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Abstract

Breast cancer is the most commonly diagnosed cancer in the world. The use of artificial
intelligence (AI) to help diagnose the disease from digital pathology images has the potential
to greatly improve patient outcomes. However, methods for training these models for
detecting, segmenting, and subtyping breast neoplasms and other proliferative lesions often
rely on costly and time-consuming manual annotation, which can be infeasible for large-
scale datasets. In this work, we propose a weakly supervised learning framework to jointly
detect, segment, and subtype breast neoplasms. Our approach leverages top-k multiple
instance learning to train an initial neoplasm detection backbone network from weakly-
labeled whole slide images, which is then used to automatically generate pixel-level pseudo-
labels for whole slides. A second network is trained using these pseudo-labels, and slide-level
classification is performed by training an aggregator network that fuses the embeddings
from both backbone networks. We trained and validated our framework on large-scale
datasets with more than 125k whole slide images and demonstrate its effectiveness on
tasks including breast neoplasms detection, segmentation, and subtyping.
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1. Introduction

Breast cancer has surpassed lung cancer as the most commonly diagnosed cancer world-
wide, with 2.26 million new cases in 2020 (Ferlay et al., 2021). Early detection and accurate
diagnosis is crucial for determining an optimal treatment strategy and improving patient
outcomes. Medical institutions have only recently begun the transition from microscopes to
digital pathology workflows using high-resolution whole-slide images (WSIs), which intro-
duces tremendous opportunity to incorporate modern AI methods to more thoroughly and
systematically help detect cancer, provide segmentation masks to aid in interpretation, and
subtyping the detected cancer regions to aid in treatment decision-making (Madabhushi and
Lee, 2016; Srinidhi et al., 2021; Tizhoosh and Pantanowitz, 2018). Training AI algorithms
for digital pathology is challenging due to the large size of WSIs and limited availability
of ground truth data. To accommodate large image dimensions and keep GPU memory
usage tractable, digital pathology AI systems generally break WSIs into small tiles and ag-
gregate tile information for slide-level predictions (Campanella et al., 2019; Lu et al., 2021;
Li et al., 2021). The ground truth data is often only available as a summary diagnostic at
the case or specimen level, making it labor-intensive and expensive to create pixel or object
level ground truth at an industrial scale. Most studies in the field have only focused on
small-scale datasets such as (Litjens et al., 2018; Zuley et al., 2016), which may not reflect
the complexity and variability of real-world distributions, making it difficult to determine
the effectiveness of algorithmic differences when large-scale datasets are available. To ad-
dress these challenges, a framework is needed to leverage weak ground truth extracted from
clinical diagnostic reports to scale training and evaluation to these large-scale datasets.

Contribution: In this paper, we propose a joint breast cancer detection, segmentation,
and subtyping framework that only relies on clinical diagnostic reports for training, and
does not require additional manual annotation. Our approach decomposes the system
training into 3 stages. In stage 1, it uses top-k multiple instance learning (Campanella
et al., 2019) to train an initial neoplasm detection backbone network, which is then used
to generate pseudo-labels for regions of interest. In stage 2, a second network is trained
to subtype the image regions at a coarse granularity using pseudo-labels. In stage 3, slide-
level classifications are obtained by a per-slide aggregator network that fuses the embeddings
from the stage 1 and 2 networks. Our method is trained and validated using 125k+ H&E
WSIs. Segmentation performance is evaluated using 105 WSIs exhaustively labeled with
different cancer subtypes by expert pathologists. Additionally, we compute the RoI-level
classification accuracy on the BRACS dataset (Brancati et al., 2021) without finetuning.
We further evaluate the specimen level neoplasm detection performance on 7k+ slides and
investigate different options of obtaining the WSI-level prediction results.

