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Abstract

Human brain tumours and more specifically gliomas are amongst the most life-threatening
cancers which usually arise from abnormal growth of the glial stem cells. In practice,
Magnetic Resonance Imaging (MRI) modalities, which offer different contrasts to eluci-
date tissue properties, provide comprehensive information regarding the brain’s structure
and also potential clues for detecting tumors. Hence, multi-modal MRI is commonly uti-
lized for the diagnosis of brain tumors. However, since the set of acquired modalities may
vary between clinical sites, brain tumor studies may miss one or two MRI modalities. To
address missing information in an end-to-end manner, we propose MMCFormer, a novel
missing modality compensation network. Our strategy builds upon 3D efficient transformer
blocks and uses a co-training strategy to effectively train a missing modality network. To
ensure feature consistency in a multi-scale fashion, MMCFormer utilizes global contextual
agreement modules in each scale of the encoders. Furthermore, to transfer modality-specific
representations, we propose to incorporate auxiliary tokens in the bottleneck stage to model
interaction between full and missing-modality paths. On top of that, we include feature
consistency losses to reduce the domain gap in network prediction and increase the predic-
tion reliability for the missing modality path. Extensive experiments on the BraTS 2018
dataset demonstrate the benefits of our approach compared to competing approaches. The
implementation code is publicly available at GitHub.
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1. Introduction

Magnetic Resonance Imaging (MRI) is a prevalent non-invasive imaging utility commonly
used in medical diagnosis and treatment that can provide a 3D representation of human
organs, tissues, and the skeletal system. However, interpretation of the data by a clinical
expert (e.g. localizing and segmenting the brain tumor) is typically time-consuming and
expensive. In addition, due to inter- and intra-rater variabilities, clinical expert annota-
tions are always accompanied by uncertainties. Therefore, multi-modal MRI imaging (e.g.
T1, T1c, T2, and Flair modalities) can be beneficial since it aggregates complementary
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modality-specific information and allows more accurate pathology assessment. However,
acquiring all desirable imaging modalities sometimes is not feasible due to practical con-
straints, such as lengthy scan time and image corruption. Hence, a missing modality issue
may raise uncertainty for tumour localization and segmentation, since each modality con-
tributes unique and comprehensive information (Azad et al., 2022b; Zhao et al., 2022).

Several methods have been presented to solve the problem of automatic segmentation.
Over the past decade, Convolutional Neural Networks (CNNs) have been instrumental in
the development of medical image segmentation, such as UNet (Ronneberger et al., 2015),
and its variants (Valanarasu et al., 2020; Zhou et al., 2018; Azad et al., 2022a), which have
been widely used due to their symmetric architecture and potentiality to capture contextual
semantic information while preserving multi-scale features with skip connections. Recently,
the introduction of the Vision Transformer (ViT) has substantially improved the perfor-
mance of all computer vision tasks by including an attention mechanism that effectively
captures global information (Dosovitskiy et al., 2020). Since then, Transformers have been
diligently deployed in medical image segmentation to compensate for CNNs’ inability to
capture sufficient contextual information, yielding poor performance in boundary areas.
Motivated by the U-shaped architecture of UNet, Swin-UNet (Cao et al., 2021), and DS-
TransUNet (Lin et al., 2022) propose pure transformer models based on Swin Transformer
for image segmentation. Similarly, MISSFormer (Huang et al., 2021) employs a hierarchical
symmetric encoder-decoder Transformer coupled with the enhanced Transformer block to
boost the feature representations. Aside from fully-Transformer models, various approaches
have been presented that employ both CNNs and Transformers together to acquire low-level
and high-level features (Heidari et al., 2022; Chen et al., 2021). However, these models re-
quire the presence of all modalities to provide their excellent results. Otherwise, in case of
a missing modality, their performance would decrease.

Several methods have been proposed for dealing with missing data in medical imaging.
Early approaches aim at synthesizing the missing modality during the training process (Azad
et al., 2022b). However, reconstructing the missing modality usually requires designing
a modality-specific network and limits the performance of these strategies for end-to-end
training. Therefore, more recent methods adopt a more efficient strategy, building a uniform
model for all possible missing modalities by learning full modality joint representations.
HEMIS (Havaei et al., 2016) proposes to encode each modality into an embedding space
using separate convolutional layers. Afterward, the embedded features’ first and second-
order moments (mean and variance) are calculated to establish a common representation
space between modalities. During inference, any combination of inputs can be given to
construct the segmentation map. The same strategy is followed by PIMMS (Varsavsky
et al., 2018), HVED (Dorent et al., 2019), and URN (Lau et al., 2019) in creating a common
latent subspace and seeking to retrieve the missing information using the constructed latent
representation. However, such approaches are unable to provide adequate information using
only mean and variance and yield poor performance when more than one modality is absent.

