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Abstract

Graphs are a natural representation of brain activity derived from functional magnetic
imaging (fMRI) data. It is well known that clusters of anatomical brain regions, known as
functional connectivity networks (FCNs), encode temporal relationships which can serve as
useful biomarkers for understanding brain function and dysfunction. Previous works, how-
ever, ignore the temporal dynamics of the brain and focus on static graphs. In this paper, we
propose a dynamic brain graph deep generative model (DBGDGM) which simultaneously
clusters brain regions into temporally evolving communities and learns dynamic unsuper-
vised node embeddings. Specifically, DBGDGM represents brain graph nodes as embed-
dings sampled from a distribution over communities that evolve over time. We parameterise
this community distribution using neural networks that learn from subject and node em-
beddings as well as past community assignments. Experiments demonstrate DBGDGM
outperforms baselines in graph generation, dynamic link prediction, and is comparable
for graph classification. Finally, an analysis of the learnt community distributions reveals
overlap with known FCNs reported in neuroscience literature. Code available at https:

//github.com/simeon-spasov/dynamic-brain-graph-deep-generative-model.
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1. Introduction

Functional magnetic resonance imaging (fMRI) is a non-invasive imaging technique pri-
marily used to measure blood-oxygen level dependent (BOLD) signal in the brain (Huettel
et al., 2004). A natural representation of fMRI data is as a discrete-time graph, henceforth
referred to as a dynamic brain graph (DBG), consisting of a set of fixed nodes correspond-
ing to anatomically separated brain regions and a set of time-varying edges determined by
a measure of dynamic functional connectivity (dFC) (Calhoun et al., 2014). DBGs have
been widely used in graph-based network analysis for understanding brain function (Hirsch
and Wohlschlaeger, 2022; Raz et al., 2016) and dysfunction (Alonso Mart́ınez et al., 2020;
Dautricourt et al., 2022; Yu et al., 2015).

Recently, there is growing interest in using deep learning-based methods for learning
representations of graph-structured data (Goyal and Ferrara, 2018; Hamilton, 2020). A
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graph representation typically consists of a low-dimensional vector embedding of either the
entire graph (Narayanan et al., 2017) or a part of it’s structure such as nodes (Grover and
Leskovec, 2016), edges (Gao et al., 2019), or sub-graphs (Adhikari et al., 2017). Although
originally formulated for static graphs (i.e. not time-varying), several existing methods have
been extended (Mahdavi et al., 2018; Goyal et al., 2020), and new ones proposed (Zhou
et al., 2018; Sankar et al., 2020), for dynamic graphs. The embeddings are usually learnt
in either a supervised or unsupervised fashion and typically used in tasks such as node
classification (Pareja et al., 2020) and dynamic link prediction (Goyal et al., 2018).

To date, very few deep learning-based methods have been designed for, or existing
methods applied to, representation learning of DBGs. Those that do, tend to use graph
neural networks (GNNs) that are designed for learning node- and graph-level embeddings
for use in graph classification (Kim et al., 2021; Dahan et al., 2021). Although node/graph-
level embeddings are effective at representing local/global graph structure, they are less
adept at representing topological structures in-between these two extremes such a clusters
of nodes or communities (Wang et al., 2017). Recent methods that explicitly incorporate
community embeddings alongside node embeddings have shown improved performance for
static graph representation learning tasks (Sun et al., 2019; Cavallari et al., 2017). How to
leverage the relatedness of graph, node, and community embeddings in a unified framework
for DBG representation learning remains under-explored. We refer to Appendix A for a
summary of related work.

Contributions To address these shortcomings, we propose DBGDGM, a hierarchical
deep generative model (DGM) designed for unsupervised representing learning on DBGs
derived from multi-subject fMRI data. Specifically, DBGDGM represents nodes as embed-
dings sampled from a distribution over communities that evolve over time. The community
distribution is parameterized using neural networks (NNs) that learn from graph and node
embeddings as well as past community assignments. We evaluate DBGDGM on multi-
ple real-world fMRI datasets and show that it outperforms state-of-the-art baselines for
graph reconstruction, dynamic link prediction, and achieves comparable results for graph
classification. Code on GitHub1.

2. Related work

Dynamic graph generative models Classic generative models for graph-structured
data are designed for capturing a small set of specific properties (e.g. degree distribution,
eigenvalues, modularity) of static graphs (Erdos et al., 1960; Barabási and Albert, 1999;
Nowicki and Snijders, 2001). DGMs that exploit the learning capacity of NNs are able to
learn more expressive graph distributions (Mehta et al., 2019; Kipf and Welling, 2016b;
Sarkar et al., 2020). Recent DGMs for dynamic graphs are majority VAE-based (Kingma
and Welling, 2013) and cannot learn community representations (Hajiramezanali et al.,
2019; Gracious et al., 2021; Zhang et al., 2021). The few that do, are designed for static
graphs (Sun et al., 2019; Khan et al., 2021; Cavallari et al., 2017).

Learning representations of dynamic brain graphs Unsupervised representation
learning methods for DBGs tend to focus on clustering DBGs into a finite number of con-

1. https://github.com/simeon-spasov/dynamic-brain-graph-deep-generative-model
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nectivity patterns that recur over time (Allen et al., 2014; Spencer and Goodfellow, 2022).
Community detection is another commonly used method but mainly applied to static brain
graphs (Pavlović et al., 2020; Esfahlani et al., 2021). Extensions to DBGs are typically not
end-to-end trainable and do not scale to multi-subject datasets (Ting et al., 2020; Martinet
et al., 2020b). Recent deep learning-based methods are predominately GNN-based (Kim
et al., 2021; Dahan et al., 2021). Unlike DBGDGM, these methods are supervised and focus
on learning deterministic node- and graph-level representations.

3. Problem formulation

Figure 1: Plate diagram for DBGDGM. La-
tent and observed variables are
denoted by white-and gray-shaded
circles, respectively. Solid black
squares denote non-linear mappings
parameterized by NNs.

