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Abstract

Generative statistical models have a wide range of applications in the modelling of anatomies.
In-silico clinical trials of medical devices, for instance, require the development of vir-
tual populations of anatomy that capture enough variability while remaining plausible.
Model construction and use are heavily influenced by the correspondence problem and
establishing shape matching over a large number of training data. This study focuses
on generating virtual cohorts of left ventricle geometries resembling different-sized shape
populations, suitable for in-silico experiments. We present an unsupervised data-driven
probabilistic generative model for shapes. This framework incorporates an attention-based
shape matching procedure using graph neural networks, coupled with a β−VAE generation
model, eliminating the need for initial shape correspondence. Left ventricle shapes derived
from cardiac magnetic resonance images available in the UK Biobank are utilized for train-
ing and validating the framework. We investigate our method’s generative capabilities in
terms of generalisation and specificity and show that it is able to synthesise virtual popula-
tions of realistic shapes with volumetric measurements in line with actual clinical indices.
Moreover, results show our method outperforms joint registration-PCA-based models.
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A Geometric Deep Learning Framework for Generation

1. Introduction

Modelling cardiac anatomy using generative statistical models can have many applications,
including identifying diseases, predicting them, and generating population cohorts for elec-
trophysiological and mechanical computer simulations. Machine learning methods combined
with computational modelling and simulation bring the possibility of gaining valuable infor-
mation about new therapies and medical devices through In-Silico Clinical Trials (ISCTs)
(Viceconti et al., 2016; Pappalardo et al., 2019). Therefore, virtual populations of anatomi-
cal shapes (typically represented as computational meshes) are a key enabler for conducting
ISCTs of clinical devices.

However, building rich or descriptive generative shape models from inconsistent anatom-
ical structures is challenging for several reasons. First, due to the fact that real-world
anatomical shapes derived from different subjects do not generally share any topologi-
cal correspondence, this is a challenging task for existing techniques to generate coherent,
anatomically plausible shape populations. In addition, most techniques demand access to
large volumes of training data, thus the process would require expensive and laborious an-
notation of medical imaging data. Also, it can still be computationally challenging to create
synthetic samples that are clinically meaningful and that fully represent the characteristics
of each individual patient. Therefore, this study aims to address the problem of generat-
ing virtual patient cohorts of left ventricle (LV) geometries resembling different-sized shape
populations. These models allow to perform in-silico clinical trials on the so-called digital
twins (Corral-Acero et al., 2020).

While PCA-based statistical shape models have been extensively used for shape gen-
eration (Piazzese et al., 2017; Gooya et al., 2017; Cosentino et al., 2020), deep learning
approaches for generative modelling have gained increasing attention in recent years (Harsh-
vardhan et al., 2020). A few studies have adopted these approaches for generating virtual
populations of anatomy. Presenting cardiac biventricular anatomy as a point cloud, a geo-
metric deep learning method is proposed for generating populations of realistic biventricular
anatomies in (Beetz et al., 2021). The generation of personalized anatomies is further en-
hanced by adding subpopulation-specific characteristics as conditional inputs. Using binary
masks of aortas as inputs, Romero et al. (Romero et al., 2021) explored the generation effi-
ciency of the generative adversarial network (GAN) (Goodfellow et al., 2014). This method
specifically addressed the generation of a cohort of patients meeting a specific clinical crite-
rion. Danu et al. (Danu et al., 2019) employed deep generative models (VAE (Kingma and
Welling, 2013) and GAN) for generating voxelised vessel surfaces, where they represented
the unstructured surface mesh as a three-dimensional (3D) image. Although the results
show potential for employing deep generative models on 3D surfaces, these models can not
deal with complex data structures like bifurcations. In conclusion, firstly, these methods
are limited by requiring a tedious pre-processing step to obtain dense point correspondence
between training shapes. Secondly, they can only be applied to data with the same shape
structure. Hence, presenting a meaningful shape matching (i.e. shape correspondence)
across training data is often a prerequisite for these methods.