In recent years, Generative Adversarial Networks (GANs) have been established for
generating synthetic data (Qin et al., 2022; Chang et al., 2020; Cao et al., 2020; Sharma
and Hamarneh, 2019). Nevertheless, employing GAN-based models to tackle the missing
modality problem raises several difficulties. In addition to possibly generating undesirable
imputation noise when synthesizing the missing modality, they can also show non-converging
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characteristics, require extensive and careful training, and the generator is likely to become
unstable during training.

Other approaches, such as the networks described by (Azad et al., 2022c; Liu et al.,
2022; Wang et al., 2021), take advantage of the knowledge distillation strategy. They
offer a co-training strategy for training the “complete modality” and “missing modality”
models simultaneously in order to complement each other’s feature representations and
restore missing knowledge of missing modalities. However, their models rely on the CNN
structure and are therefore unable to effectively capture structural and shape information
(e.g., learning brain structure and detecting abnormal regions) from the “full modality”
path, resulting in less accurate prediction when facing several missing modalities. Besides
that, these methods only perform feature recalibration between the “full modality” and
the “missing modality” paths and lack to imitate the modality-specific information and
contextual consistency. In this paper, we argue that contextual consistency is crucial for
the segmentation task and seek to model such consistency with the Transformer model.
Furthermore, we propose to modify the bottleneck representation by including additional
tokens to learn modality-specific representation and compensate for the missing information.
We create our architecture in a pure Transformer fashion with efficient self-attention blocks
and perform the co-training strategy in an end-to-end manner.

2. Proposed Method

The overall structure of the proposed MMCFormer is depicted in Figure 1. MMCFormer is
a novel pure Transformer-based approach that adopts the co-training strategy for the MRI
missing modality task, where one network is assigned to train the complete modality while
the other trains with the missing modality. Co-training is a multi-view algorithm that
predicts every data point from two independent views (Rahate et al., 2022). These two
views are trained independently and complement one another since both provide unique,
complementary information. On the other hand, MRI modalities have shown that they can
provide comprehensive and distinguishable features of brain structure that enable physicians
to have more accurate anatomical and functional examinations. To this end, taking an input
3D modality image Xi ∈ RH×W×D×C with spatial dimensions H ×W ×D and C channels
(i.e. modalities) and the set of modalities M = {T1, T1w, T2 and Flair}, we can describe
the full-modality data as Xf , which for all subjects it contains all the modalities in M, and
the missing modality as Xm, which for each subject it may contain one or more modalities
from M. We define two parallel 3D efficient Transformers U-Net models for our co-training
strategy, where each network is trained separately and simultaneously. One is trained on the
complete data (Xf ) to obtain comprehensive information about the full modality, and the
second one is trained on the incomplete data (Xm) to derive the missing modalities details.
The co-training strategy allows the “full modality” network to distill its knowledge into the
“missing modality” one, and compensate for the lack of modality-specific information. In
the next subsections, we first present our network structure and then present our knowledge
distillation mechanisms.
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Figure 1: Overview of the proposed MMCFormer. MMCFormer deploys three feature-
matching mechanisms to reduce the domain gap and to ensure knowledge dis-
tillation from the “full modality” path into a “missing modality” network.

2.1. Network Architecture

As stated earlier, our network builds upon an efficient Transformer design to reduce the com-
putational burden of 3D data processing. More precisely, for an input image XH×W×D×C ,
we first perform the tokenization process by extracting n non-overlapping 3D patches and
applying the parametric mapping function to embed each token into a d dimensional space.
Next, following the general idea of the self-attention mechanism, we create the Q, K, and
V matrices using linear projections. However, instead of applying the basic self-attention
module, which suffers from a quadratic computational complexity, we follow the efficient
self-attention strategy (Shen et al., 2021)

E(Q,K, V ) = ρq(Q)
(
ρk(k)

TV
)
, (1)

where ρ shows the softmax operation. It was shown that (Shen et al., 2021) the efficient
self-attention module can approximate the standard self-attention operation but with much
lower computational complexity, O(d2n) vs O(n2) (Shen et al., 2021). Where d and n
indicate the embedding dimension and the number of tokens, respectively. For our U-Net
structure, we follow a symmetrical design and include three efficient Transformer blocks
in each encoder/decoder block. We use patch merging and patch expanding layers in the
encoding and decoding paths, respectively. Finally, we include the skip-connection path
in each scale of the network to capture multi-scale representations. The same structure is
used in both the “full modality” and the “missing modality” network. For training, two
main and three auxiliary loss functions are applied to reconstruct the segmentation map
and ensure the knowledge distillation between the full modality and the missing modality
paths. Our first primary loss function is the Dice loss, which computes the loss between the
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ground truth Y and the predicted mask Y
′
to learn the segmentation map:

Lseg = αLdice

(
Y ′
f , Y

)
+ βLdice

(
Y ′
m, Y

)
(2)

In the training step, we set α to 0.6, and β to 0.4. In the second step, we follow (Azad et al.,
2022c) and design a consistency loss function to reduce the domain gap between the ”full
modality” and the missing one, aiming to reduce the distance between the two distributions
and increase the confidence of the ”missing modality” model. Thus, our approach will
improve the boundary area estimation in cases where the uncertainty (or entropy) of pixels
is high or when the probability of a pixel belonging to a class is low. Equation 3 illustrates
our consistency loss function:

LConsistency (Sf , Sm) =
c∑

i=1

∣∣Si
f − Si

m

∣∣ (3)

where, Si indicates the soft prediction map in the ith channel of the network in each path.
Next, we design and employ two knowledge distillation modules, namely Multi-Scale Con-
textual Agreement (MSCA) and Modality-Specific (MSP) tokens, to ensure the effective
distillation of the semantic and contextual information associated with the full-modality
model into the missing one, as outlined in the next subsection.

2.2. Knowledge Distillation Modules

Multi-Scale Contextual Agreement (MSCA) Module: Considering a rich represen-
tation of the full-modality path, we aim to impose a hierarchical knowledge distillation
module to the missing-modality path to adaptively recalibrate its feature representation
and minimize the domain gap. To this end, we propose the MSCA module, which seeks to
minimize the context distribution between the missing and full-modality paths in each scale
of the network. In our efficient self-attention mechanism, we compute the global context
(GC) using the query and value vectors as GC = (ρk(k)

TV ) ∈ Rd×d. To effectively align
the correlation matrix calculated in both paths (GCf and GCm), we strive to minimize the
distance as follows:

LMSCA (GCf ,GCm) = 1−
tr {GCfGCm}
∥GCf∥ ∥GCm∥

∈ [0, 1] (4)

The LMSCA becomes zero when the correlation matrices are equal and one if they have
maximum difference. Using the inner product, the above equation can be considered as
cosine dissimilarity: LMSCA(GCf ,GCm) = 1− cos (GCf ,GCm). The design of LMSCA is
well suited to align the correlation of the “missing modality” path with the “full-modality”
one.
Modality Specific (MSP) Module: In the MSCA module, we aimed to align the feature
distribution between the two networks. However, such alignment might suppress the dis-
criminative modality-specific (MS) features that existed in the full-modality paths. There-
fore, we design the MSP module to preserve discriminative features in the full path and
transfer this information to the missing-modality path. For this purpose, we define four
modality-specific tokens in the network bottleneck, where each token aims to preserve dis-
tinctive features of each input modality. We choose bottleneck since it contains highly
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condensed low-dimensional information of label maps, hence, we can exploit its useful and
distinctive features to distill the modality-specific knowledge to the “missing modality”
network. Besides that the bottleneck layer summarizes the rich feature representation of
the encoder into a lower-dimensional and more compact representation, making it easier to
match the modalities and maintain consistency between the two networks. Thus, MSP loss
is calculated using the output of full and missing tokens from the bottleneck, culminating
in transferring modality-specific distinguishing features from the complete model to the
incomplete one. The MSP loss is defined as:

LMSP (MSPf ,MSPm) =
M∑
i=1

|MSP i
f −MSP i

m| (5)

This soft-aligned feature representation helps the missing-modality path to reconstruct
the discriminative features which are not feasible through its incomplete input modalities.
We finally devise a reconstruction loss in the full-modality path to ensure that each token
learns modality-specific information. To do so, we employ an auxiliary reconstruction de-
coder head (Drec) alongside the segmentation head to perform the reconstruction task. In
each step, we randomly take one of the tokens alongside the resultant feature maps from
the previous decoder layer to input into the reconstruction decoder, seeking to reconstruct
the modality assigned to the class token. By doing so, we can guarantee that each token
learns distinctive modality information. For the reconstruction loss, we use the combination
of MS-SSIM and L1 distance (Zhao et al., 2016) to better reconstruct the high-frequency
information alongside the image content, which are crucial for the MRI modalities:

Lrecon = θ

1− lM (p̃) ·
M∏
j=1

csj(p̃)


︸ ︷︷ ︸

LMS-SSIM

+ (1− θ).GσM
G
.
1

N

∑
p∈P

|Xi(p)− Y
′
recon(p)|︸ ︷︷ ︸

Lℓ1

(6)

where Y
′
recon is the reconstruction output. lM and csj are derived from SSIM Equation 7

at scales M and j.

