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Abstract

The image quality of coronary CT angiography (CCTA) is important for the correct di-
agnosis of patients with suspected coronary artery disease, which is heavily influenced by
image acquisition. Timing of the contrast media injection specifically influences the level
of arterial enhancement, and it is aimed to allow optimal assessment of the coronary artery
morphology. However, a consensus on an optimal acquisition protocol that can account for
the large variety in patient cohorts has not been reached, commonly resulting in suboptimal
arterial enhancement. In this work, we propose a generative adversarial network for the
retrospective correction of contrast media attenuation in CCTA, thus reducing the depen-
dency on an optimal timing protocol at acquisition. We develop and evaluate the method
in a set of 1,179 CCTA scans with varying levels of contrast enhancement. We evaluate the
consistency of intensity values in the coronary arteries and evaluate performance of coronary
centerline extraction as a commonly performed analysis task. Results show that correction
of contrast media attenuation values in CCTA scans is feasible, and that it improves the
performance of automatic centerline extraction. The method may allow improved analysis
of coronary arteries in CCTA scans with suboptimal contrast enhancement.

Keywords: Contrast media timing, coronary attenuation, coronary CT angiography, deep
learning, generative adversarial networks

1. Introduction

Coronary CT angiography (CCTA) is an effective modality for the non-invasive diagnosis
of (suspected) coronary artery disease (Hoffmann et al., 2012; Mortensen et al., 2020).
Through contrast enhancement it visualizes the coronary artery lumen, and allows for the
evaluation of arterial stenosis and atherosclerotic plaque. These are important for patient
management (Cury et al., 2016). However, clinical assessment of CCTA scans heavily relies
on scan quality, which is affected by a number of factors, including timing of contrast
media injection, cardiac motion, and blooming artifacts (Dey et al., 2008). Insufficient
arterial enhancement (≤ 300 Hounsfield Units (HU)) typically leads to unreliable and often
overestimated evaluation of the stenosis degree (Cademartiri et al., 2006, 2008). Conversely,
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elevated levels of coronary enhancement (i.e. ≥ 500 HU) may cause beam hardening and
partial volume effects, resulting in an underestimation of stenosis degree (Horiguchi et al.,
2007; Fei et al., 2008). Ideally, for the analysis of coronary arteries a contrast medium
injection protocol should always result in coronary artery attenuation values approaching
400 HU. Consistency in contrast enhancement of the coronary arteries in CCTA scans
depends on the chosen image acquisition protocol. Several contrast media injection protocols
optimizing coronary enhancement were proposed (Fleischmann, 2010; Kawaguchi et al.,
2014; Sandfort et al., 2020), but they may be limited in accounting for differences in patient
cohort characteristics.

As an alternative to the optimization during image acquisition, recent advances in deep
learning have allowed for the retrospective adjustment of previously acquired medical im-
ages. Generative modelling has been explored to address image quality in various images
and modalities (Ghekiere et al., 2017; Wolterink et al., 2021). Specifically, in CCTA scans,
generative models have been used to reduce image noise (Gondara, 2016; Kang et al.,
2019), reduce motion artifacts (Jung et al., 2020), and perform super-resolution (Sun and
Ng, 2022). However, the correction of the contrast media enhancement levels in CCTA has
seen little attention thus far.

Hence, we propose a method for the retrospective adjustment of coronary artery atten-
uation values in CCTA. We employ a generative adversarial network (GAN) which, given a
CCTA scan with suboptimal contract enhancement, synthesizes a CCTA scan with contrast
intensity levels in an optimal range (Goodfellow et al., 2020). We develop and evaluate the
method with CCTA scans of 1,179 patients suspected of coronary artery disease. To evalu-
ate the performance of the method, we compare the consistency of the intensity values in the
main coronary arteries before and after arterial contrast correction. Moreover, we compare
performance of coronary artery centerline extraction, a commonly performed downstream
task in scans before and after correction.

2. Data

2.1. Patient and Image Data

This study retrospectively included 1,179 CCTA scans of patients with suspected coronary
artery disease from clinical routine in the Amsterdam University Medical Center - Location
UvA. The need for informed consent was waived by the Institutional Ethical Review Board.
CCTA exams were acquired on a Siemens Somaton Force CT scanner (Siemens Healthineers,
Erlangen, Germany). The tube voltage ranged from 70 to 120 kVp and the tube current
ranged from 296 to 644 mAs. Scans were ECG triggered and have an in-plane resolution of
0.26-0.46 mm2 and a slice thickness and increment of 0.6 mm. During acquisition, contrast
medium was injected for optimal enhancement of the coronary arteries.