A number of problems can be categorized under the scope of shape correspondence.
However, a unified approach can be achieved by considering the problem statement: given
input shapes {gk}Kk=1, establish a meaningful relation F between their elements (such as
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points, feature points, etc). The correspondence can be obtained directly based on the
similarity of the elements, or it can be derived from the proximity of the aligned elements
by aligning the shapes first. Additionally, we can iterate between the two procedures.

In the first scenario, the relation F is derived from aligning the shapes in a rigid or
non-rigid manner. Some statistical approaches align two point sets via their Gaussian
mixture representations (Myronenko and Song, 2010; Ma et al., 2020). Other approaches
are taken in (Rusinkiewicz and Levoy, 2001; Zhang et al., 2021) for aligning point sets using
optimising local quadratic distances. Moreover, due to the complexity of deformations in
the optimisation process, the optimisation can easily get stuck in local optima. In another
group, similarity-based methods estimate a pairwise assignment between shapes or their
collected features to derive correspondences. More recent works on graph matching are
based on deep learning methods to find the optimal point-to-point correspondences (Wang
et al., 2019; Zanfir and Sminchisescu, 2018). These approaches develop supervised graph
matching networks based on displacement rather than a registration task. However, the
proposed graph matching methods are performed offline and remain unaltered during shape
generation. Further, a pair-wised graph matching framework proposed in (Bai et al., 2018,
2019) is a learning-based framework rather than a pairwise graph distance computation.
These methods employed multi-scale graph convolutional network (GCN) layers and then
calculated multiple similarity matrices, increasing time complexity for large-scale graphs.

Compared with existing approaches, this study proposes an unsupervised geometric deep
learning framework to generate virtual cohorts of left ventricle structures from different-
sized training shapes. We consider the structures of the shapes within the context of the
graphs. To the best of our knowledge, this is the first end-to-end deep learning framework
capable of finding shape matching and generating anatomical shapes from different-sized
shape populations without correspondence. The key contributions of this study are: (i) The
framework presents a novel unsupervised learning-based shape matching procedure in the
absence of any optimisation, which derives a learnable set of correspondences using graph
neural networks (GNNs) and attention mechanisms. (ii) Using the soft attention mechanism,
we present a domain transformation across the training data to address the problem of shape
generation from different-sized shapes. (iii) We establish high-quality shape matching across
the training data, and our non-linear generative framework is able to synthesise plausible LV
shapes. Although the proposed generative framework is demonstrated here on left ventricle
structures, it is generic in design and can be applied similarly to other anatomical shape
ensembles.

2. Method

Our proposed framework consists of an unsupervised geometric deep learning network em-
bedded in (i) an Attention-based Shape Matching (ASM) mechanism for deriving a learnable
set of correspondences (ii) followed by a soft attention mechanism for domain transforma-
tion and β-VAE (Higgins et al., 2016) generation framework for synthesising 3D surface
models of the shapes. Given a set of observed 3D surface meshes, we seek to develop a
shape generative model using graph representation. Figure 2 shows the diagram of the
proposed method.
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2.1. Attention-based Shape Matching

Presenting the 3D surface mesh as a graph, we propose a matching procedure to determine
correspondence based on the similarity measure of local node embeddings, without the need
to solve an optimisation problem during inference. To compute nodal embeddings, GNNs
enable us to efficiently and flexibly aggregate information through graph nodes and edges,
which generate a powerful representation of shapes. Once the graph embedding is learned,
an attention mechanism is applied to those embedded features to learn correspondence
across the population.

Given a training set of different-sized graphs G = {gk}Kk=1, where gk = (Vk, Ek) is
the k-th graph, with |Vk| nodes, vertex Euclidean geometry feature matrix Xk ∈ R|Vk|×3

and Ek denotes the set of edges, connecting the vertices. The sparse adjacency matrix
Ak ∈ {0, 1}|Vk|×|Vk| represents the edge connections. In order to determine where and
what shape matching should focus on, an attention mechanism is utilized. We model our
attention-based matching procedure by computing similarities between nodal embeddings
in the training and template graphs.