2. Related work

There have been many pioneering studies that have explored the use of deep learning systems
on breast hematoxylin and eosin (H&E) WSIs (Chan et al., 2023). For example, in Cruz-Roa
et al. (2017), a convolutional neural network (CNN) was employed for detecting invasive
tumors on WSIs. Similarly, Gandomkar et al. (2018); Mi et al. (2021) used a deep network
to classify WSIs as benign or cancerous, and then further categorized cancer cases into
subtypes. Le et al. (2020) employed deep CNNs to quantitatively assess tumor and tumor-
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Figure 1: The overview of the proposed framework.

infiltrating lymphocytes, and Wang et al. (2022) explored the use of deep learning models
to directly assist in the histological grading of breast cancer. These studies demonstrate
the potential of utilizing deep learning techniques to improve the diagnostic accuracy and
efficiency of breast cancer detection and analysis. Pati et al. (2022) explored using a hybrid
graph network to classify the breast neoplasm into fine-grained subtypes and evaluated
on the BACH (Aresta et al., 2019) and BRACS datasets (Brancati et al., 2021). A few
studies have employed pseudo-labeling techniques, similar to those used in our study to
map diagnosis reports to pixel-level ground truth for prostate cancer grading (Bulten et al.,
2020; Marini et al., 2021; Silva-Rodriguez et al., 2021). These methods generally assigned the
pure prostate grading labels, e.g., 3+3, to all the regions with detected cancer. Besides the
analogy between prostate cancer grading and breast neoplasm sub-typing, it is challenging
to confirm pure breast slides with only one subtype of breast neoplasm based on the clinical
reports since less severe findings are often intentionally omitted by the pathologist. We
adopted the pseudo-labeling to breast neoplasm subtyping by (1) automatically separating
the invasive cancer regions with the rest (2) merging the in-situ and atypia neoplasms
to mitigate the impact of the label noise. In Marini et al. (2022), authors attempted to
generate weak WSI-labels from free-text clinical reports. Recent studies (Li et al., 2021;
van Rijthoven et al., 2021; Sandbank et al., 2022; Hashimoto et al., 2020; Karimi et al.,
2020) have begun to investigate the use of multi-resolution inputs for convolutional neural
networks (CNNs) in digital pathology analysis. This approach enables the CNN to capture
both fine-grained details at high resolution and contextual information at lower resolutions.
Additionally, in Chen et al. (2022), the authors expanded the receptive field of tile networks
with a hierarchical vision transformer trained with self-supervised learning.

3. Methods

Our proposed framework consists of three successive networks shown in Figure 1. The
first CNN is trained using a top-k MIL framework (Campanella et al., 2019) on specimen
level labels to detect neoplasm tiles in slides. Although MIL algorithms perform well on
slide-level subtyping, it is challenging to obtain multi-class mutually exclusive segmenta-
tion. This is because MIL algorithms are trained explicitly to make slide-level predictions
whereas obtaining multi-class mutually exclusive segmentation requires tile-level multi-class
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predictions. In the second stage of training, we therefore train a network using the tile-level
ground truth generated by the pseudo-labelling technique. For pseudo-labelling, the top-k
MIL trained CNN is used for selecting training tiles for subtyping, which are assigned to the
same slide-level labels. In practice, we observe it sometimes requires a much larger spatial
context than that needed for cancer detection to distinguish certain types of breast neo-
plasms, e.g., high-grade DCIS vs. invasive cancer, and we therefore train a multi-resolution
CNN on these tiles using the pseudo-labels. To fuse information from both CNNs to pro-
duce the final slide-level predictions, we use an attention-based aggregator network that
take the embeddings from both CNNs as inputs. The ground truth used in this study was
automatically parsed from the clinical diagnosis reports, containing 6 common breast neo-
plasms at a specimen level: Invasive breast carcinoma of no special type (previously known
as invasive ductal carcinoma or IDC), Invasive lobular carcinoma (ILC), Ductal carcinoma
in situ (DCIS), Lobular carcinoma in situ (LCIS), Atypical ductal hyperplasia (ADH), and
Atypical lobular hyperplasia (ALH) (Lakhani et al., 2012). The specimen is labeled as
benign if none of the 6 subtypes or other rare cancer types were reported.

