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Abstract

Pretraining on large natural image classification datasets such as ImageNet has aided model
development on data-scarce 2D medical tasks. 3D medical tasks often have much less data
than 2D medical tasks, prompting practitioners to rely on pretrained 2D models to featurize
slices. However, these 2D models have been surpassed by 3D models on 3D computer vision
benchmarks since they do not natively leverage cross-sectional or temporal information. In
this study, we explore whether natural video pretraining for 3D models can enable higher
performance on smaller datasets for 3D medical tasks. We demonstrate video pretraining
improves the average performance of seven 3D models on two chest CT datasets, regardless
of finetuning dataset size, and that video pretraining allows 3D models to outperform 2D
baselines. Lastly, we observe that pretraining on the large-scale out-of-domain Kinetics
dataset improves performance more than pretraining on a typically-sized in-domain CT
dataset. Our results show consistent benefits of video pretraining across a wide array
of architectures, tasks, and training dataset sizes, supporting a shift from small-scale in-
domain pretraining to large-scale out-of-domain pretraining for 3D medical tasks. Our code
is available at: https://github.com/rajpurkarlab/chest-ct-pretraining

1. Introduction

Computed tomography (CT) imaging has transformed clinical decision-making, with over
80 million scans performed in the US annually and growing at 12% year over year (Smith-
Bindman et al., 2019; Brenner and Hricak, 2010). To keep pace with this expansion, deep
learning can assist clinicians with CT interpretation and has translated to FDA approvals,
such as Viz.ai’s stroke detection from head CTs (Matsoukas et al., 2022). Large labeled
datasets are critical to these successes, but curating them is time- and cost-intensive: even
the largest medical imaging datasets are much smaller than natural image datasets.

While 2D medical imaging tasks use ImageNet pretraining de-facto (Ke et al., 2021;
Raghu et al., 2019), 3D medical imaging tasks have yet to find such a standard. One popular
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Figure 1: Visual summary of our methods. We examined seven 3D (three 2D) models that
were pre-trained either on Kinetics (ImageNet), or on the Stanford dataset for
PE detection, or on both sequentially. We then transferred these weights and
finetuned them on RSNA for PE detection and LIDC for lung nodule detection.

pretraining approach adapts 2D or 2.5D models to 3D tasks (Tajbakhsh et al., 2015; Roth
et al., 2016). While these approaches can leverage pretraining on large image datasets
like ImageNet, they cannot natively incorporate cross-sectional or temporal information.
Furthermore, Yang et al. (2021)’s approach transferring pretrained weights from 2D to 3D
CNNs is relatively inflexible in supporting newer architectures (e.g. transformers).

One approach to natively learn cross-sectional information with 3D models is by pre-
training on natural videos before finetuning on medical tasks. A few isolated studies have
hinted at the utility of large-scale video pretraining. For example, C3D on sports videos
for HPV status prediction (Lang et al., 2021), or natural video (Kinetics) for appendicitis
and pulmonary embolism (PE) (Rajpurkar et al., 2020; Huang et al., 2020). However, these
existing studies focused on performance on a specific clinical task, and it remains unknown
whether the utility of large-scale video pretraining is universal across models and tasks.

Beyond video pretraining, pretraining on in-domain CT datasets can capture domain-
specific 3D relationships but is typically limited by labeled data availability. Nevertheless,
in-domain pretraining has shown promise for some CT tasks, including PE detection, nodule
detection, and liver segmentation (Chen et al., 2019; Gibson et al., 2018; Huang et al., 2020).
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However, like video pretraining, studies proposing in-domain CT pretraining have largely
focused on training a single 3D model for a single clinical task, and do not evaluate the
benefits of in-domain pretraining across models and tasks.

