuring the true performance of training pipelines
when only a single instance is trained. Comparing training pipelines with paired bootstrap-
ping leads to over-claiming statistical significance of performance differences, mistaking
random fluctuations in performance for technological improvements. The findings of this
study demonstrate the importance of understanding the performance variance when train-
ing deep learning models and show that diagnostic algorithms need to be evaluated with
empirical rigor.
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Appendix A. Performance Distribution Individual Models

When evaluating the models from the ensembles individually, we observe the distributions
shown in Figure 3. For each task, the variation in performance is larger compared to the
variation in performance when evaluating ensembles. In Figure 4 an overview of model
performance variation is shown.

Appendix B. Calibration of Paired Bootstrapping

Paired bootstrapping is a statistical method that is often used to estimate the probability
that a given training method outperforms an alternative training method. It involves re-
sampling pairs of observations from a dataset and using the resampled data to estimate the
difference between the performance of the two methods being compared.

You would use the paired bootstrapping procedure to generate a large number of re-
sampled datasets by sampling pairs of observations from the test dataset and calculating
the difference in performance between the two algorithms on each resampled dataset. This
process is repeated many times to generate a distribution of performance differences.

Then, you can use this distribution to calculate the probability that the first method
outperforms the second. This can be done by counting the number of times that the
performance difference in the resampled datasets is greater than zero (indicating that the
first method outperformed the second) and dividing by the total number of resampled
datasets. The resulting probability can be interpreted as an estimate of the likelihood that
the first method is truly superior to the second.

We can investigate whether paired bootstrapping is suitable to estimate the probability
that the first method is truly superior to the second. When we perform this statistical test
between different training runs of an algorithm, the null hypothesis holds by definition (the
performance is not different, since the models are trained with the same training pipeline).
As such, the p-values obtained from these comparisons should be uniformly distributed (i.e,
5% of the comparisons should have a p-value below 0.05, 1% of the comparisons should
have a p-value below 0.01, etc.) (Dawid, 1982). We calculated the p-value from paired
bootstrapping for each combination of training runs for case-level csPCa diagnosis, PaC
diagnosis, or LNm diagnosis, giving n2 − n comparisons per use case.

Comparing ensembles from independent training runs, yielded 42 comparisons for csPCa
diagnosis, 42 for PaC diagnosis, and 90 for LNm diagnosis, so 174 comparisons in total. We
did not include pancreas segmentation, because those training runs were shared with PaC
diagnosis. The p-values from paired bootstrapping for each comparison are given in Figure 5.
We observed a p-value below 0.05 in 26/174 (15%) comparisons. This means that paired
bootstrapping claims statistical significance of a difference in model performance 3× more
often than it should. At lower p-values this mismatch was even worse: 12/174 (6.9%) of
the comparisons had a p-value below 0.01, a miscalibration of 6.9×. We observed a p-value
below 0.001 for 3/174 (1.7%) comparisons, claiming statistical significance at that threshold
17× more often than it should.

Comparing individual models from independent training runs, gives 1,190 comparisons
for csPCa detection, 1,190 for PaC detection, 9,900 for LNm classification with a 2D model
and 9,900 for LNm classification with a 3D model, so 22,180 comparisons in total. The
observed p-values are shown in Figure 6. We observed a p-value below 0.05 for 3, 534/22, 180
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Figure 3: Distribution of performances across training runs for clinically significant prostate
cancer (csPCa) detection, pancreas cancer (PaC) detection, lung nodule malig-
nancy (LNm) risk estimation, prostate segmentation and pancreas segmentation.
Individual models are evaluated, rather than ensembles. Malignancy-detection
algorithms are evaluated at both case-level diagnosis (AUROC) and lesion-level
detection (AP). The x-axis represents the performance metric, while the y-axis
shows the frequency of performance within a particular range. For lesion-level
LNm classification, we included the lesion-level AUROC, following (Venkadesh
et al., 2021). For segmentation, we show the distribution of Dice similarity coef-
ficient (DSC) scores.