First, a variational graph auto-encoder network Ψ (parameterized by {θ,θ′}) is em-
ployed to capture both local and global structural information in the shapes, where the
encoder network (Ψθ) computes the nodal embedding vectors in the latent space. These
embedding vectors are then used to compute and the pair-wise correspondences across the
vertices of the k-th observed graph gk and the template graph gt. Given the latent embed-
dings of nodes Zk = Ψθ(Xk,Ak) and Zt = Ψθ(Xt,At), computed by a shared network Ψ for
the observed graph and the template graph, respectively, we obtain the soft correspondence
(i.e. attention maps), as the mapping function in the embedded-space paradigm

Ck = Softmax (λZtZ
T
k ). (1)

Where Zk ∈ R|Vk|×dz , Zt ∈ R|Vt|×dz , Ck ∈ [0, 1]|Vt|×|Vk| and hyper-parameter λ sets em-
pirically. dz denotes the dimension of the latent vector z. In this study, we exploit the
ability of spatial-based geometric deep learning methods to handle inconsistent graph pop-
ulations, where the convolution is performed in local Euclidean neighbourhoods. While the
spectral-based approaches are limited to fixed graph structures due to filtering in the spec-
tral domain. We consider a variational graph auto-encoder network Ψ as a spatial-based
GNN to perform graph convolution locally on each node. That is, the convolution operator
learns features from the preceding network layer to dynamically determine the association
between filter weights and graph neighbourhood, rather than relying on static predefined lo-
cal pseudo-coordinate systems. Subsequently, to normalise shapes structurally, an attention
mechanism is employed for domain transformation.

2.2. Shape Generation

The soft correspondence matrix Ck is a map from the node function space F(R|Vk|) to
node function space F(R|Vt|) thus allows for domain transformations. To focus more on the
relevant features of the shape, soft attention is implemented. In soft attention, irrelevant
areas are discredited by multiplying the corresponding shape features with a low weight.
Hence, to obtain shapes in the template domain, the soft attention mechanism directly
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passes node features vector x ∈ F(g) along with the soft correspondences

x′
j =

|Vk|∑
n=1

Cjnxn ; j = {1, ..., |Vt|} (2)

where x′ ∈ F(g′) represents the node features vector in the other domain. x′
j is j-th

row of matrix X′ and vector xn presents n-th row of feature matrix X. Each structurally
normalised shape g′k is presented by matrix feature representation X

′
k ∈ R|Vt|×3. Finally,

a generation network, designed in β-VAE framework, learns a probability density function
from a set of {g′k}Kk=1 graphs, which allows us to generate cohorts of artificial shapes.

2.3. Loss Function

A hierarchical unsupervised framework Attention-based Shape Matching (ASM) and Gen-
eration (G) is trained by minimizing the cost function L = LASM + LG, where LASM and
LG in the right hand side are defined subsequently.

Shape matching cost: In the shape matching procedure, a refinement strategy is also
considered in order to avoid finding false correspondences. To achieve this, the loss LASM

is computed as

LASM = LΨ + LRef =
K∑
k=1

1

2

|Vk|∑
n=1

∥xrec
kn − xkn∥2 − w0DKL︸ ︷︷ ︸

LΨ

+w1CD(g′k, gk) + w2Lap(g
′
k)︸ ︷︷ ︸

LRef

,

(3)

where LΨ is minimised to learn nodal embeddings mentioned in section 2.1 (the details can
be found in supp.mat A.2). The loss term LRef (refers to the refinement strategy), consisting
of Chamfer and Laplacian losses, is minimised to refine the structurally normalised shapes.

Chamfer loss measures the distance of vertices between two graphs:
CD(g, g′) =

∑
x∈g ming′∥x−x′∥2+

∑
x′∈g′ ming∥x−x′∥2 and Lap(g′k) is a laplacian smooth-

ness loss to result in smoother surface reconstructions (Taubin, 1995). The weights w0, w1

and w2 are hyperparameters that are tuned and set empirically.