Contributions We study the impact of (1) video pretraining, in-domain pretraining, and
sequential pretraining for a (2) broad, representative universe of models (seven 3D and three
2D) on (3) two large-scale public datasets of chest CTs for PE detection and lung nodule
detection, across (4) three dataset sizes (Figure 1). Our study advances this area through
four major contributions to training methodology:

(1) While prior work focus on one model for one task, we study a diverse and representative
set of models with hyperparameter search, helping generalizing across models;

(2) Further, we are the first to contextualize these findings across classification tasks and
protocols, helping generalizing to the chest CT anatomys;

(3) Our direct and original comparisons of video with in-domain and sequential pretraining
help disentangle the effect of video pretraining from other pretraining procedures; and

(4) Our experiments illuminate how pretraining’s benefits scale with dataset size and how
pre- and post- training methods interact with performance, which are especially impor-
tant in the small data regimes of medicine.

2. Methods

Finetuning datasets We study PE detection using the RSNA PE CT dataset (Colak
et al., 2021), splitting the publicly labeled 7,279 studies (one study per patient) into 5,095
studies for training, 1,092 studies for validation, and 1,092 studies for testing. We further
validate our results on lung nodule detection using the LIDC-IDRI dataset (Armato et al.,
2011), splitting 1,018 studies (1,010 patients) into 714 studies (707 patients) for training,
152 studies (151 patients) for validation, and 152 studies (152 patients) for testing, with
no patient overlap. To understand whether pretraining benefits smaller datasets more, we
evaluated with 100% (5,095 studies), 10% (509 studies), and 1% (50 studies) of the RSNA
training set and 100% (714 studies) and 10% (71 studies) of the LIDC training set. Each
RSNA or LIDC study contains both study-level and slice-level annotations for the presence
or absence of PE. Slice-level annotations are used to supervise our models that inference on
the slice or window level, while study-level annotations are used to compute performance
metrics after aggregating (using the max function) into window-level predictions for a study.

Pretraining datasets We pretrain on in-domain, out-of-domain, and sequential out-of-
domain then in-domain datasets. For in-domain, we use CT scans from the RadFusion
dataset, containing 1,837 studies from Stanford Medicine (Zhou et al., 2021a). We removed
the CTs that overlapped with RSNA, leaving 1,241 studies (449 PE positive, 792 PE neg-
ative), which we split into training (868 studies), validation (186 studies) and test (187
studies) sets. For out-of-domain, we use ImageNet for our 2D models, and Kinetics-400, a
dataset of ~ 10-second YouTube clips for action recognition for our 3D models, using public
weights from their respective authors or PyTorchVideo (Fan et al., 2021a).

Model universe We chose 3D models released after 2018 with target ~ 30M parame-
ters from PyTorchVideo’s model zoo, resulting in five models: MViT (Fan et al., 2021b),
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R(24+1)D R50 (Tran et al., 2017), CSN R101 (Tran et al., 2019), SlowFast R50, Slow R50
(Feichtenhofer et al., 2018). We also add Swin-T (Liu et al., 2021) noting recent progress
by Swin Transformers, and PENet (Huang et al., 2020) as an architecture developed for PE
detection, totalling seven models in our 3D model universe. We benchmark against three
2D models, with ImageNet weights available on torchvision (Paszke et al.): ResNet-18,
ResNext-101, and LRCN (an ResNext-101 backbone connected through GRU layers). See
Appendix A for detailed description of datasets, training, and evaluation procedure.
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Figure 2: Video pretraining consistently improves 3D models’ AUC on 10% and 100% of
RSNA and LIDC, except MViT on 10% of LIDC (p = 0.254)

3. Experiments
3.1. Video pretraining improves performance

We first studied whether video pretraining improves the performance of 3D models by testing
the downstream performance of 10 models on RSNA and LIDC (Figure 2 and Table 1). On
the PE detection task (RSNA), video pretraining improved the mean area under the receiver
operating characteristic curve (AUC) of 3D models finetuned on 100% of the training set
by 0.146 (95% CI [0.098, 0.241]), from an average AUC of 0.573 [0.500, 0.784] without
video pretraining to an average AUC of 0.719 [0.637, 0.902] with video pretraining. Every
model benefitted from video pretraining, but these individual differences were not assessed
for statistical significance. For models finetuned on 10% of the training set, we observed
similar mean improvement of 0.074 [0.018, 0.128] AUC, smaller than the mean 0.146 AUC
improvement from finetuning on 100% of the training set.