For all patients, coronary artery ostia and centerlines were extracted using the CNN-
based orientation classifier described by (Wolterink et al., 2019b). The mean and standard
deviation of the attenuation at the aortic root were determined by extracting and evaluating
3D patches of size 9.5 mm × 9.5 mm × 9.5 mm centered around the ostia. This was done by
identifying the Gaussian distribution describing the contrast agent in the patch histogram
(see Appendix 7.1). Based on the mean contrast attenuation µHU , scans were subsequently
divided into a group of optimal CCTA scans (300 < µHU < 500) and a group of suboptimal
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CCTA scans (µHU ≤ 300, µHU ≥ 500). This resulted in a total of 402 optimal and 777
suboptimal scans.

A total of 96 patients with suboptimal levels of contrast enhancement were prospectively
set apart for evaluation. For this set, automatic coronary artery lumen and myocardium
segmentations were obtained through the respective methods described by (Wolterink et al.,
2019a) and (Bruns et al., 2022).

2.2. Reference Standard

To evaluate the completeness of automatic coronary artery centerline tracking, a trained ob-
server manually placed markers in the three major coronary arteries (i.e. the right coronary
artery (RCA), the left anterior descending (LAD), and the left circumflex (LCx)) in CCTA
scans from the hold-out test set comprising 96 scans (see Section 2.1). These markers were
placed along the centerline of the coronary lumen for each artery starting from the ostia,
resulting in a total of 1,148 markers. Similarly, a total of 785 markers were placed in 68
scans derived from the optimal CCTA set.

3. Method

We propose a GAN for the automatic adjustment of contrast in suboptimally acquired
CCTA scans. GANs typically consist of two main parts: a generator network and a dis-
criminator network. For our purposes, the generator generates images with optimal contrast
from images with suboptimal contrast, while the discriminator tries to distinguish generated
images from real optimal images. Once trained, the generator accepts axial CCTA slices
as an input and returns a synthesized version of the slice with a contrast level within the
optimal range of approximately 400 HU.

Inspired by previous work for coronary artery calcium (CAC) scoring that features de-
composition of non-contrast CT with CAC into an image without CAC and a corresponding
CAC map (Van Velzen et al., 2022), we assume that suboptimally acquired CCTA scans
(Isub) can be decomposed into a CCTA scan with optimal contrast (Iopt) and a super-
imposed contrast offset mask (Moff ), i.e. Isub = Iopt + Moff . As such, the task of the
generator is simplified to only compute the difference between the two CT scans. The
proposed decomposition is illustrated in Figure 1.

The generator architecture used to produce Moff employs a CNN backbone consisting
of 6 ResNet-blocks, which has been shown to be capable of performing high-quality image-
to-image translation (He et al., 2016; Zhu et al., 2017). For the discriminator network
we employ a PatchGAN, which learns to classify whether 70 × 70 overlapping patches
are real (Iopt) or fake (Îopt) images with an optimal contrast level (Isola et al., 2017).
The fully convolutional nature of PatchGAN allows it to operate on arbitrary image sizes
while requiring fewer parameters than a full-image discriminator. Since the discriminator
produces an output matrix for the overlapping patches, image labels are projected to match
the output size of the discriminator network before computation of the loss.

The loss function employed in this work comprises several terms for the generation of
realistic optimally acquired CCTA scans, and is defined as:

L = LG + LD + Lsim + LHU (1)
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Figure 1: Overview of the proposed methodology. A generative model G analyzes CCTA
images acquired with suboptimal contrast media timing (Isub), and predicts a
contrast offset mask (Moff ) that is subtracted from the input image to obtain

a synthetic optimally acquired image (Îopt). Optimal contrast is enforced by
constraining contrast values in a coronary artery centerline mask (Mctl) to operate
within a certain range of HU values (LHU ). Realistic images are encouraged by
training a discriminator D to distinguish real optimally acquired CCTA images
(Iopt) from generated ones with LG and LD, while similarity between generator
input and output is encouraged through Lsim.