Generation cost: The loss function LG follows the original loss of the β-VAE, where
hyperparameter β makes a balance between low reconstruction error and high latent space
quality, which emphasizes discovering disentangled latent factors. Assuming VAE is made
of an encoder-decoder pair, we define our architecture as a pair {E,G} neural networks,
respectively. Following this, we define:

LG =
1

2

K∑
k=1

|Vt|∑
j=1

∥∥G(E(x′
kj))− x′

kj

∥∥2 − βDKL, (4)

whereDKL denotes the Kullback-Leibler, which computes the divergence between the Gaus-
sian prior N (0, I) and posterior distributions of the latent space E(x′).
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3. Experiments and Results

In this section, we describe the experimental settings and the evaluation of our method
on the clinical dataset. Dataset: We utilized 1000 LV 3D surface mesh dataset obtained
from cardiac magnetic resonance (CMR) images of the UK Biobank (UKB) (Petersen et al.,
2015), using the pipeline described in (Zakeri et al., 2022). All the LV meshes are related
to the end-diastolic phase of the cardiac cycle. Mesh cardinalities vary from 1000 to 2000
points. We randomly split the data into 720 training, 80 validation, and 200 test cases. ( In
the supp. mat, additional experiments on a different dataset are provided to evaluate the
model’s versatility.) Experimental Setup: All experiments are carried out using PyTorch.
We used the spatial graph convolution operator proposed in (Verma et al., 2018) to build
the layers of the network Ψ and the fully-connected layers are used in the structure of the
β-VAE network for the shape generation. More details are provided in the supp. mat A.3.

3.1. Results and Discussion

A number of experiments were conducted to evaluate the performance of the generative
shape framework proposed in this study. Since existing works on shape generative modelling
can only be applied to data with the same shape structure, we compared our model with a
baseline model, where the pipeline includes registration and PCA models. We evaluate our
method in terms of both its matching (i.e. correspondence establishment) and generation
performances.

3.1.1. Matching quality

We investigated the proposed Attention-based Shape Matching (ASM) framework in two
settings, With/WithOut Refinement, and compared them with the rigid Registration-based
Shape Matching (RSM) proposed in (Myronenko and Song, 2010). The correspondence
maps obtained from different methods RSM and ASM(WoR/WR) are utilized to transform
actual shapes gk from the domain R|Vk| to R|Vt|. For a qualitative evaluation, Figure 1
visualises some examples of the network input (gk) and normalised surface mesh (g′k) for
five sample cases, obtained from the different methods. Visual inspection of results shows
that normalised shapes obtained from our framework (especially with the refinement strat-
egy introduced in section 2.3) are more realistic and present meaningful correspondences
for anatomical landmarks on LV shapes (e.g. endocardial, epicardial, LV base, and apex),
whereas the results obtained from RSM show some disorders and lacking details. We fur-
ther evaluated the quality of obtained shapes in the template domain using two distance
metrics: Hausdorff distance (HD) and Chamfer distance (CD). Table 1 summarises the
accuracy of shapes in the template domain obtained by different methods. Obtained re-
sults show that our similarity-based method maintains high accuracy when compared with
the registration-based method. These results suggest that the refinement strategy produces
more accurate features derived from the network Ψ with a spatial-based graph convolutional
layer, thus providing high-quality correspondences. By achieving lower mean Hausdorff and
Chamfer distances, our method demonstrates good normalisation quality in arbitrary tar-
get domains, while the low standard deviation values demonstrate its robustness. This is
because our method followed an efficient spatial-based geometric deep learning strategy
and considered a learning-based fully-differentiable shape matching procedure that aimed
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Figure 1: Examples show the comparison between different shape matching approaches for
deriving correspondence. Cyan-coloured meshes present input gk with cardinal-
ity |Vk| = 1039, 1216, 1353, 1497 and 1503 respectively from left to right. Grey-
coloured shapes are the normalised meshes g′k with cardinality |Vt| = 1093 ob-
tained from different methods. Notice endocardial, epicardial, LV base, and apex
landmarks.