We consider a dataset of multi-subject
DBGs derived from fMRI data D ≡
G(1:S, 1:T ) = {G(s, t)}S, Ts, t=1 that share a com-
mon set of nodes V = {v1, . . . , vV } over
T ∈ N timepoints for S ∈ N subjects. Each
G(s, t) ∈ G(1:S, 1:T ) denotes a non-attributed,
unweighted, and undirected brain graph
snapshot for the s-th subject at the t-th
timepoint. We define a brain graph snap-
shot as a tuple G(s, t) = (V, E(s, t)) where
E(s, t) ⊆ V × V denotes an edge set. The
i-th edge for the s-th subject at the t-th

timepoint e
(s, t)
i ∈ E(s, t) is defined e

(s, t)
i =

(w
(s,t)
i , c

(s,t)
i ) where w

(s,t)
i is a source node

and c
(s,t)
i is a target node. We assume each

node corresponds to a brain region making
the number of nodes |V| = V ∈ N fixed over
subjects and time. We also assume edges
correspond to a measure of dFC allowing the number of edges |E(s, t)| = E(s, t) ∈ N vary over
subjects and time. We further assume there exists K ∈ N clusters of nodes, or communities,

the membership of which dynamically changes over time for each subject. Let z
(s, t)
i ∈ [1 : K]

denote the latent community assignment of the i-th edge for the s-th subject at the t-th
timepoint. For each subject’s DBG our aim is to learn, in an unsupervised fashion, graph

α(s) ∈ RHα , node ϕ(s, t)
1:V = [ϕ

(s, t)
n ] ∈ RV×Hϕ , and community ψ

(s, t)
1:K = [ψ

(s, t)
k ] ∈ RK×Hψ rep-

resentations of dimensions Hα, Hϕ, Hψ ∈ N, respectively, for use in a variety of downstream
tasks.

4. Method

DBGDGM defines a hierarchical deep generative model and inference network for the end-
to-end learning of graph, node, and community embeddings from multi-subject DBG data.
Specifically, DBGDGM treats the embeddings and edge community assignments as latent

random variables collectively denoted Ω(s, t) = {α(s), ϕ
(s, t)
1:V , ψ

(s, t)
1:K , {z(s, t)i }E(s, t)

i=1 }, which
along with the observed DBGs, defines a probabilistic latent variable model with joint
density pθ(G1:S, 1:T ,Ω1:S, 1:T ).
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4.1. Generative model

Graph embeddings We begin the generative process by sampling graph embeddings
from a prior α(s) ∼ pθα(α(s)) implemented as a normal distribution following

pθα(α
(s)) = Normal(0Hα , IHα) (1)

where 0Hα is a matrix of zeros and IHα is a identity matrix. Each embedding is a vector
α(s) ∈ RHα representing subject-specific information that remains fixed over time.

Node and community embeddings Next, let ϕ
(s, t)
n ∈ RHϕ and ψ

(s, t)
k ∈ RHψ denote

the n-th node and the k-th community embedding, respectively. To incorporate temporal
dynamics, we assume node and community embeddings are related through Markov chains

with prior transition distributions ϕ
(s, t)
n ∼ pθϕ(ϕ

(s, t)
n |ϕ(s, t−1)

n ) andψ
(s, t)
k ∼ pθψ(ψ

(s, t)
k |ψ(s, t−1)

k ).
We specify each prior to be a normal distribution following

pθϕ(ϕ
(s, t)
n |ϕ(s, t−1)

n ) = Normal(ϕ(s, t−1)
n , σϕIHϕ) (2)

pθψ(ψ
(s, t)
k |ψ(s, t−1)

k ) = Normal(ψ
(s, t−1)
k , σψIHψ) (3)

where the means are initialized via neural network transformations of the graph embeddings,

i.e. ϕ
(s, 0)
n = MLPθϕ(α

(s)), ψ
(s, 0)
k = MLPθψ(α

(s)), where MLPθj : RHα → RHj is a Lj-
layered multilayer perceptron for j ∈ {ϕ, ψ}. The standard deviations σϕ, σψ ∈ R>0 are
hyperparameters controlling how smoothly each embedding changes between consecutive
snapshots.

Edge generation We next describe the edge generative process of a graph snapshot

G(s, t) ∈ G(1:S, 1:T ). Similar to Sun et al. (2019), for each edge e
(s, t)
i = (w

(s, t)
i , c

(s, t)
i ) ∈ E(s, t)

we first sample a latent community assignment z
(s, t)
i ∈ [1 : K] from a conditional prior

z
(s, t)
i ∼ pθz(z

(s, t)
i |w(s, t)

i ) implemented as a categorical distribution

pθz(z
(s, t)
i |w(s, t)

i ) = Categorical(Softmax(π̃
(s, t)
i )), π̃

(s, t)
i = MLPθz(ϕ

(s, t)
wi ) (4)

where MLPθz : RHϕ → RK is a Lz-layered MLP that parameterizes community probabil-

ities using node embeddings indexed by w
(s, t)
i . In other words, each source node w

(s, t)
i

is represented as a mixture of communities. A linked target node c
(s, t)
i ∈ [1 : V ] is then

sampled from the conditional likelihood c
(s, t)
i ∼ pθc(c

(s, t)
i |z(s, t)i ) which is also implemented

as a categorical distribution

pθc(c
(s, t)
i |z(s, t)i ) = Categorical(Softmax(π̂

(s, t)
i )), π̂

(s, t)
i = MLPθc(ψ

(s, t)
zi ) (5)

where MLPθc : RHψ → RV is a Lc-layered MLP that parameterizes node probabilities using

community embeddings indexed by z
(s, t)
i . That is, each community assignment z

(s, t)
i is

represented as a mixture of nodes. By integrating out the latent community assignment
variable

p(c
(s, t)
i |w(s, t)

i ) =
∑

z
(s, t)
i ∈[1:K]

pθc(c
(s, t)
i |z(s, t)i )pθz(z

(s, t)
i |w(s, t)

i ) (6)

we define the likelihood of node c
(s, t)
i being a linked neighbor of node w

(s, t)
i , in a given

graph snapshot.
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Factorized generative model Given this model specification, the joint probability of
the observed data and the latent variables can be factorized following

pθ(G1:S 1:T , Ω1:S,1:T ) =

S∏
s=1

(
pθα(α

(s))

T∏
t=1

(
V∏
n=1

pθϕ(ϕ
(s, t)
n |ϕ(s, t−1)

n )

K∏
k=1

pθψ(ψ
(s,t)
k |ψ(s,t−1)

k )

E(s, t)∏
i=1

pθz(z
(s, t)
i |ϕ(s, t)

wi )pθc(c
(s, t)
i |ψ(s, t)

zi )

))
(7)

where θ = {θϕ, θψ, θz, θc} is the set of generative model parameters i.e. NN weights. The
generative model of DBGDGM summarized in Appendix B.