Here, LG and LD describe the adversarial loss used in GAN optimization. The similarity
loss Lsim directly minimizes differences between Isub and Îopt, and is defined as the negative
normalized cross-correlation between the two images (De Vos et al., 2019). Hence,

LG,LD = min
G

max
D

EIopt∼pdata(opt)[logD(Iopt)] + EIsub∼pdata(sub)[1− logD(G(Isub))] (2)

Lsim = −NCC(Isub, Îopt) (3)

The combination of these losses ensures the generation of images that feature the high-
frequency details derived from the input scan, yet appear similar to optimally acquired
CCTA scans.

Since we are interested in enforcing a specific range of contrast attenuation in the coro-
nary arteries and by extension the aortic root, the final constituent term of the loss function
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Figure 2: Attenuation distributions in the coronary ostia, coronary arteries, and the my-
ocardium, before and after applying the method. The top row describes the test
set images for which contrast level was below the optimum range (≤ 300 HU) in
the original scan, while the bottom row describes images which had a contrast
level above the optimum range (≥ 500 HU).

LHU explicitly penalizes outliers in the optimal contrast range along coronary artery cen-
terlines. This is achieved by providing a mask for each input CCTA slice in which centerline
point locations are marked. The mask of 2 × 2 voxels is placed around the identified cen-
terline point. By applying this mask to Îopt, predicted attenuation values along coronary
artery centerlines are extracted (Îctl) and subsequently penalized when contrast values are
not within an optimal range. This results in the following loss component:

LHU =
N∑
j=1

(min(Îjctl, HUmin)−HUmin)
2 +

N∑
j=1

(max(Îjctl, HUmax)−HUmax)
2 (4)

where N is the number of masked centerline voxels in a training batch, and HUmin and
HUmax describe a lower and upper bound for the expected contrast range. The implemen-
tation of the presented method is publicly available1.

4. Evaluation

The proposed method is evaluated qualitatively by observing the shifts in frequency distri-
bution of attenuation values in the CT image. This is performed for three cardiac structures:
the ostia, the coronary artery lumen, and the myocardium. We further evaluate the method
quantitatively by assessing the effect of contrast enhancement correction on automatic coro-
nary artery centerline tracking. Centerline tracking typically fails when contrast levels are
outside of an expected range, and should therefore benefit from contrast correction. We
perform centerline tracking in the original and in the corrected images and evaluate the

1. https://github.com/RoelvH97/ContrastGAN

1292

https://github.com/RoelvH97/ContrastGAN


GANs for CCTA Acquisition Protocol Correction with Attenuation Constraints

completeness of the extracted coronary artery trees. The marker recovery rate along the
major coronary arteries is evaluated before and after GAN correction. For the marker re-
covery rate, a hit is defined as a manually identified marker being within a 5 mm radius
of an automatically extracted centerline point. Finally, we compare attenuation values at
marker locations before and after the correction in terms of histogram intersection.

5. Experiments and Results

5.1. Experimental Setting

The 1,083 images in the training set were divided into two subsets: 80% for training and 20%
for validation. Performance on the correction of suboptimal contrast levels in the validation
set was tracked during training, allowing for hyperparameter tuning and the selection of
the best-performing generative model.

The generator network was trained on minibatches, which were balanced to contain axial
patches cropped around coronary artery centerlines and patches cropped around random
locations in the image. Batches were further balanced to contain both patches below and
above the optimal range of arterial enhancement. Training patches were of size 128 × 128
voxels, and patches cropped around centerlines were randomly rotated or flipped with p =
0.5. Batches for training the discriminator were sampled similarly, but were balanced with
respect to suboptimal and optimal acquisition. Image values were divided by a factor of 600
to normalize GAN inputs. In tandem with the tanh activation function of the generator,
this allows for a maximum contrast offset of 600 HU.

During training, a batch size of 64 was employed for both the generator and the discrim-
inator. Both networks were optimized using the Adam optimizer with a learning rate of 2e-4
and parameters β1 = 0.5 and β2 = 0.999 (Kingma and Ba, 2014). Networks were trained for
a total of 100,000 iterations, with the learning rate being multiplied with a factor of γ = 0.1
at iterations [60,000; 80,000]. We further defined HUmin and HUmax to be 350 HU and 450
HU respectively to ensure adequate attenuation along coronary arteries. At test time, the
generator processes full axial CCTA input slices of size 512× 512 voxels in a single forward
pass. All methods and optimizations were implemented with the PyTorch deep learning
library (Paszke et al., 2019). The proposed method is compared to a histogram matching
baseline, for which the details are listed in Appendix 7.3.