SSIM(p) =
2µxµy + C1

µ2
x + µ2

y + C1
· 2σxy + C2

σ2
x + σ2

y + C2
= l(p) · cs(p) (7)

p stands for pixel. According to (Zhao et al., 2016), means and standard deviations are
calculated using a Gaussian filter with a standard deviation σG, denoted GσG . Moreover,
MS-SSIM, a multi-scale form of SSIM, necessitates observing pixels at a neighbourhood of
p within a window with the same kernel size as GσG , whereas calculating its derivative is
infeasible in some boundary regions. Hence, the loss for the whole window is approximated
by computing loss at its center pixel p̃.

2.3. Joint Objective

Eventually, the overall loss function L is formulated by:

L = Lseg + λ0Lcon + λ1LMSCA + λ2LMSP + λ3Lrecon (8)
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To determine the contribution of each loss to the overall loss value, we use λ coefficients,
which are set experimentally. The model is trained using Adam optimization with a learning
rate of 1e−4 and batch size 1 for 200 epochs. In addition, the code is developed in PyTorch,
and the model is trained on a single RTX 3090 GPU.

3. Experimental Results

3.1. Dataset and Evaluation Metric

For performance evaluation, we use the BraTS 2018 dataset (Menze et al., 2014; Bakas et al.,
2018), which is commonly used for benchmarking brain glioma segmentation pipelines with
well-curated multi-institutional MRI data. This dataset includes 250 cases, each with four
3D MRI modalities (T1, T1c, T2, and FLAIR) rigidly aligned, resampled to 1× 1× 1 mm
isotropic resolution, and skull-stripped. The input volumetric spatial data size is 240× 240
with 155 slices each. Annotations for the BraTS dataset include three tumor subregion
classes: the enhancing tumor, the peritumoral edema, and the necrotic and non-enhancing
tumor core. In our experiment, we follow the pre-processing steps and the same input size
(160× 192× 128) as suggested in (Azad et al., 2022c) to evaluate our network in terms of
the Dice Similarity Coefficient (DSC).

3.2. Comparative Results

In Table 1, we provide the comparative results on each combination of the missing modal-
ity scenario. In comparison to the HeMIS(Havaei et al., 2016) and HVED (Dorent et al.,
2019) strategies, our approach produces better segmentation results, specifically in the sin-
gle modality (e.g., only T2) scenario. Moreover, SMU-Net (Azad et al., 2022c) proposes
to decompose the representational space into style and content vectors and then strives to
minimize the distribution difference between the full and missing modality path to perform
knowledge distillation. Similarly, the ACN (Wang et al., 2021) takes the same perspective
and performs the knowledge distillation in terms of both style and content modules but with-
out separating them. Although both approaches strive to maximize the similarity between
full and missing networks, they lack to include a mechanism to preserve the modality-specific
features and distill such representation to the “missing modality” network. On the contrary,
our approach proposes MSP tokens combined with the reconstruction head to guarantee
such information preservation and performance gain. Quantitatively, compared to HeMIS
and HVED, our approach significantly improves the performance by a 12-49 Dice score for
single modality scenarios. In addition, compared to SMU-Net and the ACN approaches,
the DSC score slightly rises by 0.5-2 Dice score. Visual segmentation results are presented
in Figure 2 for single modality scenarios. It can be observed that the model can predict
the brain tumour regions, whereas such prediction was not feasible by only relying on the
input data without reconstructing the missing information.

3.3. Ablation Study

To analyze the effect of each module on the overall performance, we also provide an ablation
study in Table 2. It can be observed that by eliminating each module from the proposed
structure, the overall performance slightly decreases. The largest performance drop happens
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Table 1: Performance comparison on the BraTS 2018 dataset using Dice metric. HeM,
HVE, and MMC indicate the HeMIS, HVED, and our proposed MMCFormer
models, respectively.