4.2. Inference network

Inferring the posterior pθ(Ω
(1:S, 1:T )|G(1:S, 1:T )) is intractable so we resort to variational infer-

ence (Jordan et al., 1999) to approximate the true posterior with a variational distribution
qλ(Ω

(1:S,1:T )) with parameters λ. For training, we maximize a lower bound on the log
marginal likelihood of the DBGs, referred to as the ELBO (evidence lower bound):

LELBO(θ, λ) = Eqλ

[
log

pθ(G1:S, 1:T , Ω1:S, 1:T )

qλ(Ω(1:S, 1:T ))

]
≤ log pθ(G(1:S, 1:T )) (8)

where Eqλ [·] denotes the expectation with respect to the variational distribution qλ(Ω
(1:S, 1:T )).

By maximizing the ELBO with respect to the generative and variational parameters θ and
λ we train our generative model and perform Bayesian inference, respectively.

Structured variational distribution To ensure a good approximation to true the pos-
terior, we retain the Markov properties of the node and community embeddings. This
results in a structured variational distribution (Hoffman and Blei, 2015; Saul and Jordan,
1995) which factorizes following

qλ(Ω
(1:S, 1:T )) =

S∏
s=1

(
qλα(α

(s))
T∏
t=1

(
V∏
n=1

qλϕ(ϕ
(s, t)
n |ϕ(s, t−1)

n )

K∏
k=1

qλψ(ψ
(s, t)
k |ψ(s, t−1)

k )

E(s, t)∏
i=1

qλz(z
(s, t)
i |ϕ(s, t)

wi , ϕ(s, t)
ci )

))
.

(9)

Moreover, each distribution is specified to mimic the structure of the generative model such
that

qλα(α
(s)) = Normal(µ(s), σ(s)) (10)

qλϕ(ϕ
(s, t)
n |ϕ(s, t−1)

n ) = Normal(µ̃(s, t)
n , σ̃(s, t)

n ), {µ̃(s, t)
n , σ̃(s, t)

n } = GRUλϕ(ϕ
(s, t−1)
n ) (11)

qλψ(ψ
(s, t)
k |ψ(s, t−1)

k ) = Normal(µ̂
(s, t)
k , σ̂

(s, t)
k ), {µ̂(s, t)

k , σ̂
(s, t)
k } = GRUλψ(ψ

(s, t−1)
k ) (12)
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qλz(z
(s, t)
i |ϕ(s, t)

wi , ϕ(s, t)
ci ) = Categorical(Softmax(π

(s, t)
i )), π

(s, t)
i = MLPλz(ϕ

(s, t)
wi ⊙ϕ

(s, t)
ci )

(13)

where GRUλj : RHj → RHj is a Lj-layered GRU for each j ∈ {ϕ, ψ} and MLPλz :

RHϕ → RK is Lz-layered MLP. Furthermore, we use MLPs to initialize the GRUs with

the graph embeddings such that ϕ
(s, 0)
n = MLPλϕ(α

(s)) and ψ
(s, 0)
k = MLPλψ(α

(s)) where

MLPλj : RNα → RNj . This allows for subject-specific variation to be incorporated in the
temporal dynamics of the node and community embeddings. Another difference with the
generative model is now the variational distribution of the community assignment qλz(·)
includes information from neighboring nodes via c

(s, t)
i . Finally, we use the same NNs

from the generative model to parameterize the variational distributions for the node and
community embeddings as well as the community assignment. This not only spares ad-
ditional trainable parameters for the variational distribution but also further links the
variational parameters of qλ(·) to generative parameters of pθ(·) resulting in more robust
learning (Farnoosh and Ostadabbas, 2021). The set of parameters for the inference network
is therefore λ = {λα = {µ(s), σ(s)}Ss=1, λϕ = θϕ, λψ = θψ, λz = θz}.

Training objective Substituting the variational distribution from (9) and the joint dis-
tribution from (7) into the ELBO (8) gives the full training objective which can be optimized
using stochastic gradient descent. We estimate all gradients using the reparameterization
trick (Kingma and Welling, 2013) and the Gumbel-softmax trick (Jang et al., 2016; Maddi-
son et al., 2016). We refer to Appendix B for further details on the ELBO derivation and
learning the parameters.

5. Experiments

We evaluate DBGDGM against baseline models on the tasks of graph reconstruction, dy-
namic link prediction, and graph classification. Each task is designed to evaluate the use-
fulness of the learnt embeddings.

Datasets We construct two multi-subject DBG datasets using publicly available fMRI
data from the Human Connectome Project (HCP) (Van Essen et al., 2013) and UK Biobank
(UKB) (Sudlow et al., 2015). We randomly sample S = 300 subjects ensuring an even
biological sex split. To create DBGs, we parcellate each scan into V = 360 region-wise
BOLD signals using the Glasser atlas (Glasser et al., 2016), apply sliding-window Pearson
correlation (Calhoun et al., 2014) with a non-overlapping window of size and stride of 30,
and threshold the top 5% values of the lower triangle of each correlation matrix as connected
following Kim et al. (2021). The described procedure gives T = 16 graph snapshots for each
subject. Biological sex is taken as graph-level labels. We refer to Appendix D for further
details on each dataset.