3.1. Breast Neoplasm Detection Trained with Otsu Top-k MIL

We first train a SE-ResNet-50 (Hu et al., 2019) using a top-k multiple instance learning
(MIL) strategy based on Campanella et al. (2019) to detect non-benign tiles in a slide.
The foreground regions of the WSI are extracted using an HSV filter with fixed HSV ranges
tuned for non-fat breast tissues in H&E WSIs. At the start of each training epoch, the CNN
first scores each foreground tile extracted at 0.5 µm / pixel (MPP), 20X in general, with
the cancer subtype presence probabilities with sigmoid outputs. For each training step, the
CNN weights are only updated using the top k highest ranked instances for each neoplasm
subtype. Though the tile-wise ground truth labels for the non-benign slides can be noisy,
the top k tiles picked by CNN on benign slides are reliable. The optimization is thus mainly
driven by the benign slides and was shown to be effective when training with large-scale
datasets (Campanella et al., 2019). To adapt to lesions of varying sizes, instead of using
a fixed k value in Campanella et al. (2019), we used the Otsu’s method (Otsu, 1979) on
the tile predictions to dynamically choose the k for each slide while setting a maximum cap
kmax = 400 fixed in our experiments. After training, an approximated segmentation map
can be generated for each subtype by thresholding the network sigmoidal outputs.

3.2. Breast Neoplasm Subtyping trained with Pseudo-Labeling

The top-k MIL CNN described above does not enforce mutually exclusive scores for breast
neoplasm subtypes. To address this, we train a second CNN specialized in subtyping the
neoplasm tiles detected by the detection CNN. We use pseudo-labelling to generate ground
truth labels for slide tiles. For invasive cancer specimens, we assume the tiles covered by the
invasive cancer segmentation, obtained from the top-k MIL network, all belong to the same
invasive cancer subtype. (2) for non-invasive cancer specimens which were diagnosed to have
either atypia or in-situ neoplasm, we assume all the regions underneath the breast neoplasm
segmentation belong to either ADH / DCIS or ALH / LCIS. In clinical reports, pathologists
will often omit reporting atypical findings when a more severe diagnosis is present. Thus,
we merged the in situ and atypia subtypes and formulated breast subtyping as a 4-class

21



Casson et al.

classification problem involving IDC, ILC, DCIS/ADH, or LCIS/ALH. For this training
phase, we exclude benign slides and slides having both ductal and lobular neoplasms. The
subtyping CNN is then trained to predict the mutually exclusive probabilities that a tile
center resides in one of four neoplasm subtypes.

It is important to consider larger contexts in breast neoplasm subtyping, since patholo-
gists often toggle between magnifications to check the lesions boundaries and other macro-
scale morphological patterns for breast cancer diagnosis. To address this issue, we use a
multi-resolution CNN network, as illustrated in Figure 1. Each training instance contains
multiple tiles of different sizes sharing the same tile center, which are then rescaled to the
same size. Each tile is processed separately by a SE-ResNet-50. In our experiments, the
multi-scale CNNs do not have shared weights. The resulting embeddings are treated as to-
kens and fused by a small transformer network with fixed positional encoding (PE) (Vaswani
et al., 2017). The network output is a softmax function, assuming that the tile center class
labels are mutually exclusive. 2D coarse-grained subtype labelmaps can be derived from the
network outputs using argmax of the tile-level subtype probabilities. Though the multi-res
CNN takes more compute than single-res CNN to process each individual tile, only the
detected neoplasm tiles are fed into it during both training and inference.

3.3. Attention based aggregator for slide-level prediction

Given that the detection and subtyping backbone networks can each provide feature em-
beddings for WSI tiles, we use an aggregator network to fuse the embeddings and obtain the
final slide-level predictions. Since the presence of each neoplasm is not mutually exclusive
at slide-level by nature, the network outputs a binary prediction for each class. We explored
two approaches: (1) training an aggregator network using only the tile embedding from the
detection network; (2) or training an aggregator network to fuse the tile embeddings from
both the detection and subtyping networks. For the latter, we only extract subtyping em-
beddings on tiles detected with breast neoplasm to avoid tiles that are out-of-distribution
for the subtyping network. When there is no neoplasm detected, a zero vector is used as
a placeholder. We use all tissue tiles for extracting detection embeddings. Section 5.3 de-
tails the network architecture choices. The slide-level outputs are activated with a sigmoid
function. To map the slide-level predictions to the specimen level ground truth, we take
the maxpool of the sigmoid outputs across all the slides in the same specimen.