We also saw performance increases on the nodule detection task (LIDC), on which video
pretraining improved the mean AUC of models finetuned on 100% of the training set by
0.124 [0.025, 0.302]. For models finetuned on 10% of the training set, video pretraining had
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a mean 0.077 [-0.042, 0.192] AUC increase, again smaller than the improvement observed
on 100% finetuning,.

Sequential video then CT pretraining outperforms just CT pretraining We
conducted a sensitivity analysis to see whether video pretraining still improves downstream
performance when models are further pretrained on the in-domain Stanford CT dataset,
comparing 3D model performance with sequential video then pretraining against perfor-
mance with just CT pretraining (Table 1).

On the nodule detection task with 100% finetuning, models with video then CT pre-
training had mean AUC 0.146 [-0.003, 0.358] greater than models with just CT pretraining.
We found a difference of 0.055 [-0.031, 0.155] on nodule detection with 10% finetuning.
Similarly on the PE detection task, video then CT pretraining improved the mean AUC of
3D models by 0.069 [-0.194, 0.258] with 100% finetuning and 0.002 [-0.071, 0.071] with 10%
finetuning, beyond just CT pretraining.
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Figure 3: With pretraining, the maximum 3D model AUC is greater than the maximum
2D model AUC on less data compared to without pretraining. Error bars show
95% confidence intervals, and wider confidence intervals for LIDC are due to its
relatively smaller test set size (7.3x less data than RSNA).

3.2. Video pretraining allows 3D models to outperform 2D baselines

Since we’ve observed the effect of pretraining varies between 2D and 3D models and with
dataset size, we compare the maximum performance of our 3D model universe and our 2D
model universe finetuning with 100%, 10%, and 1% on the PE detection task, and with
100% and 10% on the nodule detection task (Figure 3).

With pretraining (video pretraining for 3D models and ImageNet for 2D), we found
that the maximum 3D model AUC exceeds the maximum 2D model AUC on 10% of RSNA
with difference 0.023 [-0.017, 0.067] AUC, on 100% of RSNA with difference 0.118 [0.079,
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0.155] AUC, and on 100% of LIDC with difference 0.052 [-0.006, 0.112] AUC. However,
without pretraining maximum 3D model AUC exceeded the maximum 2D model AUC on
10% of RSNA with smaller difference 0.007 [-0.050, 0.060] AUC and on 100% of RSNA with
difference 0.185 [0.132, 0.239]. Without pretraining, 3D model performance did not exceed
2D model performance on LIDC.

With pretraining, multiple 3D models exceed the best performing 2D model for a given
task and finetuning proportion. The best performing 3D model (Swin-T') outperformed the
best performing 2D model (LRCN) by 0.118 [0.079, 0.155] AUC on the PE detection task
with finetuning at 100%. With 10% finetuning, the top three 3D models performed better
than the best performing 2D model (ResNext-101): Swin-T with difference 0.023 [-0.017,
0.067] AUC, CSN R101 with difference 0.015 [-0.026, 0.060] AUC, and MViT with difference
0.003 [-0.039, 0.046] AUC. On nodule detection with 100% finetuning, the best performing
3D model (Swin-T) also outperformed the best-performing 2D model (ResNext-101) by
0.052 [-0.006, 0.112] AUC.
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Figure 4: Difference between video/image pretrained AUC and CT pretrained AUC on 10%
and 100% of RSNA and LIDC. All 3D models except PENet on 10% of RSNA
benefit from video pretraining more than CT pretraining.