Modalities

Flair T1 T1c T2

◦ ◦ ◦ •
◦ ◦ • ◦
◦ • ◦ ◦
• ◦ ◦ ◦
◦ ◦ • •
◦ • • ◦
• • ◦ ◦
◦ • ◦ •
• ◦ ◦ •
• ◦ • ◦
• • • ◦
• • ◦ •
• ◦ • •
◦ • • •
• • • •

Mean

Complete

HeM HVE ACN SMU MMC

79.2 80.9 85.4 85.7 84.1
58.5 62.4 79.8 80.3 80.4
54.3 52.4 78.7 78.6 78.6
79.9 82.1 87.3 87.5 86.2
81.0 82.7 84.9 86.1 86.3
63.8 66.8 79.6 80.3 80.2
83.9 84.3 86.0 87.3 87.7
80.8 82.2 84.4 85.6 85.9
86.0 87.5 86.9 87.9 88.0
83.3 85.5 87.8 88.4 88.7
85.1 86.2 88.4 88.2 88.3
87.0 88.0 87.4 88.3 88.5
87.0 88.6 87.2 88.2 88.9
82.1 83.3 86.6 86.5 86.8
87.6 88.8 89.1 88.9 89.0

78.6 80.1 85.3 85.9 85.9

Core

HeM HVE ACN SMU MMC

50.5 54.1 66.8 67.2 69.7
58.5 66.7 83.3 84.1 86.6
37.9 37.2 70.9 69.5 69.3
49.8 50.4 66.4 71.8 70.0
69.1 73.7 83.2 85.0 86.7
64.0 69.7 83.9 84.4 86.6
56.7 55.3 70.4 71.2 72.0
53.4 57.2 72.8 73.5 74.0
58.7 59.7 70.7 71.2 72.4
67.6 72.9 82.9 84.1 86.7
70.7 74.2 83.3 84.2 86.6
61.0 61.5 67.7 67.9 67.8
72.2 75.6 82.9 82.5 86.6
70.7 75.3 83.2 84.4 86.7
73.4 76.4 84.8 87.3 87.4

59.7 64.0 76.8 77.9 79.2

Enhancing

HeM HVE ACN SMU MMC

23.3 30.8 41.7 43.1 50.7
60.8 65.5 78.0 78.3 79.0
12.4 13.7 41.8 42.8 42.9
24.9 24.8 42.2 46.1 49.6
68.6 70.2 74.9 75.7 79.1
65.3 67.0 75.3 75.1 78.7
29.0 24.2 42.5 44.0 48.1
28.3 30.7 46.5 47.7 46.9
28.0 34.6 44.3 46.0 48.3
68.0 70.3 77.5 77.3 79.5
69.9 71.1 75.1 76.2 78.1
33.4 34.1 42.8 43.1 50.7
69.7 71.2 73.8 75.4 79.1
69.7 71.1 75.9 76.2 79.2
70.8 71.7 78.2 79.3 80.1

48.1 50.1 60.70 61.8 64.7

(a) Ground Truth (a) T1 (b) T1c (c) T2 (d) Flair

Figure 2: Segmentation results of the MMCFormer in single modality setting using BraTS
2018 dataset. The WT, edema, and necrotic regions are visualized with blue, red,
and green colors. The results indicate that our method generates predictions that
exhibit a smooth profile within each modality.

when the MSP tokens are eliminated, hence, showing the importance of preserving MS
features. In fact, our model utilized each of these modules to ensure that the predictions
of the missing modality network are in line with the predictions made by the full modality
network in different levels of the network. This is particularly important when the missing
modality network is trained with missing information and must rely on the full modality
network as a reference. For instance, the MCA module helps the missing modality network
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Table 2: Contribution of each MMCFormer module on the overall performance. For all
experiments, only the T2 modality was used as input for the missing modality
network.

LMCA LMSP Lrecon WT CT ET Average

✗ ✓ ✓ 83.7 69.2 49.7 67.6
✓ ✗ ✓ 82.1 66.6 47.9 65.6
✓ ✓ ✗ 84.0 68.9 50.3 67.7

✓ ✓ ✓ 84.1 69.7 50.7 68.2

to align its feature representation in each level of the network and learn discriminative
features that exist on the full-modality path. This helps to improve the accuracy and
reliability of the predictions made by the missing modality network and leads to more
robust performance in real-world applications. Additionally, the LConsistency is calculated
using the full modality network’s prediction, which acts as a “teacher” to guide the missing
modality network. This results in the missing modality network learning to generate more
accurate predictions and reduces the risk of overfitting to the training data. Further ablation
studies are provided in the Appendix section.

4. Conclusion

To address missing modality correction in an end-to-end manner, we proposed our MM-
CFormer model, which utilizes a co-training strategy to perform knowledge distillation
from the full-modality network into a missing modality one. To preserve modality-specific
features, we proposed MSP tokens in conjunction with the reconstruction head to distill
more discriminative features to the “missing modality” network. We also included a con-
text agreement module to refine the feature representation in each scale of the co-training
strategy.
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vom 17. bis 19. März 2019 in Lübeck, pages 22–22. Springer, 2019.

Kenneth Lau, Jonas Adler, and Jens Sjölund. A unified representation network for segmen-
tation with missing modalities. arXiv preprint arXiv:1908.06683, 2019.