Table 1: Shape Matching Quality: comparison between different methods using two dis-
tance metrics HD and CD (mean ± std) in [mm]. Bold values show a significant
difference between the methods with a p-value < 0.001 using the statistical paired
t-test.

RSM ASM(WoR) ASM(WR)

HD 8.11± 2.13 8.32± 1.77 6.54± 1.57

CD 12.04± 2.63 9.91± 1.54 4.06± 0.57

to reach a data-driven neighbourhood between matched node pairs without the need to
solve any optimisation.

3.1.2. Generation quality

In order to evaluate the generative performance of our framework (ASMG), we provide
a quantitative assessment in terms of generalisation, specificity (Styner et al., 2003) and
clinical relevance. The generalisation ability of a generative model indicates the capability
of the model to represent unseen samples and thus capture the variability in LV shapes based
on its error when reconstructing unseen actual test data. Model specificity determines the
anatomical plausibility of the virtual LV cohorts by comparing them to the actual samples in
the training set. In order to report generalisation and specificity, three distance measures are
considered: Hausdorff distance (HD), the average of minimum Euclidean (ED) distance and
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Table 2: Generation Quality: comparison between generative models in terms of gener-
alisation ability and specificity using three distance metrics HD, ED and ED∗

(mean ± std) in [mm]. Statistically significant (p-value < 0.001) performance of
ASMG(WR) method over RSMP is shown by Bold values.

RSMP ASMG(WoR) ASMG(WR)

Generalisation
HD 8.02± 2.14 7.99± 1.83 7.08± 1.58
ED 2.15± 0.20 2.11± 0.14 2.05± 0.13
ED∗ 2.38± 0.24 2.36± 0.17 2.23± 0.11

Specificity
HD 5.96± 0.59 5.82± 0.70 5.80± 0.99
ED 2.28± 0.22 2.18± 0.13 2.25± 0.20
ED∗ 2.23± 0.28 2.47± 0.18 2.55± 0.20

Table 3: Clinical acceptance rates A [in %] achieved by each generative model for LV vol-
umes.

RSMP ASMG(WoR) ASMG(WR)

A[min,max] 93.95 100 100

AM±2B 47.73 88.88 91.62

Aµ±σ 24.38 56.50 62.82

its symmetric distance (ED∗), where ED∗(g, g′) = ED(g′, g). High-performance generative
models refer to models that generate synthetic shapes with simultaneously low specificity
and generalisation errors. Table 2 summarises the generalisation and specificity errors of all
methods investigated in this study (ASMG(WoR) and ASMG(WR)) and the baseline model
RSMP, where the generative model RSMP is built from the synergy of Registration-based
Shape Matching and PCA generator. We observe that the ASMGmodel achieves the highest
generalisability and specificity (i.e. lower concurrent specificity and generalisation errors
for the majority of distances) for both investigated scenarios. As expected, due to lower
specificity errors, our similarity-based generative model presents more realistic synthesised
LV shapes when compared with the model based on registration. The lower specificity error
can be explained as follows: considering shapes as graphs support our unsupervised shape
matching framework to learn better disentangled latent representations and thus derive a
more effective form of soft correspondences between shapes, which in turn preserves more
details during the normalisation process. As a result, shapes generated from structurally
normalised populations have a greater degree of plausibility. Compared to PCA, which
is a linear projection of shapes onto lower-dimensional subspaces, our generative model is
based on graph convolution networks and β−VAE, which can capture non-linear variations
in shapes. A proper balance between latent space and reconstruction quality is achieved by
using the β−VAE generator, resulting in realistic randomly generated samples.