4. Data

We used a dataset of over 125k WSIs with mixed biopsies and excision specimens, which
were acquired from the Memorial Sloan Kettering Cancer Center as described in Table 1.
The majority of the slides were scanned using Leica AT2 and GT450 scanners. Sequen-
tial cases were deidentified and randomly sampled to represent a natural patient popula-
tion. The train and validation splits were created at specimen level with random sampling
therefore sharing a similar distribution. The specimen ground truth labels were obtained
by automatically parsing the diagnostic reports. The validation set was used for hyper-
parameter tuning and model selection. We reserved 2000 specimens for the test set used for
performance reporting. We randomly sampled 188 slides from the non-benign test slides
that were exhaustively annotated by board certified pathologists with labelled polygons
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Table 1: The summary of the in-house dataset used in this study showing number of slides
and specimens. We also break down the number of specimens for neoplasm subtypes and
benign according to the clinical diagnosis.

Split Slides Specimens IDC ILC DCIS LCIS ADH ALH Benign

Train 93369 44683 5209 905 9724 2968 3245 2812 28262
Validation 24020 7235 813 154 1542 432 508 429 4655

Test 7989 2000 272 51 453 151 147 151 1222

Total 125378 53918 6294 1110 11719 3551 3900 3392 34139

to analyze segmentation performance. We reserved 83 slides as a tuning set for operating
point selection and 105 slides for evaluation. For external evaluation of RoI based breast
subtyping without finetuning, we used the entire BRACS dataset (Brancati et al., 2021).

5. Results

5.1. Breast Neoplasm Localization
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Figure 2: The plots of pixel-wise dice, recall and precision of the cancer segmentation
including all breast neoplasms (S1 All) or only the invasive cancer areas (S1 Inv. and S2
Inv.). All the dice scores are plotted with the tumor size on the right.

To evaluate the localization of all breast neoplasm detection and invasive breast cancer,
we obtained the all neoplasm and invasive segmentation masks from the backbone networks
as described in Section 3.1 and Section 3.2. The invasive breast cancer segmentation can be
obtained from either the detection or subtyping network. In Figure 2, we show the box plots
of per-slide dice, recall and precision of 105 test WSIs. In summary, the invasive cancer
segmentation (S2 Inv.) from the sub-typing network has better average dice (0.66 ± 0.24)
than the invasive cancer segmentation (S1 Inv.) from the detection backbone (0.56± 0.30).
It also surpassed the dice scores (0.56 ± 0.30) of the all neoplasm segmentations (S1 All)
from the detection network, although the areas of invasive cancer are larger. As also noted
in Reinke et al. (2022), we also show that larger tumors tend to have higher dice scores in
general on the right of Figure 2.
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Table 2: Ablative analysis for the components of the breast neoplasm subtyping network.

Architecture MPP=0.5 MPP=2.0 MPP=4.0 MPP=10.0 Positional Enc. Tile-Wise Accuracy

SE-ResNet-50×1 ✓ ✗ ✗ ✗ ✓ 0.74
SE-ResNet-50×2 ✓ ✓ ✗ ✗ ✓ 0.78
SE-ResNet-50×3 ✓ ✓ ✓ ✗ ✓ 0.77
SE-ResNet-50×4 ✓ ✓ ✓ ✓ ✗ 0.79
SE-ResNet-50×4 ✓ ✓ ✓ ✓ ✓ 0.81

ACC=1.00

Annotation

ACC=0.96

MPP=0.5+2.0+4.0+10.0

ACC=0.85

MPP=0.5+2.0

ACC=0.64

MPP=0.5WSI Cropped 
Thumbnail

Groundtruth: DCIS

Figure 3: Visual examples showing a WSI crop where adding more contexts progressively
improved the tile-wise subtyping tile-wise accuracy (ACC). Different colors in the segmen-
tation labelmaps indicate different breast neoplasm subtype categories.