5.2. Results

Attenuation frequency distribution shifts in three cardiac structures are shown by the his-
togram plots in Figure 2, displaying distributions before and after applying the method.
For both the coronary ostia and arteries, a shift of intensity values resulting from the cor-
rection is observed towards the contrast distribution in optimally acquired scans. According
to expectation, a shift is not observed in the myocardium, which is largely unaffected by
contrast enhancement. Two examples of CCTA slice correction are presented in Figure 3.

Figure 4 displays the impact of contrast correction on automatic coronary artery center-
line extraction. The overall marker recovery rate of manually identified markers in the test
set was 88% before correction, 77% after histogram matching and 90% after GAN correc-
tion. For both the LAD and the LCx, an increase in marker recovery rate is also observed
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Figure 3: Outputs of the proposed method for an image with contrast level below (top) and
above (bottom) the optimal range. Note that the highlighted regions in the offset
mask strongly affect image contrast in the aortic root and coronary arteries, with
blue denoting an increase in attenuation and red denoting a decrease.

after GAN correction, while a slight decrease in performance is observed for the RCA. His-
togram intersection of markers annotated in suboptimally acquired images with markers
annotated in images with optimal contrast enhancement was 0.49 before correction, 0.57
after histogram matching, and 0.73 after GAN correction. Average and standard deviation
of the attenuation values at marker locations were 423± 182 HU before and 405± 101 HU
after GAN correction. An extensive quantitative evaluation is presented in Appendix 7.4.

6. Discussion and Conclusion

This work proposed a method for correcting contrast media enhancement in CCTA scans.
The method leverages a GAN to learn a difference map between suboptimal and optimal
levels of contrast enhancement, and is constrained to force attenuation values along coronary
artery centerlines within a specific range. This allows for the adjustment of previously
acquired CCTA scans, thus rendering a realistic image with optimal contrast attenuation.

The qualitative evaluation reveals that the method learns to accurately target volumes
affected by contrast enhancement, and does not influence the attenuation level in tissue
which is not directly impacted by angiography (Figure 2). Furthermore, the results indicate
that attenuation value distribution shifts in the coronary ostia and coronary arteries result
in a distribution which closely resembles real CCTA scans with an optimal level of contrast
enhancement. Though the myocardium is eventually affected by contrast enhancement as
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Figure 4: Results for coronary artery centerline extraction. (a) Marker recovery rate of au-
tomatic coronary artery centerline extraction for manually placed markers along
the three major coronary arteries in the test set. Bars indicate performance on
suboptimal scans (blue), after applying histogram matching (green), after apply-
ing the proposed method (orange), and performance on optimal scans (hatched).
(b) Attenuation values at marker locations in HU, before (blue) and after (green)
histogram matching. (c) Attenuation values after applying the proposed method
(orange). Values in (b) and (c) indicate histogram intersection with markers
annotated in optimal images (hatched).

well, training did not differentiate between early and late enhancement scans, which may
be an interesting topic for future research.

Results on the extraction of coronary artery centerlines indicate a better overall recall
for contrast-corrected scans. The largest improvement is observed in the LCx, which may
be attributed to the fact that only a small percentage of the population has a left-dominant
coronary circulation. As such, the LCx is typically smaller and more difficult to distinguish,
therefore benefiting more from contrast correction. The RCA on the other hand is typically
subject to motion artifacts, which our method does not correct for. This may explain why
no improvement is found for the recall of RCA markers.

A limitation of the proposed method may be that it only processes 2D axial slices.
Consequently, the network is only able to learn the appearance of arterial structures in
a 2D plane, therefore missing potentially valuable 3D information on the connectivity of
coronary arteries. Furthermore, a larger field of view may help the model to identify other
cardiac structures relevant for attenuation correction. Nonetheless, results indicate that
explicit penalization of values along coronary artery centerlines helps the model in finding
an optimal distribution of contrast enhancement that ignores most 2D noise. Future work
could investigate whether a 3D approach may help the method in creating even better
corrections for contrast enhancement.

Given that the method employs a GAN, it allows for training with unpaired data. Ob-
taining paired data for training would be impossible because voxel level spatial alignment of
a patient is infeasible. As such, it offers advantages over standard CNN architectures requir-
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ing end-to-end data. Future work might investigate whether advanced synthesis methods
may contribute to performance improvement (Ho et al., 2020; Rombach et al., 2022).