Inspired by (Romero et al., 2021), we present the clinical relevance assessment for the
synthesised LV shapes in this study. Given the actual cohort UKB, the acceptance rate A

433



Kalaie Bulpitt Frangi Gooya

determines the percentage of synthetic samples in virtual cohorts with cardiac indices (e.g.
volume), within a confidence interval of the distribution of the cardiac indices observed
in the actual population. To compute the acceptance rate A, three different confidence
intervals are considered. First, [min,max] interval presents the range of the observed actual
biomarkers (e.g. LV volume). Relying on Chebyshev's inequality, we define two confidence
intervals µ ± σ and M ± 2B, based on the corresponding mean (µ), standard deviation
(σ) and the mode (M) observed in the actual population (see Figure 4). Where B =√
σ2 + (M − µ)2 measures the variability across the data. Table 3 shows the efficiency of

each method measured using the different acceptance criteria. The clinical acceptance rates
of LV virtual cohorts synthesised by our generative model are higher than RSMP method.
Although the specificity errors in Table 2 indicate that there is no huge difference between
the plausibility of LV shapes synthesised by the model with and without refinement strategy,
the clinical acceptance rates estimated for ASMG with refinement are consistently higher
than those without refinement across the LV volume indices (refer to Table 3). This indicates
that the generative model proposed in this study, when considering the refinement strategy,
provides better fidelity in preserving the distributions of clinically relevant cardiac indices in
the synthesised virtual cohorts relative to the UKB population. It is therefore more suitable
for ISCTs that require higher statistical fidelity based on anatomical characteristics.

4. Conclusion

This study proposed a novel unsupervised probabilistic deep generative model, capable of
generating virtual LV shape cohorts, resembling the different-sized actual data. The frame-
work is a synergy of attention-based graph convolutional networks and generator modules
which do not require any prior landmarking, making it significantly efficient. Further-
more, this method is capable of working on 3D image-derived surface meshes due to its use
of graphs instead of highly sparse and memory-intensive voxel grids. Additionally, using
spatial-based graph convolutional networks in the matching procedure made the proposed
method well-suited for handling inconsistent shape structures. The study demonstrated the
suitability and applicability of the proposed generative model in conducting ISCTs, with vir-
tual cohorts, through a comparative analysis. Further extensions to our work would include
richer descriptions of vertex geometry, such as normal vertex along the vertex geometry,
and different strategies for sampling generation.
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Figure 2: Overview of the ASMG framework for shape generation from different-sized
shapes.

Appendix A. Supplementary Material

In this supplementary document, we first provide an overview of the proposed hierarchical
unsupervised framework of attention-based shape matching and generation (ASMG). Sub-
sequently, we provide the details on the variational graph autoencoder network and its loss
function. Afterward, we introduce the implementation details of our method. Eventually,
we also show additional experiments of our method.

A.1. Overview of Our Unsupervised Learning Approach (ASMG)

Figure 2 shows a diagram of the proposed ASMG method, where a hierarchical framework
is trained to generate shape structures by minimizing the cost function mentioned in section
2.3. First, a synergy of variational graph convolutional network Ψ and attention mechanism
establishes vertex-to-vertex correspondences (C) between the shapes in the latent space.
Subsequently, a variational autoencoder (β-VAE) learns a probability density function from
a set of structurally normalized shapes (g′) in the 3D space.

A.2. Variational Graph Autoencoder Network Ψ

Variational graph autoencoder network Ψ takes the adjacency matrix A and node features
X as input and tries to reconstruct the feature matrix X (refers as Xrec) through the
hidden layer embeddings Z. Let us parameterise the approximate posterior qθ(Z|X,A)
with an encoder and the likelihood p

θ
′ (X|Z,A) with a decoder. The network is trained in

an unsupervised manner by maximising the evidence lower bound (ELBO) LΨ w.r.t. the
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variational parameters:

LΨ(θ,θ
′
) =

K∑
k=1

(Eqθ(Zk|Xk,Ak)[log pθ′ (Xk|Zk,Ak)]− w0DKL[qθ(Zk|Xk,Ak) ∥ p(Zk)])