Ailiang Lin, Bingzhi Chen, Jiayu Xu, Zheng Zhang, Guangming Lu, and David Zhang. Ds-
transunet: Dual swin transformer u-net for medical image segmentation. IEEE Transac-
tions on Instrumentation and Measurement, 2022.

Han Liu, Yubo Fan, Hao Li, Jiacheng Wang, Dewei Hu, Can Cui, Ho Hin Lee, and Ipek
Oguz. Moddrop++: A dynamic filter network with intra-subject co-training for multiple
sclerosis lesion segmentation with missing modalities. arXiv preprint arXiv:2203.04959,
2022.

Bjoern H Menze, Andras Jakab, Stefan Bauer, Jayashree Kalpathy-Cramer, Keyvan Fara-
hani, Justin Kirby, Yuliya Burren, Nicole Porz, Johannes Slotboom, Roland Wiest, et al.
The multimodal brain tumor image segmentation benchmark (brats). IEEE transactions
on medical imaging, 34(10):1993–2024, 2014.

Zhiwei Qin, Zhao Liu, Ping Zhu, and Wenyuan Ling. Style transfer in conditional gans for
cross-modality synthesis of brain magnetic resonance images. Computers in Biology and
Medicine, 148:105928, 2022.

Anil Rahate, Rahee Walambe, Sheela Ramanna, and Ketan Kotecha. Multimodal co-
learning: challenges, applications with datasets, recent advances and future directions.
Information Fusion, 81:203–239, 2022.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
biomedical image segmentation. In International Conference on Medical image computing
and computer-assisted intervention, pages 234–241. Springer, 2015.

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi
Parikh, and Dhruv Batra. Grad-cam: Visual explanations from deep networks via
gradient-based localization. In Proceedings of the IEEE international conference on com-
puter vision, pages 618–626, 2017.

Anmol Sharma and Ghassan Hamarneh. Missing mri pulse sequence synthesis using multi-
modal generative adversarial network. IEEE transactions on medical imaging, 39(4):
1170–1183, 2019.

Zhuoran Shen, Mingyuan Zhang, Haiyu Zhao, Shuai Yi, and Hongsheng Li. Efficient at-
tention: Attention with linear complexities. In Proceedings of the IEEE/CVF winter
conference on applications of computer vision, pages 3531–3539, 2021.

Jeya Maria Jose Valanarasu, Vishwanath A Sindagi, Ilker Hacihaliloglu, and Vishal M
Patel. Kiu-net: Towards accurate segmentation of biomedical images using over-complete
representations. In International conference on medical image computing and computer-
assisted intervention, pages 363–373. Springer, 2020.

1154



MMCFormer: Missing Modality Compensation Transformer for Brain Tumor Segmentation

Thomas Varsavsky, Zach Eaton-Rosen, Carole H Sudre, Parashkev Nachev, and M Jorge
Cardoso. Pimms: permutation invariant multi-modal segmentation. In Deep Learning
in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, pages
201–209. Springer, 2018.

Yixin Wang, Yang Zhang, Yang Liu, Zihao Lin, Jiang Tian, Cheng Zhong, Zhongchao Shi,
Jianping Fan, and Zhiqiang He. Acn: Adversarial co-training network for brain tumor
segmentation with missing modalities. In International Conference on Medical Image
Computing and Computer-Assisted Intervention, pages 410–420. Springer, 2021.

Hang Zhao, Orazio Gallo, Iuri Frosio, and Jan Kautz. Loss functions for image restoration
with neural networks. IEEE Transactions on computational imaging, 3(1):47–57, 2016.

Zechen Zhao, Heran Yang, and Jian Sun. Modality-adaptive feature interaction for brain
tumor segmentation with missing modalities. In International Conference on Medical
Image Computing and Computer-Assisted Intervention, pages 183–192. Springer, 2022.

Zongwei Zhou, Md Mahfuzur Rahman Siddiquee, Nima Tajbakhsh, and Jianming Liang.
Unet++: A nested u-net architecture for medical image segmentation. In Deep learning
in medical image analysis and multimodal learning for clinical decision support, pages
3–11. Springer, 2018.