In conclusion, this study presented a method for the retrospective correction of CCTA
scans with suboptimal levels of coronary artery contrast enhancement by generating contrast
offset masks using a GAN. Contrast enhancement correction is shown to be feasible and
produce realistic images within an optimal range of attenuation values. The method may
extend applicability of automatic coronary artery analysis to CCTA scans with suboptimal
contrast enhancement.
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coronary artery segmentation in cardiac CT angiography. In International Workshop on
Graph Learning in Medical Imaging, pages 62–69. Springer, 2019a.

Jelmer M Wolterink, Robbert W van Hamersvelt, Max A Viergever, Tim Leiner, and Ivana
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7. Appendix

7.1. Pre-processing

CCTA image coronary ostium

Figure 5: Suboptimal contrast detection pipeline. Coronary ostia are first extracted from
the CCTA through an automated method (Wolterink et al., 2019b). A 3D patch
is subsequently extracted around both ostia, for which the intensity histogram is
computed (right). By representing the histogram as a mixture of Gaussians, the
histogram peak describing the contrast media can be identified. The value of this
peak is used to label CCTA scan as either suboptimal or optimal.
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7.2. Evaluation

real suboptimal corrected suboptimal

centerlines

hit

miss

marker recovery = 75% marker recovery = 92%

Figure 6: Evaluation of the marker recovery rate. Blue lines indicate automatically ex-
tracted centerlines, while green and red dots indicate manually placed recovered
and missed markers respectively. In this example, automatic centerline tracking
of the LCx fails in the original scan (left) as indicated by the red dots. Upon
correction (right), a large part of the LCx is recovered, resulting in a higher
marker recovery rate. Note that the missed marker on the corrected scan (right)
is located in an undetected coronary branch.

7.3. Histogram Matching

For histogram matching, a template histogram is defined based on a selection of 10 scans
from the optimal training images. Mean contrast at the coronary ostia for the selected
images was in a range of 350− 450 HU with a maximum standard deviation of 25 HU. All
histograms of test set images were matched to this template histogram, for which distri-
bution shifts are displayed in Figure 7. Qualitative examples of histogram matching are
displayed in Figure 8.
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Figure 7: Attenuation distributions in the coronary ostia, coronary arteries, and the my-
ocardium, before and after applying histogram matching. The top row describes
the test set images for which contrast level was below the optimum range (≤ 300
HU) in the original scan, while the bottom row describes images which had a
contrast level above the optimum range (≥ 500 HU).
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Figure 8: Output examples for histogram matching. Note that the global intensity mapping
enhances the existing noise in the input images, thus typically deteriorating image
quality.
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7.4. Extended results

Table 1 presents the full quantitative results comparing histogram matching to the proposed
method. The results show that the proposed method outperforms histogram matching in
most cases, achieving the highest overall histogram intersection values and marker recovery
rates. Histogram matching is shown to have a higher histogram intersection in the range
of ≥ 500 HU for the ostia and arteries, which is likely due to an easier separability of
arterial values. Despite this, the marker recovery rate for histogram matching is lowest
across all major coronary arteries and methods. Hence, the noise introduced by global
intensity mapping in histogram matching is shown to negatively impact the performance of
downstream tasks, despite pushing the overall attenuation distribution to a more optimal
range.

Table 1: Quantitative results divided by suboptimal HU intensity value range. Histogram
intersection results are listed for the coronary ostia, coronary arteries, and man-
ually placed markers. It is defined as the intersection with the histogram of the
same structures in the set of optimally acquired images. Marker recovery rate is
further presented separately for the three major coronary arteries.

HU range Method Histogram intersection Marker recovery (%)

Ostia Arteries Markers LAD RCA LCx

≤ 300 - 0.47 0.65 0.37 79.1 92.2 72.0
Histogram matching 0.56 0.73 0.48 70.1 85.9 67.6
Proposed (GAN) 0.86 0.87 0.75 83.6 89.1 82.4

≥ 500 - 0.39 0.59 0.46 91.8 89.2 87.3
Histogram matching 0.76 0.81 0.59 79.4 77.2 77.8
Proposed (GAN) 0.73 0.67 0.67 93.4 88.9 90.5

1303


	Introduction
	Data
	Patient and Image Data
	Reference Standard

	Method
	Evaluation
	Experiments and Results
	Experimental Setting
	Results

	Discussion and Conclusion
	Appendix
	Pre-processing
	Evaluation
	Histogram Matching
	Extended results