Baselines We compare DBGDGM against a range of different unsupervised probabilistic
baseline models. For static baselines, we include variational graph autoencoder (VGAE) (Kipf
and Welling, 2016b), a deep generative version of the overlapping stochastic block model
(OSBM) (Mehta et al., 2019), and vGraph (VGRAPH) (Sun et al., 2019). For dynamic
baselines we include variational graph recurrent neural network (VGRNN) (Hajiramezanali
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Model
HCP UKB

NLL (↓) MSE (↓) NLL (↓) MSE (↓)

CMN 5.999 ± 0.029 * 0.050 ± 0.005 * 5.861 ± 0.017 * 0.050 ± 0.003 *
VGAE 5.857 ± 0.017 * 0.051 ± 0.002 * 5.851 ± 0.027 * 0.061 ± 0.002 *
OSBM 5.808 ± 0.026 * 0.051 ± 0.003 * 5.726 ± 0.039 * 0.052 ± 0.003 *
VGRAPH 5.569 ± 0.046 * 0.022 ± 0.004 * 5.716 ± 0.037 * 0.020 ± 0.003 *
VGRNN 5.674 ± 0.034 * 0.011 ± 0.003 * 5.649 ± 0.035 * 0.014 ± 0.002 *
ELSM 5.924 ± 0.040 * 0.081 ± 0.002 * 5.809 ± 0.024 * 0.115 ± 0.003 *
DBGDGM 4.587 ± 0.045 0.001 ± 0.002 4.586 ± 0.084 0.004 ± 0.003

AUROC (↑) AP (↑) AUROC (↑) AP (↑)

CMN 0.665 ± 0.007 * 0.654 ± 0.006 * 0.678 ± 0.004 * 0.668 ± 0.005 *
VGAE 0.661 ± 0.010 * 0.674 ± 0.008 * 0.688 ± 0.010 * 0.607 ± 0.009 *
OSBM 0.655 ± 0.027 * 0.675 ± 0.024 * 0.678 ± 0.032 * 0.682 ± 0.033 *
VGRAPH 0.689 ± 0.004 * 0.682 ± 0.002 * 0.664 ± 0.002 * 0.621 ± 0.001 *
VGRNN 0.689 ± 0.007 * 0.698 ± 0.006 * 0.698 ± 0.009 * 0.696 ± 0.007 *
ELSM 0.669 ± 0.004 * 0.662 ± 0.002 * 0.661 ± 0.001 * 0.662 ± 0.002 *
DBGDGM 0.768 ± 0.026 0.732 ± 0.032 0.786 ± 0.040 0.762 ± 0.038

Table 1: Graph reconstruction (top) and dynamic link prediction (bottom) results (mean
± standard deviation over 5 runs). First and second-best results shown in bold
and underlined. Statistically significant difference from DBGDGM marked *.

et al., 2019) and evolving latent space model (ELSM) (Gupta et al., 2019). For the graph re-
construction and link prediction tasks, we also include a heuristic baseline based on common
neighbors between nodes at previous snapshots (CMN). Finally, for graph classification we
include a support vector machine which takes as inputs static FC matrices (FCM) (Abraham
et al., 2017). Further details about baseline models can be found in Appendix E.

Implementation For training the unsupervised models, we split both datasets into 80/10/10%
training/validation/test data along the time dimension. We train all models using the Adam
optimizer (Kingma and Ba, 2014) with decoupled weight decay (Loshchilov and Hutter,
2017). All baseline hyperparameters are set following their original implementations. For
DBGDGM, we choose the number of communities K based on validation NLL. Finally, we
train all models 5 times using different random seeds for 1,000 iterations and save the model
with lowest validation NLL. Implementation details can be found in Appendix F.

Evaluation metrics We evaluate the learnt embeddings on a variety of downstream
tasks. For graph reconstruction and dynamic link prediction, we assess performance on
the test edges produced by the 80/10/10% temporal split. We calculate the probability
of the test edges using negative log-likelihood (NLL) and also compare the mean-squared
error (MSE) between actual and reconstructed node degree over all test snapshots. For
dynamic link prediction, we sample an equal number of positive and negative edges in the
test dataset and measure performance using area under the receiver operator curve (AU-
ROC) and average precision (AP).Finally, for graph classification, we predict the biological
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Figure 2: Graph classification results (5 runs). Statistical significance from DBGDGM
marked *.

sex for each subjects’ DBG and evaluate on accuracy. To predict graph labels, we av-
erage node embeddings per subject for the baselines and the community embeddings for
DBGDGM. The averaged embeddings are split subject-wise into 80/20% train/test datasets
and an SVM is trained using 10-fold cross validation on the train split. This is repeated 5
times using a different random seed. For comparing models, we use the almost stochastic
order (ASO) test (Dror et al., 2019) with significance level 0.05 and correct for multiple
comparisons (Bonferroni, 1936). A description of each task is included in Appendix G.

6. Results

Dynamic graph reconstruction and link prediction. We summarize the average test
results of all models over 5 runs using optimally tuned hyperparameters.From Table 1, it
is clear that DBGDGM outperforms baselines on both tasks. For graph reconstruction,
DBGDGM shows an 18% and 30% relative improvement in NLL on HCP and UKB, re-
spectively, compared to the second-best baselines. For dynamic link prediction, the relative
improvement is > 11% in AUCROC and > 5% in AP compared to second-best baselines de-
pending on dataset. We attribute these statistically significant gains to DBGDGM’s ability
to learn dynamic brain connectivity more effectively.

Graph classification For graph classification, DBGDGM achieves ∼ 75% accuracy for
HCP and ∼ 73% for UKB (see Fig. 2). We outperform 4 baselines and show indiscernible
performance to VGAE and OSBM. To show the interpretative power of DBGDGM, we re-
run the graph classification experiment for HCP with the embeddings of each community
separately. We find a community which comprises brain regions in the Cingulo-opercular
(CON) and the Somatomotor (SMN) networks, which achieves 68% accuracy. This finding
is in agreement with studies that show SMN is predictive of gender (Zhang et al., 2018).
With the exception of VGRAPH, which DBGDGM outperforms, such an interpretability
analysis cannot be done in a computationally feasible way by any of the other baselines.
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Figure 3: Overlap between communities learned by DBGDGM and FCNs from Ji et al.
(2019). Some communities fully correspond to known FCNs, others are a mix,
and offer a way to study FCN co-activation.

Interpretability analysis We use the learnt distributions over the nodes to calculate
overlap between each community and known functional connectivity networks (FCNs) from Ji
et al. (2019) (see Appendix H). Figure 3 shows that DBGDGM finds communities that
significantly overlap with existing FCNs. In particular, nodes in community 1 almost fully
corresponds to the visual network (VIS1 + VIS2), which is in keeping with the nature of
the experiment (the resting state data was acquired with eyes open and cross-hair fixation).
Remarkably, the second and third most homogeneous communities correspond to a large
degree to the DMN, which is well known to dominate resting state activity as a whole
(Yeshurun et al., 2021). The inspection of additional communities and respective predic-
tive power, along with their evolution in time has the potential to unveil the relationships
between dynamic brain connectivity changes and, e.g. psychiatric or neurological disorders.