Appendix A. Details on Network Architecture

The MMCFormer framework employs a pure Transformer-based hierarchical U-Net struc-
ture that builds upon a 3D efficient Transformer. As shown in Figure 3(a), there are
two paths incorporated in the proposed model, namely the full-modality and the missing-
modality paths. Both paths use the same structure but with different input data. In each
path, the input image X ∈ RH×W×D×C is first processed by a patch embedding module,
which creates overlapping patch tokens of size 4 × 4 × 4. These tokens are then processed
by the encoder, which consists of three stacked encoder blocks. Each block contains two
successive 3D efficient Transformer layers and a patch merging layer that merges 2× 2× 2
patch tokens to reduce the spatial dimension while doubling the channel dimension. This
hierarchical representation enables the model to acquire an overview of multiple scales and
enhance the feature representations. In the decoder, the patch-expanding block increases
the number of tokens by a factor of 2. The output of each patch-expanding block is then
fused with the features from the corresponding encoder layer using a linear layer to recover
spatial and fine-grained information. The resulting features are subsequently passed into
two 3D efficient Transformer layers. Finally, a linear projection layer generates the final
segmentation map. It is also worthwhile to mention that the full-modality network and
the missing-modality network in our architecture contain 8.57 and 8.47 million parameters,
respectively.

For the extra full-modality path, we define four modality-specific tokens entered into the
bottleneck. We then design a modality reconstruction task to ensure that each token learns
specific modality information. One of the four tokens is then randomly selected and fed
into the single 3D efficient Transformer layer along with the resultant feature map obtained
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from the last skip connection in order to reconstruct the specific modality assigned to the
token. A 3D upsampling module followed by a linear reconstruction head is finally applied
to acquire the modality-specific reconstruction image.

Appendix B. Details of Network Training and Testing

In our proposed method, we use a two-path transformer network architecture to perform
medical image segmentation, where the first network takes full modalities as input and the
second network takes an arbitrary number of missing modalities as input. Similar to the
literature work by Wang et al. (Wang et al., 2021) and Azad et al. (Azad et al., 2022c), we
train the missing modality network for each combination of missing modalities and use its
output to evaluate the final performance. This means that the missing modality network can
be used to perform the segmentation task on an incomplete input (with missing modalities)
at the test time. It worth mentioning that the input images for the two transformer networks
come from the same subject, where the full modality path aims to help the missing modality
network to learn how to recover the missing information that might occur during testing.
To achieve this, during the training process, we inject images with the full set of modalities
into the first network, and then manually discard some to serve as the input for the missing
modality network. Once the models are trained, we only use the missing modality path to
predict the segmentation map for new samples.
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Appendix C. The Importance of Global Context

The global context (GC) agreement utilized in our network imposes additional consistency
on the network to ensure feature distillation hierarchically. In our experiments (subsec-
tion 3.3), we illustrated the contribution of this module to the overall performance of the
network. Here we aim to visualize the global context matrix (attention map) of each path
to highlight the similarity between these two paths by including or dropping the MSCA
module. Figure 4 shows the GC of the full and missing modality path without imposing
the MSCA module. It can be observed that there is a large variation between the attention
map on both paths. In another word, this visualization shows that each network uses dif-
ferent feature representations to predict brain tumour segmentation maps. To enhance the
feature representation by the missing modality path, we next include the MSCA module,
results are shown in Figure 5. It is evident that the missing modality network now uses the
full-modality path to recalibrate its feature representation to highlight the more informa-
tive features and enhance the importance of discriminative features that may exist in the
network representation.

It is also worthwhile to mention that in our strategy, we include the MSCA module
on each block of the encoder to ensure feature consistency in a multi-scale manner with a
little overhead in terms of loss calculation. This strategy helps the network to learn the
complex representations of the data in multiple stages, instead of a single stage. This is
important because as the features get more abstract, the relationship between modalities
also becomes more complex, and it is more difficult for the network to model the inter-
modality relationship. By using hierarchical distillation, we allow the network to learn the
relationship in multiple stages and at different levels of abstraction, which can lead to a
better understanding of the data and more accurate predictions. Additionally, we believe
that the added complexity (backward on the loss function) of using hierarchical distillation
in every stage of the encoder is not considerable and is outweighed by the benefits it provides.

Appendix D. Extreme Missing Modality

To further provide an insight into the effectiveness of our suggested framework for recon-
structing the missing information, we offer quantitative and qualitative results in extremely
missing modalities setting as presented in (Azad et al., 2022c). In this respect, we follow
(Azad et al., 2022c) and design a scenario where during the training process the missing
modality path only uses a single modality to learn the brain tumour segmentation map
while benefiting from the full-modality path. During the test time, we only use the trained
missing-modality path with a single modality as an input. Table 3 illustrates the quanti-
tative results. For the comparison, we also include our baseline model, which consists of
the co-trained Transformer-based U-Net model without any knowledge distillation mecha-
nism. Quantitative results demonstrate that the MMCFormer surpasses the U-Net baseline
method significantly. Besides that, our method achieves competitive results on all single
modalities compared to the SOTA approaches. More specifically, in the T1ce and T2 modal-
ities, our network surpasses the ACN and SMU-Net models by a large margin. Similarly, for
the Flair modality, our method performs better compared to the ACN and HeMIS, HVED,
and SMU-Net methods. In the T1 modality, we observed a large improvement compared
to our baseline and approach but slightly less performance comparing to the ACN network.
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Figure 4: Global context (GC) visualization without the proposed MSCA module.