=
1

2

K∑
k=1

|Vk|∑
i=1

∥xrec
ki − xki∥2 − w0DKL[qθ(Zk|Xk,Ak) ∥ p(Zk)], (5)

where the expected likelihood term interprets as a reconstruction loss and measures the
squared Euclidean distance between real and reconstructed shapes by the decoder. DKL

is the Kullback-Leibler divergence (KL divergence) between the approximate posterior
qθ(Zk|Xk,Ak) and the prior distribution p(Zk), weighted by w0. Unit Gaussian distri-

bution defines a prior distribution p(Zk) =
∏|Vk|

n=1N(zkn;0, I).
The inference model parameterized by graph convolutional layers (GCN):

qθ(Zk|Xk,Ak) =

|Vk|∏
n=1

q(zkn|Xk,Ak)

with q(zkn|Xk,Ak) = N(zkn|µkn, diag(σ
2
kn))

(6)

where µ = GCNµ(X,A) is the matrix of mean vectors µn and logσ = GCNσ(X,A).

A.3. Experimental Setup

The network Ψ uses the spatial-based GCN layers proposed in (Verma et al., 2018), with
64, 64, 128, 128-dim hidden layers for the encoder (which are mirrored for the decoder) with
convolutional filter weight matrices of size 8. The structure of this network is also shown in
Table 4. More specifically, inspired by (Verma et al., 2018) we use the spatial-based graph
convolution operator (named feature-steered convolutional operator) where the operator
dynamically assigns filter weights to the node’s neighbourhoods according to the features
learned by the network.

To build the shape generation network fully-connected layers are used in the structure
of the β-VAE network with hidden layers of size 512, 256, 768, 128, 64 for the encoder. The
decoder is a mirrored version of the encoder. All the internal layers use batch normalisation
and Leaky ReLU as activation layers. We empirically set hyperparameters γ , w0, w1, w2

and β to 104, 1e−3, 1, 1 and 2e−6 respectively. We set the learning rate to 1e−3 and use the
ADAM optimiser (Kingma and Ba, 2014) to train the model on LV dataset. A canonical
shape has been randomly selected as the template graph gt.

A.4. Additional Experiments

Figure 3 illustrates how the samples from Gaussian prior N (0, I) match learned posterior
distributions in β−VAE, for eight test LV shapes. In all cases, we get a p-value> 0.001
which implies that we do not reject the null hypothesis that the distribution of the posterior
is the same as prior.

The resulting LV volume indices distributions are presented in Figure 4 by means of
violin charts. As shown in this figure, horizontal lines indicate the boundaries of the different
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Table 4: The structure of network Ψ, where |V | denotes the cardinality of input shape.

Layer
Filter weight
matrix size

Input size Output size

Spatial GCN 8 |V | × 3 |V | × 64
Batch Norm - |V | × 64 |V | × 64
Spatial GCN 8 |V | × 64 |V | × 64
Batch Norm - |V | × 64 |V | × 64
Spatial GCN 8 |V | × 64 |V | × 128
Batch Norm - |V | × 128 |V | × 128
Spatial GCN (µ) 8 |V | × 128 |V | × 128
Spatial GCN (logσ) 8 |V | × 128 |V | × 128
Spatial GCN 8 |V | × 128 |V | × 128
Batch Norm - |V | × 128 |V | × 128
Spatial GCN 8 |V | × 128 |V | × 64
Batch Norm - |V | × 64 |V | × 64
Spatial GCN 8 |V | × 64 |V | × 64
Batch Norm - |V | × 64 |V | × 64
Spatial GCN 8 |V | × 64 |V | × 3

Kernel Density Function 

Figure 3: Visualization of how the samples from Gaussian prior N (0, I) match learned
posterior distributions in β−VAE, for eight test LV shapes.

acceptance criteria. Comparing actual to synthetic distributions for volume variables show
that our model generates more realistic samples from the population of LV while capturing
sufficient variability. PCA-based generative model RSMP, with higher generalisation and
specificity errors, is reflected in the wider range (unrealistic) of values observed for volume
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Figure 4: Violin plots for the distribution of LV volume indices on the actual UKB sam-
ples, alongside with those generated using methods: RSMP, ASMG(WoR) and
ASMG(WR).