7. Conclusion

We propose DBGDGM, a hierarchical DGM designed for unsupervised representation learn-
ing of DBGs. Specifically, DBGDGM jointly learns graph-, community-, and node-level em-
beddings that outperform baselines on classification, interpretability, and dynamic link pre-
diction with statistical significance. Moreover, an analysis of the learnt dynamic community-
node distributions shows significant overlap with existing FCNs from neuroscience literature
further validating our method.
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Dragana M Pavlović, Bryan RL Guillaume, Soroosh Afyouni, and Thomas E Nichols. Multi-
subject stochastic blockmodels with mixed effects for adaptive analysis of individual dif-
ferences in human brain network cluster structure. Statistica Neerlandica, 74(3):363–396,
2020.
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Appendix A. Related work

Dynamic graph generative models Classic generative models for graph-structured
data are designed for capturing a small set of specific properties (e.g. degree distribution,
eigenvalues, modularity) of static graphs (Erdos et al., 1960; Barabási and Albert, 1999;
Nowicki and Snijders, 2001). DGMs that exploit the learning capacity of NNs are able to
learn more expressive graph distributions (Mehta et al., 2019; Kipf and Welling, 2016b;
Sarkar et al., 2020). Recent DGMs for dynamic graphs are majority VAE-based (Kingma
and Welling, 2013) and cannot learn community representations (Hajiramezanali et al.,
2019; Gracious et al., 2021; Zhang et al., 2021). The few that do, are designed for static
graphs (Sun et al., 2019; Khan et al., 2021; Cavallari et al., 2017).

Learning representations of dynamic brain graphs BOLD signals derived from
fMRI, whether at the voxel or brain region level, represent non stationary timeseries (Guan
et al., 2020). As such, how the signals relate to each other spatially changes over time.
Within the context of dynamic functional connectivity, it is essential to capture these time
varying spatial relationships. Unsupervised representation learning methods for DBGs tend
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to focus on clustering DBGs into a finite number of connectivity patterns that recur over
time (Allen et al., 2014; Spencer and Goodfellow, 2022). Community detection is another
commonly used method but mainly applied to static brain graphs (Pavlović et al., 2020;
Esfahlani et al., 2021). Extensions to DBGs are typically not end-to-end trainable and
do not scale to multi-subject datasets (Ting et al., 2020; Martinet et al., 2020b). Recent
deep learning-based methods are predominately GNN-based (Kim et al., 2021; Dahan et al.,
2021). Unlike DBGDGM, these methods are supervised and focus on learning deterministic
node- and graph-level representations.

Appendix B. Method

B.1. Generative model

Algorithm 1 summarizes the generative model for DBGDGM.

B.2. Training objective and learning the parameters

Substituting the variational distribution from (9) and the joint distribution from (7) into
the ELBO (8) gives the full training objective defined as

LELBO(θ, λ) =
S∑
s=1

T∑
t=1

E(s, t)∑
i=1

(
Eqλz qλψ

[
log pθc(c

(s, t)
i |w(s, t)

i , ψ(s, t)
zi )

]
− Eqλϕ

[
DKL[qλz(z

(s, t)
i |ϕ(s, t)

wi , ϕ(s, t)
ci )||pθz(z

(s, t)
i |ϕ(s, t)

wi )]
])

−
S∑
s=1

(
DKL[qλα(α

(s))||pθα(α(s))]

T∑
t=1

(
(14)

−
V∑
n=1

Eqλϕ
[
DKL[qλϕ(ϕ

(s, t)
n |ϕ(s, t−1)

n )||pθϕ(ϕ
(s, t)
n |ϕ(s, t−1)

n )]
]

−
K∑
k=1

Eqλψ
[
DKL[qλψ(ψ

(s, t)
k |ψ(s, t−1)

k )||pθψ(ψ
(s, t)
k |ψ(s, t−1)

k )]
]))

where DKL[·||·] denotes the Kullback-Leibler (KL) divergence. By maximizing (14), the
parameters (θ, λ) of the generative model and inference network can be jointly learnt.

Learning the parameters In order to use efficient stochastic gradient-based optimiza-
tion techniques (Robbins and Monro, 1951) for learning (θ, λ), the gradient of the ELBO
has to be estimated. The main challenge of this is obtaining gradients of the variables under
expectation, i.e. Eq∗ [·], since they are sampled. To allow gradients to flow through these
sampling steps, we use the reparameterization trick (Kingma and Welling, 2013; Rezende
et al., 2014) for the normal distributions and the Gumbel-softmax trick (Jang et al., 2016;
Maddison et al., 2016) for the categorical distributions. All gradients are now easily com-
puted via back-propagation (Rumelhart et al., 1986) making DBGDGM end-to-end train-
able. In addition, we analytically calculate the KL terms for both normal and categorical

1362



DBGDGM: Dynamic Brain Graph Deep Generative Model

Algorithm 1: DBGDGM generative model

Input: Common node set V, source nodes from all edges

{w(s, t)
i : i = 1, . . . , E(s, t)}S, Ts, t=1

Hyperparameters: Number of communities K; embedding dimensions Hα, Hϕ, Hψ;
number of layers in NNs Lϕ, Lψ, Lz; temporal smoothness σψ, σϕ

Initialize: D ← ∅
for s← 1 to S do

/* Initialize node and community embeddings */

/* Sample graph embeddings from prior */

α(s) ∼ p(α(s)) = Normal(0Hα , IHα)
for t← 1 to T do

for k ← 1 to K do
/* Sample community embeddings from prior */

ψ
(s, 0)
k = MLPθψ(α

(s))

ψ
(s,t)
k ∼ p(ψ(s, t)

k |ψ(s, t−1)
k ) = Normal(ψ

(s, t−1)
k , σψIHψ)

end
for n← 1 to V do

/* Sample node embeddings from prior */

ϕ
(s, 0)
n = MLPθϕ(α

(s))

ϕ
(s,t)
n ∼ p(ϕ(s, t)

n |ϕ(s, t−1)
n ) = Normal(ϕ

(s, t−1)
n , σϕIHϕ)

end

E(s, t) ← ∅
for i← 1 to E(s, t) do

/* Sample community assignment from prior */

π̃
(s, t)
i = MLPθz(ϕ

(s, t)
wi )

z
(s, t)
i ∼ p(z(s, t)i |w(s, t)

i ) = Categorical(Softmax(π̃
(s, t)
i ))