5.2. Breast Neoplasm Subtyping

An ablative analysis was performed on 105 annotated slides with mixed breast neoplasm
subtypes to investigate the contributions of different components of the proposed neoplasm
sub-typing network as shown in Table 2. Since the neoplasm region areas vary within and
between WSIs, we computed the tile-wise classification accuracy (ACC) within each slide
and averaged it among the whole dataset as the performance indicator. By adding larger
contexts, we observed an increase of ACC from 0.74 to 0.81 except adding MPP = 4.0 on
top of higher resolutions did not show improvement. By removing the position encoding,
which provides the ordering of resolutions to the resolution fusion transformer, we noticed
the accuracy dropped from 0.81 to 0.79. As shown in Table 3, we also benchmarked the
subtyping network on both the test splits and the entire BRACS dataset (Brancati et al.,
2021) without finetuning. The required context size 10 × 10µm2 is mostly larger than the

Table 3: The F1 scores computed on the the BRACS dataset RoIs. Please note that the
fine-grained subtyping results from Pati et al. (2022) are not directly comparable to ours.

Split Network Training method Normal Benign Atypia In-Situ Invasive

Test CNN 0.5 mpp (Pati et al., 2022) Fully Supervised 0.420 0.423 0.227 0.503 0.770
Test MS-CNN 1.0+0.5+0.25 mpp (Pati et al., 2022) Fully Supervised 0.503 0.443 0.317 0.573 0.860
Test HACT-Net (Pati et al., 2022) Fully Supervised 0.615 0.474 0.404 0.664 0.884

All MS-CNN 10.0+4.0+2.0+0.5 mpp Weakly supervised 0.876 0.685 0.731
Test MS-CNN 10.0+4.0+2.0+0.5 mpp Weakly supervised 0.902 0.528 0.826
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annotated BRACS RoIs. To predict the RoI classification labels, we located each RoI in
the corresponding WSI and extracted the context window needed by our network at the
center of the previous RoI. If the RoI is not within the cancer detection segmentation, it
is then classified as Normal / Benign. We quoted the F1 scores from Table 5 of Pati et al.
(2022) as reference. Though we had a slightly different label grouping setup compared to
Pati et al. (2022), the F1 scores of Invasive cancers can be directly compared. On the
test set, though our proposed network was trained with weakly supervised pseudo-labelling
without being finetuned on the BRACS training data, it reached an F1 score of 0.826, which
is higher than fully supervised single-scale CNN (0.77) and lower than a fully supervised
multi-scale CNN (0.86). In Pati et al. (2022), the hybrid nuclei graph network based HACT-
Net achieved a higher F1 score (0.884) than the image CNN based methods. Within the
same 3-stage framework, it would be interesting to explore the feasibility of training similar
graph-network based architectures using the proposed large-scaled pseudo-labeling in our
future work. Though not directly comparable, we provide fine-grained subtyping numbers
from Pati et al. (2022) for reference. The proposed framework achieved a high F1 score
(0.902) for the Normal / Benign because our framework decomposes the tile classification
problem into detection and subtyping separately.

5.3. Breast Neoplasm Detection

Specimen level AUC scores for detecting each breast neoplasm subtype are given in Table 4.
As a baseline, we take the maximum tile scores from the detection network to represent
the specimen level prediction (Maxpool MIL). With the tile embedding from the detection
network only, we studied the attention-based MIL aggregators similar to Attention MIL
(Ilse et al., 2018) and DSMIL (Li et al., 2021). As shown in Figure 5, we also evaluated
aggregator architectures to fuse the tile embedding from both the detection and subtyping
networks. In each architecture, the outputs of the attention branches are concatenated and
then fed into the output layer. For DSMIL architectures we experimented with the source of
the critical instances used as the query vectors in the attention layers. The critical instances
are determined by selecting the tiles with the highest probability for each class. We tried
three approaches: (1) using the detection embeddings to determine critical instances where
the selected embeddings would then be used as the query vectors for attention on both
the detection and subtyping embeddings; (2) using the subtyping embeddings in the same
manner; (3) using both detection and subtyping embeddings to select two sets of critical
instances to be used independently in their own attention layers. We notice an improvement
in AUC compared to the Maxpool MIL baseline for all aggregators, except in benign AUC,
with the largest improvement seen in ADH (0.896 vs 0.951). The performance on invasive
carcinomas is similar between the two overall approaches (≥0.983 AUC for all learned
aggregators), however we found that inclusion of the subtyping embeddings can improve
AUC on the non-invasive lesions, specifically ADH (0.951), DCIS (0.982), and LCIS (0.965).