Figure 5: Examples of virtual samples generated by the ASMG(WR) generator model.

indices in the synthesised virtual population. In addition, a visualization of the generated
(synthetic) samples by the trained ASMG(WR) model is shown in Figure 5.

A.4.1. Model’s Versatility

To evaluate the model’s versatility, another dataset (i.e. liver dataset) with a different
number of shapes and different complexities in the structure is used. Compared to the
LV dataset, the liver dataset demonstrates a wider volumetric variation. Additionally, in
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Table 5: Generation Quality on the Liver dataset: comparison between generative models
in terms of generalisation ability and specificity using three distance metrics HD,
ED and ED∗ (mean ± std) in [mm]. Statistically significant (p-value < 0.001)
performance of ASMG(WR) method over RSMP is shown by Bold values.

RSMP ASMG(WoR) ASMG(WR)

Generalisation
HD 35.94± 14.6 32.44± 6.86 32.86± 5.44
ED 7.72± 2.39 8.09± 1.56 7.56± 1.20
ED∗ 10.51± 3.83 9.98± 1.44 9.50± 1.35

Specificity
HD 29.60± 5.94 24.83± 1.80 24.13± 2.94
ED 8.41± 1.50 6.60± 0.43 6.93± 0.60
ED∗ 8.42± 2.16 6.50± 1.68 8.28± 0.87

Table 6: Clinical acceptance rates A [in %] achieved by each generative model for liver
volumes.

RSMP ASMG(WoR) ASMG(WR)

A[min,max] 64.03 100 100

AM±2B 46.76 100 100

Aµ±σ 19.42 90.65 79.14

general, there is further morphological variability across the liver shapes, which imposes
more challenges when training the generative model.

Liver dataset: 3D liver shapes are obtained from the public CT-ORG dataset from The
Cancer Imaging Archive (TCIA). To prepare our required training graph dataset, 3D surface
liver meshes are reconstructed from CT scans of 139 patients using the MarchingCube
algorithm. To train the model on the liver dataset, we empirically set hyperparameters γ,
w0, w1, w2 and β to 104, 1e−3, 1, 1.2 and 2e−3 respectively.

The results in Table 5 show that the average distances in specificity and generalisation
metrics are significantly lower for ASMG(WR) model compared to RSMP, (p-value< 0.001)
and ASMG(WR) outperforms RSMP. The lower values in specificity errors indicate that the
accuracy of newly generated instances by the generative RSMG(WR) model is higher and
this model presents more realistic synthetic shapes in the liver dataset. In the majority of
the average distances, the ASMG(WR) model outperforms the ASMG(WoR) and indicates
smaller concurrent specificity and generalization errors.

Table 6 summarises the clinical acceptance rates for the liver volumes synthesised by dif-
ferent generative models. ASMG(WoR/WR) obtain higher acceptance rates across the liver
volume indices, which is consistent with the specificity summarised in Table 5. Although
the clinical acceptance rate Aµ±σ estimated for ASMG(WoR) is higher than ASMG(WR)
generator model, the specificity errors indicate that the ASMG(WR) model synthesises liver
shapes that are more plausible. This model is therefore more suitable for ISCTs that require
a higher degree of statistical fidelity based on liver anatomical characteristics.

In conclusion, the results of the study indicate that the performance of the proposed
method is minimally affected by the morphological variability of liver anatomy.

442



A Geometric Deep Learning Framework for Generation

443


	Introduction
	Method
	Attention-based Shape Matching
	Shape Generation
	Loss Function

	Experiments and Results
	Results and Discussion
	Matching quality
	Generation quality


	Conclusion
	Supplementary Material
	Overview of Our Unsupervised Learning Approach (ASMG)
	Variational Graph Autoencoder Network 
	Experimental Setup
	Additional Experiments
	Model’s Versatility