/* Sample linked neighbor from conditional likelihood */

π̂
(s, t)
i = MLPθc(ψ

(s, t)
zi )

c
(s, t)
i ∼ pθc(c

(s, t)
i |z(s, t)i ) = Categorical(Softmax(π̂

(s, t)
i ))

E(s, t) ← E(s, t) ∪ {(w(s, t)
i , c

(s, t)
i )}

end

G(s, t) ← (V, E(s, t))
D ← D ∪ {G(s, t)}

end

end

distributions, which leads to lower variance gradient estimates and faster training as com-
pared to noisy Monte Carlo estimates. Algorithm 2 summarizes all steps of the training
procedure.
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Algorithm 2: DBGDGM training

Input: Common node set V, source nodes from all edges

{w(s, t)
i : i = 1, . . . , E(s, t)}S, Ts, t=1

Hyperparameters: Number of communities K; embedding dimensions Hα, Hϕ, Hψ;
number of layers in NNs Lϕ, Lψ Lz

Initialize: {µ(s), logσ(s)}Ss=1 ← Normal(0,1)
for s← 1 to S do

/* Sample graph embeddings from posterior */

α(s) ∼ qλα(α(s)) = Normal(µ(s), σ(s))
for t← 1 to T do

for k ← 1 to K do
/* Sample community embeddings from posterior */

{µ̃(s, t)
k , σ̃

(s, t)
k } = GRUλψ(ψ

(s, t−1)
k ), ψ

(s, 0)
k = MLPλψ(α

(s))

ψ
(s, t)
k ∼ qλψ(ψ

(s, t)
k |ψ(s, t−1)

k ) = Normal(µ̃
(s, t)
k , σ̃

(s t)
k )

end
for n← 1 to V do

/* Sample node embeddings from posterior */

{µ̂(s, t)
n , σ̂

(s, t)
n } = GRUλϕ(ϕ

(s, t−1)
n ), ϕ

(s, 0)
n = MLPλϕ(α

(s))

ϕ
(s, t)
n ∼ qλϕ(ϕ

(s, t)
n |ϕ(s, t−1)

n ) = Normal(µ̂
(s, t)
n , σ̂

(s t)
n )

end

for i← 1 to E(s, t) do
/* Sample community assignment from posterior */

π
(s, t)
i = MLPλz(ϕ

(s, t)
wi ⊙ ϕ

(s, t)
ci )

z
(s, t)
i ∼ pλz(z

(s, t)
i |w(s, t)

i , c
(s, t)
i ) = Categorical(π

(s, t)
i )

end

end

end
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B.3. Table of notation

Table 2 summarizes the notation used in this paper.

Notation Description

S Number of subjects.
T Number of timepoints.

G(1:S, 1:T ) = {G(s, t)}S, Ts, t=1 Multi-subject dynamic brain graph dataset derived from fMRI.

G(s, t) = (V, E(s, t)) Dynamic brain graph snapshot of the s-th subject at the t-th time-
point.

V = {v1, . . . , vV } Set of common nodes.
V Number of nodes.

E(s,t) ⊆ V × V Edge set.

(w
(s, t)
i , c

(s, t)
i ) Source node and target node of the i-th edge.

E(s, t) Number of edges.

K Number of communities.

α(s) ∈ RNα Subject embedding of dimensionality Hα.

ϕ
(s, t)
n ∈ RHϕ Node embedding of dimensionality Hϕ.

ψ
(s, t)
k ∈ RHψ Community embedding of dimensionality Hψ.

z
(s, t)
i ∈ [1 : K] Edge community assignment.

Ω(s, t) Set of latent variables, i.e., α(s),ϕ(s, t),ψ(s, t), {z(s, t)i }E(s, t)

i=1 ∈ Ω(s, t).

pθ(G(1:S, 1:T ),Ω(1:S, 1:T )) Joint distribution of observed dynamic brain graphs and unob-
served latent variables, i.e., generative model with parameters θ.

qλ(Ω
(1:S, 1:T )|G(1:S, 1:T )) Approximate posterior distribution, i.e., inference network with

parameters λ.
σj Temporal smoothness hyperparameter for j ∈ {ϕ, ψ}.
MLPθ∗(·) Multilayered perception with parameters θ∗.
GRUθ∗(·) Gated recurrent unit with parameters, θ∗
Lθ∗ Number of layers in multilayered perception/ gated recurrent unit

Normal(·, ·) Normal distribution with mean µ(s, t) ∈ Ra and standard deviation
µ(s, t) ∈ Ra≥0

Categorical(·) Categorical distribution with probabilities π(s, t) ∈ ∆j−1 for j ∈
{K, V }

Table 2: Summary of notation.

Appendix C. Neural network implementation

In Table 3, we provide the architecture of all neural network layers used in the implemen-
tation of DBGDGM.
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Network Neural Network Layers (input shape, output shape)

MLPλz = MLPθz Linear Layer 1 (Hϕ,K)
µλα , σλα Embedding Layer 1 (S,Hα), (S,Hα)
GRUλϕ GRU 1 (2 ∗Hϕ, 2 ∗Hϕ)

GRUλψ GRU 1 (2 ∗Hψ, 2 ∗Hψ)

MLPθϕ = MLPλϕ Linear Layer 1 (Hα, Hϕ)

MLPθψ = MLPλψ Linear Layer 1 (Hα, Hψ)

MLPθc Linear Layer 1 (Hψ, V )

Table 3: Summary of neural networks and learnable embeddings used in our implementation
of DBGDGM.

Appendix D. Datasets

To create multi-subject DBG datasets, we use real fMRI scans from the UK Biobank (Sud-
low et al., 2015) and Human Connectome Project (Van Essen et al., 2013). Both data
sources represent well-characterized population cohorts that have undergone standardized
neuroimaging and clinical assessments to ensure high quality.

UK Biobank2 (UKB) The UKB dataset consists of S = 300 resting-rate fMRI scans
(i.e. 3D image of the brain taken over consecutive timepoints) randomly sampled from the
v1.3 January 2017 release ensuring an equal male/female split (i.e. sex balanced) with an
age range of 44− 57 years. The total number of images for each scan is 490 timepoints (6
minutes duration with a repetition time of 0.74s). The dataset is minimally preprocessed
following the pipeline described in Alfaro-Almagro et al. (2018).