6. Conclusion

Here, we proposed a framework for jointly detecting, segmenting, and subtyping breast
neoplasms, which requires no manual annotation for training. We trained and validated the
framework using over 125k WSIs. Our subtyping network improved the segmentation of
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Table 4: The specimen level detection AUCs for each breast neoplasm subtype.

Name ADH ALH DCIS LCIS IDC ILC Inv. Benign Inv. vs. Other

Positive 147 151 453 151 272 51 387 1206 387
Total 1617 1553 1950 1695 1931 1931 2000 2000 794

Detection Embedding

Maxpool MIL 0.896 0.946 0.951 0.932 0.976 0.971 0.976 0.986 0.945
Attention MIL 0.950 0.969 0.980 0.962 0.986 0.994 0.984 0.984 0.962
DSMIL (Li et al., 2021) 0.943 0.965 0.978 0.963 0.985 0.989 0.983 0.982 0.958
CLAM (Lu et al., 2021) 0.950 0.968 0.977 0.959 0.982 0.994 0.981 0.984 0.952

Detection Embedding + Subtyping Embedding

Attention MIL 0.951 0.966 0.982 0.961 0.984 0.992 0.983 0.984 0.955
DSMIL (cross attention 1) 0.938 0.962 0.978 0.965 0.986 0.994 0.984 0.979 0.961
DSMIL (cross attention 2) 0.941 0.959 0.973 0.952 0.985 0.993 0.984 0.981 0.963
DSMIL (separate attention) 0.950 0.965 0.982 0.959 0.984 0.994 0.983 0.983 0.956

invasive cancer regions and using a multi-resolution network improved tile-level cancer clas-
sification accuracy. Without training with any manual pixel-level annotations, our weakly
supervised subtyping network achieved F1 scores on-par with fully supervised CNNs trained
with slides collected from unseen data sources. We evaluated slide-level detection AUCs
using different aggregator architectures, observing an improvement over using the detection
network alone.
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Guilherme Aresta, Teresa Araújo, Scotty Kwok, Sai Saketh Chennamsetty, Mohammed
Safwan, Varghese Alex, Bahram Marami, Marcel Prastawa, Monica Chan, Michael Dono-
van, Gerardo Fernandez, Jack Zeineh, Matthias Kohl, Christoph Walz, Florian Ludwig,
Stefan Braunewell, Maximilian Baust, Quoc Dang Vu, Minh Nguyen Nhat To, Eal Kim,
Jin Tae Kwak, Sameh Galal, Veronica Sanchez-Freire, Nadia Brancati, Maria Frucci,
Daniel Riccio, Yaqi Wang, Lingling Sun, Kaiqiang Ma, Jiannan Fang, Ismael Kone, Lah-
sen Boulmane, Aurélio Campilho, Catarina Eloy, António Polónia, and Paulo Aguiar.
BACH: Grand challenge on breast cancer histology images. 56:122–139, 2019. ISSN
1361-8415. doi: 10.1016/j.media.2019.05.010. URL https://www.sciencedirect.com/

science/article/pii/S1361841518307941.

Nadia Brancati, Anna Maria Anniciello, Pushpak Pati, Daniel Riccio, Giosuè Scog-
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Anna Maria Anniciello, Giosue Scognamiglio, Nadia Brancati, Maryse Fiche, Estelle
Dubruc, Daniel Riccio, Maurizio Di Bonito, Giuseppe De Pietro, Gerardo Botti, Jean-
Philippe Thiran, Maria Frucci, Orcun Goksel, and Maria Gabrani. Hierarchical graph
representations in digital pathology. 75:102264, 2022. ISSN 1361-8415. doi: 10.1016/
j.media.2021.102264. URL https://www.sciencedirect.com/science/article/pii/

S1361841521003091.

Annika Reinke, Matthias Eisenmann, Minu Dietlinde Tizabi, Carole H. Sudre, Tim Rädsch,
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Appendix A. Network architectures

A.1. Detection network

For the SE-ResNet-50 (Hu et al., 2019) detetion network used in Section 3.1, we change the
last convolutional layer to output 512 channels instead of the original 2048 with a projection
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layer. The final SE block was also modified to retain the constant reduction ratio of r = 16
throughout the network. Lastly, we replaced the final global averaging pooling layer with
max pooling.