(16%) comparisons, claiming statistical significance 3.2× too often. At lower p-values,
this became worse, with 1, 765/22, 180 (8.0%) comparisons below 0.01, a miscalibration of
8.0×. Finally, we observed 665/22, 180 (3.0%) comparisons with a p-value below 0.001,

1281



Bosma Peeters Alves Saha Saghir Jacobs Huisman

1 2 3 4 5 6 7 8 9
Task

0.00

0.01

0.02

0.03

0.04

0.05
St

an
da

rd
 d

ev
ia

tio
n 

(
)

Ensembles

1 2 3 4 5 6 7 8 9 10 11 12
Task

0.00

0.01

0.02

0.03

0.04

0.05

St
an

da
rd

 d
ev

ia
tio

n 
(

)

Individual models

Figure 4: Performance variability between training runs. The left panel shows the ensembles
(containing 5-20 models) presented in Figure 2 and the right panel shows the
individual models presented in Figure 3.

claiming statistical significance at that threshold 30× too often. The calibration of paired
bootstrapping is similar when comparing individual models as when comparing ensembles.

The Wald interval for binomial distributions allows to calculate the confidence interval
for the observed outcomes of the paired bootstrapping test (Wallis, 2013), as follows:

p̂± z

√
p̂ (1− p̂)

n
(1)

Where p̂ = x/n, n the total number of trails, x the number of times the event occurred,
and z the quantile of a standard normal distribution corresponding to the target confidence
interval. For the 95% confidence interval, z is 1.96. Given 26 observations of the event “p-
value claimed to be below 0.05” in 174 trails, the 95% Wald confidence interval is (0.0964−
0.2024). Since we know that p-values below 0.05 should only occur 5% of the times, which
does not fall within the 95% confidence interval, we can reject that paired bootstrapping is
valid for comparing training pipelines.

Our experiments provide evidence that paired bootstrapping is not suitable for esti-
mating the probability that a given training method outperforms an alternative training
method. This makes intuitive sense because the variation in performance due to the training
pipeline is fundamentally different from the variability estimated from bootstrapping the
likelihood table (i.e., variance stemming from the evaluation dataset). There is no statistical
reason why those two sources of variance should be comparable.
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Figure 5: P-values from paired bootstrapping for each comparison of training runs for case-
level csPCa diagnosis, PaC diagnosis, and LNm diagnosis. Each algorithm is an
ensemble of 5− 20 models.

Figure 6: P-values from paired bootstrapping for each comparison of training runs for case-
level csPCa diagnosis, PaC diagnosis, and LNm diagnosis using the individual
models (i.e., the models that are part of the ensembles).

Appendix C. Calibration of Permutation Test

A permutation test is a nonparametric statistical test that can be used to determine whether
the difference between two groups is statistically significant. It is often used when the
assumptions of parametric tests, such as the t-test or ANOVA, are not met. To conduct a
permutation test, the following steps are typically followed:

1. Calculate the test statistic for the observed data.

2. Randomly permute the data and recalculate the test statistic.

3. Repeat step 2 a large number of times (e.g., 1000) to generate a distribution of the
test statistic under the null hypothesis.
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4. Calculate the p-value as the proportion of permuted test statistics that are equal to
or more extreme than the observed test statistic.

The permutation test is useful because it does not rely on assumptions about the under-
lying distribution of the data. It is also relatively simple to implement, as it only requires the
calculation of the test statistic and the ability to randomly permute the data. To account
for the variability of model performance between training runs, the observed performance
metric from each independent training run should be permuted. This type of permutation
test is implemented in picai eval. We use this implementation in our simulations.

The permutation test requires an order of magnitude more compute resources, so empir-
ically checking its calibration is infeasible. However, because the permutation test is not an
approximation (like paired bootstrapping), it is inherently valid, and simulations can easily
show that it is well-calibrated. To check whether the permutation test when permuting
performance metrics is valid to compare training pipelines, we simulate a large number of
training runs. In our simulation, we generate a random set of predictions as follows:

ypos ∼ Beta(α = 3, β = 2) and yneg ∼ Beta(α = 2, β = 6) (2)

This gives a distribution of predictions for positive and negative cases as shown in
Figure 7. When sampling 300 positive cases and 700 negative cases, these predictions have
a case-level classification AUROC of 0.91 ± 0.01. Sampling these sets of predictions is
quick, so we can generate sets of predictions with the same parameters to perform many
permutation tests under the null hypothesis. We sample 10 sets of predictions for the
baseline training method (simulating retraining the algorithm 10 times) and 10 sets of
predictions for the alternative training method, to perform the permutation test with a
lot of power. We performed the permutation test with 3,000 random permutations and
simulated 30, 000 comparisons.