Human Connectome Project3 (HCP) The HCP dataset similarly consists of S = 300
sex balanced resting-state fMRI scans randomly sampled from the S1200 release with an
age range of 22 − 35 years. Only images from the first scanning-session using left-right
phase encoding are used. The total number of images for each scan is 1, 200 timepoints (15
minutes duration with a repetition time of 0.72s). The dataset is minimally preprocessed
following the pipeline described in Glasser et al. (2013)

Further preprocessing The fMRI scans from each dataset are further preprocessed to
create DBGs. Firstly, each scan is transformed into a multivariate timeseries of BOLD
signals using the Glasser atlas (Glasser et al., 2016) to average voxels within V = 360 brain
regions. Next, to ensure comparability with UKB, we truncate the length of HCP timeseries
to 490 timepoints. Following the commonly used sliding-window method (Calhoun et al.,
2014), we use Pearson correlation to calculate FC matrices within non-overlapping windows
of length 1 < W ≤ 490 along the temporal dimension. At every window, we create an
edge set of a unweighted and undirected graph with no self-edges by thresholding the top
1 ≤ ϵ < 100 percentile values of the lower triangle of the FC matrix (excluding the principal
diagonal) as connected following Kim et al. (2021). For both datasets, we choose W = 30

2. https://www.ukbiobank.ac.uk
3. https://www.humanconnectome.org
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and ϵ = 5 resulting in T = ⌊490/30⌋ = 16 graph snapshots each with E(s, t) = ⌊(360(360−
1)/2)(5/100)⌋ = 3, 231 edges.

Appendix E. Baselines

We compare DBGDGM against a range of static and dynamic unsupervised graph repre-
sentation learning baseline models, all with publicly available code. In particular, we focus
on baselines that are generative and can quantify uncertainty. We leave comparisons to
popular deterministic baselines such as DynamicTriad (Zhou et al., 2018), DySAT (Sankar
et al., 2020), and DynNode2Vec (Mahdavi et al., 2018) for future work. Furthermore, since
all of the baselines were originally designed to model large single-graph datasets, we had to
adapt each implementation to work with smaller multi-graph datasets.

Variational graph auto encoder4 (VGAE) (Kipf and Welling, 2016b) An extension
of the variational autoencoder (Kingma and Welling, 2013) (VAE) for graph structured
data. Specifically, VGAE uses a graph convolutional network (GCN) (Kipf and Welling,
2016a) to learn a distribution over node embeddings. Originally designed for static graphs,
we train VGAE on each dynamic graph snapshot independently.

Overlapping stochastic block model5 (OSBM) (Mehta et al., 2019) A deep gener-
ative version of the overlapping stochastic block model (Miller et al., 2009). In particular,
OSBM places a stick-breaking prior over the number of communities which allows the model
to automatically infer the optimal number of communities from the data during training.
Similar to VGAE, OSBM uses a GCN to parameterize the distribution over node embed-
dings and is designed for static graphs.

Variational graph RNN6 (VGRNN) (Hajiramezanali et al., 2019) An extension of
VGAE for dynamic graphs. Using a modified graph RNN architecture, VGRNN is able
to learn dependencies between and within changing graph topology over time. Similar
to DBGDGM, the prior distribution over node embeddings is parameterized using hidden
states from previous timepoints.

Evolving latent space model7 (ELSM) (Gupta et al., 2019) A generative model for
dynamic graphs that learns node embeddings and performs community detection. In par-
ticular, node embeddings are initially sampled from a Gaussian mixture model over com-
munities and then evolved over time using an LSTM. Unlike the previous baselines, ELSM
does not use a GNNs to parameterize model distributions.

vGraph8 (VGRAPH) (Sun et al., 2019) Similar to DBGDGM, VGRAPH simultane-
ously learns node embeddings and community assignments by modeling nodes as being
generated from a mixture of communities. The generative process of VGRAPH also re-
lies on edge information. Since VGRAPH only models static graphs, we train it on each
dynamic graph snapshot independently.

4. https://github.com/tkipf/gae
5. https://github.com/nikhil-dce/SBM-meet-GNN
6. https://github.com/VGraphRNN/VGRNN
7. https://github.com/sh-gupta/ELSM
8. https://github.com/fanyun-sun/vGraph

1367

https://github.com/tkipf/gae
https://github.com/nikhil-dce/SBM-meet-GNN
https://github.com/VGraphRNN/VGRNN
https://github.com/sh-gupta/ELSM
https://github.com/fanyun-sun/vGraph


Campbell Spasov Toschi Liò

Common neighbors (CMN) In light of recent work demonstrating that heuristic meth-
ods are able to outperform deep-learning based models on dynamic link prediction tasks (Skard-
ing et al., 2022; Poursafaei et al., 2022), we include our own heuristic-based generative model

baseline. More formally, let π
(t)
vi ∈ [0, 1]V denote a vector of Jaccard index scores for node

v
(t)
i ∈ V with all other nodes v

(t)
j ∈ V for i ̸= j. The Jaccard index between two nodes

v
(t)
i , v

(t)
j ∈ V is defined |Γ(v(t)i ) ∩ Γ(v

(t)
j )|/|Γ(v(t)i ) ∪ Γ(v

(t)
j )| where Γ(v

(t)
i ) denotes the set of

neighbors of node v
(t)
i . We define the probability of node v

(t)
i having a linked neighbor v

(t)
j

at snapshot t as

p(v
(t)
j |v

(t)
i ) = Categorical(π(t−1)

vi ). (15)

This simple generative model captures the intuition that nodes are more likely to form links
if they had common neighbors in a previous snapshot.

Appendix F. Implementation details

Software and hardware All models are developed in Python 3.7 (Python Core Team,
2019) using scikit-learn 1.1.1 (Pedregosa et al., 2011), PyTorch(Paszke et al., 2019), and
numpy 1.1.1 (Harris et al., 2020). Statistical significance tests are carried out using deep-
significance 1.1.1 (Ulmer et al., 2022). Experiments are performed on a Linux server (Debian
5.10.113-1) with a NVIDIA RTX A6000 GPU with 48 GB memory and 16 CPUs.