A.2. Subtyping network

MPP=0.5 MPP=2.0 MPP=4.0 MPP=10.0

Se-Res50 Se-Res50

Resolution Fusion Transformer

Tile center 
softmax Outputs

Se-Res50 Se-Res50

Figure 4: Illustration of the multi-res backbone architecture.

We use four separate SE-ResNet-50 networks, one for each magnification level, to extract
features of size 2048. These networks follow the original SE-ResNet-50 implementation
without the modifications used in the detection network. We use a standard Transformer
network (Vaswani et al., 2017) with 3 encoder layers. We create the classifier input by
flattening the output of the Transformer to obtain a single embedding of size 8192.

A.3. DSMIL variants

critical instances

concat

critical instances

concat

critical instances

concat

critical instances

Detection network
embeddings

concat

Subtyping network
embeddings

Attention Attention Attention Attention Attention Attention Attention Attention

Figure 5: Architectures for fusing detection and subtyping embeddings. From left to right:
1) attention MIL, 2) DSMIL with detection embeddings as critical instances, 3) DSMIL with
subtyping embeddings as critical instances, and 4) DSMIL with separate critical instances.

The DSMIL architecture used only the detection embedding follows the architecture
described in (Li et al., 2021). The modified architecture variants that use both detection
and subtyping embedding are presented below.

Let xd ∈ RT×512 be our 512-dimensional detection embedding for all T tissue tiles, and
let xs ∈ RN×8192 be the 8192-dimensional subtyping embeddings for all N tiles predicted to
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be neoplastic by the detection network. For the first variant, we use the detection embedding
for critical instance selection. The detection embedding are fed through a linear layer with
7 output units corresponding to the classes ADH, ALH, DCIS, LCIS, IDC, ILC, and all
invasive, i.e.,

i = σ(Wixd), (1)

where σ is the logistic sigmoid function. The output of this branch is connected to a
binary cross entropy loss for optimizing tile-level predictions. Max-pooling the tile-level
probabilities leads to selecting the embedding with the highest probability for each class
which are considered the critical instances c such that c ⊆ x. The critical instances are then
used as queries in scaled dot product attention with the full set of detection embedding and
subtyping embedding in separate attention heads:

qd = tanh(Wa(relu(Wec))

kd = tanh(Warelu(Wexd))

vd = Wvxd

zd = softmax(
qdk

T
d√

dkd
)vd

qs = tanh(Wa(relu(Wcc))

ks = tanh(Warelu(Wexs))

vs = Wvxs

zs = softmax(
qsk

T
s√

dks
)vs

where despite the shared notation for the weight matrices, the weights are not shared
between the attention heads. For all models we set Wa to have 64 output units and all other
weight matrices are square except for the output layers. The slide-level class predictions
are obtained by concatenating the output of the attention followed by a linear layer and a
sigmoid function:

b = σ(Wb[zd; zs]). (2)

For the second variant, where we use the subtyping embedding for critical instances, the
roles of xd and xs would simply be swapped in the notation above. The third version of
the network uses both detection and subtyping embedding to compute two sets of critical
instances which requires calculating two set of tile-level predictions:

id = σ(Widxd)

is = σ(Wisxs)
(3)

where we max-pool with respect to each class to select the critical instances in each source
of embedding cd and cs such that cd ⊆ xd and cs ⊆ xs. The critical instances are the
queries for independent attention heads along with their respective source embedding. The
output of the network follows Equation (2). We also apply dropout (p = 0.25) to the value
vectors in the attention heads and on the concatenated attention head outputs as well.

Appendix B. Optimization details

B.1. Detection network

The model was trained for 20 epochs. The training dataset consisted of 938 million unique
tiles of size 224× 224 taken from the 20× magnification level (0.5 µm/px) of the WSIs. We
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applied random image augmentations to the tiles including rotations, vertical/horizontal
flips, color-jittering, sharpening, blurring, and contrast stretching. We used Adam optimizer
(Kingma and Ba, 2017), learning rate of 4e-5, and effective batch size of 1536.