The obtained results prove the efficacy of the suggested framework in learning task-specific
patterns and recovering the missing information.

In order to validate the efficacy of incorporating a knowledge distillation strategy for
enhancing performance and retrieving missing information, we conducted a comparative
evaluation between our proposed method and the widely-recognized nnU-Net approach,
as described by Isensee et al. (2019) (Isensee et al., 2019). Our results are presented in
Table 3, which clearly demonstrates that, in comparison to conventional single-modality
based methods, the knowledge distillation strategy can significantly enhance performance.

To visually analyze the qualitative performance of our suggested framework, we have
provided the Grad-CAM (Selvaraju et al., 2017) attention maps in Figure 6-Figure 9 for each
modality. In this respect, we trained and evaluated the network with an extremely missing
modality setting. It can be seen that the MMCFormer localizes the brain tumour region
with high confidence in a single modality case. This illustrates the effect of our co-training
strategy for recovering the missing information. Additionally, the T1 modality is more
effective for characterizing the structural information and less informative for detecting for
core tumour region, however, our MMCFormer with a T1 modality can recognize the tumour
region with high confidence which indicates the importance of our suggested modules for
recovering the missing information. Similarly for other modalities, we can observe that the
activation map has a high magnitude around the tumour region and it highly overlaps with
the grand truth annotation mask. On top of that, we can observe that the MMCFormer
attention has less variance and it is in line with the ground truth map, which shows the
effect of reconstructed features for precise boundary prediction.
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Figure 5: Global context (GC) visualization with the proposed MSCA module.

Table 3: Quantitative results of the proposed MMCFormer model against the SOTA ap-
proaches on BraTS 2018 series with extreme missing modality scenario. We use
the average of the whole, enhanced and core tumour segmentation scores to report
the dice score for each modality.

Article

Our Baseline
U-HeMIS (Havaei et al., 2016)
HVED (Dorent et al., 2019)
ACN (Wang et al., 2021)
SMU-net (Azad et al., 2022c)
nnU-Net(Isensee et al., 2019)

MMCFormer

Dice score

T1 T1c T2 FLAIR AVG

61.2 77.3 60.1 58.2 64.2
16.7 59.2 36.0 51.5 48.8
34.4 64.8 55.2 52.4 51.7
63.8 80.3 64.6 65.3 68.5
63.3 80.9 65.3 68.4 69.4
62.4 77.6 61.3 61.8 65.7

63.6 82.0 68.2 68.6 70.6

Appendix E. Reconstruction Head

In our strategy, we included the reconstruction head to reconstruct each MRI modality
during the training time. The objective of the reconstruction head in our design is to guide
the network through the learning modality-specific feature and transfer such discriminative
information to the missing modality network. To ensure the performance of our reconstruc-
tion head as an auxiliary task, we visualize the reconstructed modality in Figure 10 along

1159



W
h
o
le

T
u
m
o
u
r

C
or
e
T
u
m
o
u
r

E
n
h
an

ce
d
T
u
m
o
u
r

(a) Ground Truth (b) Prediction (c) Heatmap (d) Ground Truth (e) Prediction (f) Heatmap

Figure 6: Visualization of the activation map on T1 modality using our suggested MMC-
Former.
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Figure 7: Visualization of the activation map on T1c modality using our suggested MMC-
Former.
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Figure 8: Visualization of the activation map on T2 modality using our suggested MMC-
Former.
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Figure 9: Visualization of the activation map on Flair modality using our suggested MM-
CFormer.
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with the error map. We use a pixel-wise difference for calculating the error mask. It can
be seen that for all modalities, our network manages to reconstruct the images with good
quality and an acceptable error rate. There is also a high potential for more fine-grained
reconstruction by increasing the complexity of the reconstruction head, however, the recon-
struction is not the main task in our design and therefore we use a simple reconstruction
head to fulfill the objective. It is also worthwhile to mention that in our strategy we uti-
lize the combination of MS-SSIM and L1 distances for the reconstruction loss. Although
including the MS-SSIM loss enhances the reconstruction loss, it requires more computation
complexity. Hence, one might consider such complexity in their use case.
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Figure 10: Visual reconstruction of Flair, T1, T1c, and T2 modalities, along with the error
map between the reconstructed results and the ground truth.
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