Training and testing All baselines are implemented as per the original paper and/or
code repository given in Appendix E. For the static graph baselines VGAE, OSBM, VGRAPH
we train on each snapshot independently and use the node and/or community embeddings
at the last training snapshot to make predictions.

Hyperparameter optimization We use model and training hyperparameter values de-
scribed in the original implementation of each baseline as a starting point for tuning on the
validation dataset. Since searching for optional values for each hyperparameter configura-
tion is outside the scope of the paper, we focus mainly on tuning the dimensions of hidden
layers. For DBGDGM, we use a learning rate of 1e-4 with a weight decay of 0. We choose
the number of communities K ∈ {3, 6, 8, 12, 16, 24} based on lowest average validation NLL
(see Figure 4). In the generative model, we fix the temporal smoothness hyperparameters
σϕ = σψ = 0.01. In the inference network, we fix the number of layers for all NNs to
Lϕ = Lψ = Lz = 1. For the Gumbel-softmax reparameterization trick we anneal the soft-
max temperature parameter starting from a maximum of 1 to a minimum of 0.05 at a rate
of 3e-4. Finally, we train all models for 1, 000 epochs using early-stopping with a patience
of 15 based on the lowest validation NLL.

Appendix G. Task description

Graph reconstruction The aim of the graph reconstruction task is to assess each model’s
ability at learning the underlying dynamic brain graph data generating distribution. A
model that has good graph reconstruction ability is able to recreate the complete dynamic
brain graph structure and it’s (statistical) properties as accurately as possible.
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Figure 4: Elbow plot for finding the optimal number of communities K.

For evaluations metrics we use negative-log likelihood (NLL) and mean squared error
(MSE) of the temporal node degree between the ground truth and reconstructed graphs.
More specifically, NLL measures how likely it is that a model has generated the test data,
it is commonly used to evaluate deep generative models (Grover et al., 2019; You et al.,
2018). On the other hand, MSE computes the distance between the temporal node degree
(Nicosia et al., 2013; Bassem, 2019) of ground truth and reconstructed graphs from the test
dataset. We add a definition of the latter metric to the appendices.

Dynamic link prediction The aim of dynamic link prediction is to predict edges between
nodes at one or more future snapshots using graph structure data up to and including the
current snapshot. We use either the node or node and community embeddings from the
last training snap shot to make predictions on all future test snap shots, following (Grover
et al., 2019; You et al., 2018; Nicosia et al., 2013; Bassem, 2019). For each baseline, we
follow the exact link prediction implementation as described in the original papers.

For evaluation metrics use we area under the receiver operative curve (AUROC) and
average precision (AP), both of which are commonly used evaluation metrics for dynamic
link prediction (Gracious et al., 2021). More specifically, AUROC computes the area under
the true-positive rate vs false-positive rate curve for various values of classification threshold.
AP, on the other hand, summarizes the precision-recall curve as the weighted mean of
precisions for various values of classification threshold, with the increase in recall from the
previous threshold used as the weight. For each graph at every test snap shot, we assume
all known edges are true and sample the same number of non-edges as false, as is common
practice (Gracious et al., 2021; Pareja et al., 2020; Hajiramezanali et al., 2019; Poursafaei
et al., 2022). We compute the per snapshot AUROC and AP and report the average. We
do not consider other performance metrics such as accuracy, precision, recall, or F1-score
since they require a proper confidence threshold to be specified which can lead to unfair
comparison across different models (Yang et al., 2015).

Graph classification The aim of graph classification is to predict a label at the graph-
level. In our paper, this label is set to biological sex. For evaluation, since the DBG dataset
is 50-50 male-female balanced, we use accuracy with a classification threshold of 0.5.
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Appendix H. Interpretability analysis

Evidence from fMRI studies suggests complex community structure of brain graphs (Ting
et al., 2020; Martinet et al., 2020a). These communities often correspond to groups of
anatomically neighboring and/or functionally related brain regions that are engaged in
specialized information processing. In order to interpret the community structure learnt by
DBGDGM, for each community we create a community-node score vector ψ̄k ∈ [0, 1]N by
averaging sampled community embeddings over subjects and timepoints following

ψ̄k =
1

ST

S∑
s=1

T∑
t=1

Softmax
(
MLPλc(ψ

(s, t)
k )

)
(16)

and keep the top 10% highest scoring nodes. We use these thresholded nodes to calculate the
proportion of overlap between each community and known functional connectivity networks
(FCNs) from Ji et al. (2019). More specifically, the colored sections for each community in
Figure 3 represent the proportion of nodes in each community which belong to a FCN.

Abbreviation Functional network

AUD Auditory network
CON Cingulo-opercular network
DAN Dorsal-attention network
DMN Default mode network
FPN Frontoparietal network
LAN Language network
ORA Orbito-affective network
PMM Posterior-multimodal network
SMN Somatomotor network
VIS1 Visual network 1
VIS2 Visual network 2
VMM Ventral-multimodal network

Table 4: Functional connectivity networks (FCNs) from Ji et al. (2019).

Appendix I. Training time and parameter count

In Table 5, we provide the parameter counts, multiply–accumulate (MAC) operations and
time per epoch for all models evaluated on the HCP dataset. We use the DeepSpeed
library9 to obtain the parameter count, MACs, and time taken to train for one epoch. We
observe that DBGDGM is the fastest dynamic method to train and second fastest across
all baselines. In addition, we observe that our method has the lowest MACs in a forward
pass. On the other hand, DBGDGM has the highest number of parameters.

9. https://github.com/microsoft/DeepSpeed

1370

https://github.com/microsoft/DeepSpeed


DBGDGM: Dynamic Brain Graph Deep Generative Model

Model Dynamic Complexity Computation Time

VGAE ✗ 50.34 k 10.79 GMACs 468.47 s
VGRNN ✓ 253.89 k 53.69 GMACs 586.43 s
ELSM ✓ 905.25 k 702.54 MMACs 508.89 s
OSBM ✗ 52.40 k 10.09 GMACs 369.91 s
VGRAPH ✗ 94.58 k 47.30 GMACs 906.88 s
DBGDGM ✓ 6.70 m 6.20 GMACs 425.00 s

Table 5: Parameter count, MACs in a forward pass and time per epoch for all models.
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