B.2. Subtyping network

We applied random image augmentations to the tiles including vertical/horizontal flips,
color-jittering, sharpening, and contrast stretching. We used Adam optimizer (Kingma and
Ba, 2017), learning rate of 1e-5, and effective batch size of 128.

B.3. Aggregators

The labels for our dataset were parsed from clinical diagnosis reports which summarize
findings at the specimen level. Due to this, along with memory constraints caused by the
large-scale nature of breast WSIs, we used a two-pass training algorithm. We first make
a forward pass without gradients, over all slides in a given specimen. We then take the
slide with the highest probability as the representative slide for the specimen and compute
a second forward pass with gradients computed. All aggregator models were trained using
AdamW optimizer (Loshchilov and Hutter, 2019), learning rate of 5e-4, and per-device batch
size of 1 with gradient accumulation tuned according the number of devices to achieve a
consistent effective batch size of 32. We used early stopping monitoring the validation loss.

Appendix C. Example Breast Neoplasm Segmentation Visualizations

In accompaniment to Figure 2, which presents the localization numbers for breast neoplasm
and invasive cancer segmentation, we provide a visual demonstration of the framework’s
performance through examples. Figure 6 depict cases where the framework achieved a Dice
score higher than 0.8, indicating successful capture of the entire annotated region with
minimal false positives. However, as seen in Figure 7 and Figure 8, the framework can also
exhibit typical error modes, such as missing small cancer regions or over-segmentation of
the biopsy site changes, which often leads to false positives.

To further illustrate the capabilities of the framework, we present two examples of
invasive cancer segmentation in Figure 9 and Figure 10. These examples demonstrate the
difference between the segmentation obtained from the detection network (S1 Inv.) and
that obtained from the subtyping network (S2 Inv.). Through this comparison, it becomes
evident that the subtyping network is able to improve both the sensitivity and specificity
of the invasive cancer segmentation, as observed in our results. To reflect average results,
we also show randomly selected segmentation examples in Figure 11 for breast neoplasm
segmentation and Figure 12 for invasive cancer segmentation.
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Predicted with Dice=0.87

Predicted with Dice=0.93

WSI Thumbnail Groundtruth

GroundtruthWSI Thumbnail

Figure 6: Example breast neoplasm segmentation with high dice scores.

Predicted with Dice=0.00WSI Thumbnail Zoomed WSI Groundtruth

Figure 7: The only occurrence of a breast neoplasm segmentation with 0 dice score in our
results, which likely occurred due to the small size of the cancer region.

Predicted with Dice=0.18WSI Thumbnail Zoomed WSI Groundtruth

Figure 8: Example breast neoplasm segmentation with 0.18 dice score. The network over-
segmented with biopsy site.
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S1 Inv. Dice=0.72 S2 Inv. Dice=0.88WSI Thumbnail Groundtruth

Figure 9: Example of invasive cancer segmentation where the invasive cancer segmentation
generated from the subtyping network (S2 Inv.) has higher sensitivity and dice score com-
pared to the one obtained from the detection network (S1 Inv.).

S1 Inv. Dice=0.72 S2 Inv. Dice=0.83WSI Thumbnail Groundtruth

Figure 10: Example of invasive cancer segmentation where the invasive cancer segmentation
generated from the subtyping network has less false positives.
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WSI Thumbnail Groundtruth Predicted with Dice=0.78

WSI Thumbnail Groundtruth Predicted with Dice=0.95

WSI Thumbnail Groundtruth Predicted with Dice=0.84

WSI Thumbnail Groundtruth Predicted with Dice=0.53

WSI Thumbnail Groundtruth Predicted with Dice=0.31

Figure 11: Randomly sampled examples of breast neoplasm segmentation.
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WSI Thumbnail Groundtruth Predicted with Dice=0.90

WSI Thumbnail Groundtruth Predicted with Dice=0.75

WSI Thumbnail Groundtruth Predicted with Dice=0.49

WSI Thumbnail Groundtruth Predicted with Dice=0.88

WSI Thumbnail Groundtruth Predicted with Dice=0.87

Figure 12: Randomly sampled examples of breast neoplasm segmentation.
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