The calibration of p-values from the permutation test and paired bootstrapping is shown
in Figure 8. In our simulations, we observed a p-value below 0.05 in 1, 418/30, 000 (4.7%)
comparisons. This means that the permutation test claimed statistical significance of a
difference in model performance almost perfectly as often as it should. At lower p-values
the calibration remained very good: 292/30, 000 (1.0%) of the comparisons had a p-value
below 0.01, a near-perfect calibration. We observed a p-value below 0.001 for 20/30, 000
(0.07%) comparisons, claiming statistical significance 1.5× less often than it should (i.e., a
bit conservative).
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Figure 7: Distributions of model predictions, with predictions for positive (malignant) and
negative (benign) cases sampled according to Equation (2).
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Figure 8: Calibration of p-values obtained from (top) the permutation test with simulated
model performances, and (bottom) paired bootstrapping with individual mod-
els. 30, 000 comparisons were simulated for the permutation test, and comparing
individual models provided 22, 180 comparisons for paired bootstrapping. The
crosses indicate the number of comparisons with a p-value below a given thresh-
old a perfectly calibrated test has when the null hypothesis holds.
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Appendix D. Challenge Winner Simulation

Challenges often attract many teams, and the performances obtained by top-performing
teams are often close. See Table 1 for an overview of representative challenges in the
medical image analysis field. If the variation in model performance is large, the order of
the submissions could change if each method was re-trained.

We can estimate the probability that any of the submissions would have won the chal-
lenge, by simulating re-training each method many times. For this, we assume that the
observed performance for each submission is drawn from a Gaussian distribution, where
we set the mean of the distributions to the observed performance in the challenge. Fur-
thermore, we assume that each Gaussian distribution shares the same standard deviation.
Under these assumptions, the win probability can be estimated for each method using Al-
gorithm 1. We estimated the win probability of the nr. 1 submission for each challenge in
Table 1, and show the win probabilities in Figure 9.

Within our experiments, we performed the same task (csPCa detection) as the PI-
CAI Challenge, using the same kind of data (biparametric MRI, except for the clinical
information) and evaluated performance in the same way (using picai eval) against a very
similar reference standard (histopathology-confirmed malignant lesions). We observed a
standard deviation for the PI-CAI ranking score = (AUROC+AP)/2 of σ = 0.013 between
training runs. At this standard deviation, the win probability of the nr. 1 submission is
only 38%.

Similarly, for the AIROGS (Referable glaucoma pAUC) challenge, which had the median
∆(1− 3), the win percentage at the same σ = 0.013 was 45%.

import numpy as np

scores = [0.757, 0.752, 0.752, 0.742, 0.740]

std_options = np.logspace(-3, -1, num=101)

win_rates = {i: {} for i in range(len(scores))}

for std in std_options:

simulations = np.zeros(100_000)

for i in range(len(simulations)):

observed_performance = [

np.random.normal(loc=score, scale=std)

for score in scores

]

simulations[i] = np.argmax(observed_performance)

for i in range(len(scores)):

win_rates[i][std] = np.sum(simulations==i) / len(simulations)

Algorithm 1: Estimate win probability of challenge submissions
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Figure 9: Probability that the nr. 1 submission would win the challenge again when each
method is retrained, assuming the same standard deviation in model performance
between training runs for each method. Several Grand Challenges are presented:
CoNIC, TIGER, STOIC, AIROGS and PI-CAI. At the standard deviation ob-
served in our experiments (σ = 0.013), the probability of the nr. 1 submission to
win again is about 50%.

Table 1: Top 3 performances for challenges highlighted on the Grand Challenge blogs, and
the challenge closest to the investigated malignancy detection use cases (PI-CAI).
See the respective challenge website for details on the task, metrics, and datasets.
∆(1−3) is the difference in performance between the nr. 1 and nr. 3 submissions.

Challenge Nr. 1 Nr. 2 Nr. 3 ∆(1− 3)

CoNIC (Segmentation and Classification) 0.5013 0.4762 0.4631 0.0382

CoNIC (Composition) 0.7641 0.7625 0.7550 0.0091

TIGER (Survival) 0.6388 0.6338 0.6224 0.0164

TIGER (Detection) 0.5504 0.5441 0.5437 0.0067

STOIC 0.8154 0.8100 0.7943 0.0211

AIROGS (Referable glaucoma pAUC) 0.8998 0.8932 0.8873 0.0125

PI-CAI 0.757 0.752 0.752 0.0050
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