3.3. Video pretraining outperforms small-scale CT pretraining

Finally, we investigated whether video pretraining on the large-scale Kinetics-400 could
improve the performance of 3D models more than pretraining on the comparatively smaller-
scale Stanford CT dataset. This CT dataset is in-domain for the RSNA and LIDC datasets,
and is the exact same task as RSNA. We evaluated our models on 100% and 10% finetuning
from the RSNA and LIDC training sets (Figure 4 and Table 1).

Comparing video pretraining against CT pretraining, models with video pretraining had
mean AUC 0.182 [0.116, 0.236] greater than models with CT pretraining on PE detection
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with 100% finetuning. We found similar differences of 0.072 [-0.034, 0.167] on PE detection
with 10% finetuning, 0.144 [0.053, 0.354] on nodule detection with 100% finetuning, and
0.068 [0.008, 0.135] on nodule detection with 10% finetuning.

Although video pretraining outperforms CT pretraining in isolation, we further inves-
tigated whether CT pretraining may be a useful additional step beyond video pretraining.
We found that video pretraining outperforms video then CT pretraining by 0.112 [-0.023,
0.398] mean AUC on PE detection with 100% finetuning, 0.070 [-0.034, 0.165] on PE detec-
tion with 10% finetuning, -0.002 [-0.149, 0.075] on nodule detection with 100% finetuning,
and 0.012 [-0.142, 0.075] on nodule detection with 10% finetuning.

In contrast to our results for 3D models, we found that CT pretraining is useful as
additional supervision beyond ImageNet pretraining for 2D models. ImageNet then CT
pretraining outperformed (but not statistically significantly) just ImageNet pretraining by
0.025 [-0.014, 0.095] mean AUC on PE detection with 100% finetuning and 0.066 [0.000,
0.105] mean AUC on PE detection with 10% finetuning. We saw smaller boosts on nodule
detection: 0.003 [-0.004, 0.013] mean AUC for 100% finetuning, and 0.010 [-0.079, 0.079]
mean AUC for 10% finetuning.

4. Discussion

4.1. Video pretraining improves performance

We demonstrated that natural video pretraining significantly improves performance across
multiple models and multiple chest CT tasks. Pretraining on large-scale natural video
datasets such as Kinetics have supported progress on human action recognition benchmarks
(Carreira and Zisserman, 2017). However, previous studies of out-of-domain pretraining for
CT tasks have only leveraged pretraining on ImageNet (Chaunzwa et al., 2021; Parakh
et al., 2019; He et al., 2020), pretraining on much smaller action recognition datasets for a
focal model (Zunair et al., 2021), or pretraining on Kinetics for a focal model (Rajpurkar
et al., 2020; Huang et al., 2020).

Similar to how 2D models benefit from ImageNet pretraining (Ke et al., 2021), this
improvement may be rooted in the ability of 3D models to learn spatiotemporal features
(Qian et al., 2021) and transfer understanding of temporal relationships from video to
spatial relationships. For example, Li et al. (2021) showed that third-person video has
latent signals relevant to the first-person, and thus more spatial, perspective. Additionally,
radiologists often interpret 3D imaging studies by scrolling through contiguous 2D slices to
make abnormalities more apparent.

We further explored the effect of training data size on video pretraining performance
gains, an experiment identified but not executed by prior work (Rajpurkar et al., 2020).
Surprisingly, we found that video pretraining is more effective on larger datasets for both
PE and nodule detection, which differs 2D medical tasks where more training data makes
pretraining less effective (Irvin et al., 2019). This could be because 3D medical imaging
datasets are an order of magnitude smaller than 2D, so overfitting on smaller datasets
undermines the benefits of pretraining. For example, CheXpert consists of 224,316 chest
x-rays, while DeepLesion consists of only 10,594 CT scans (Yan et al., 2018).
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4.2. Video pretraining allows 3D models to outperform 2D baselines

We found that with video pretraining, 3D models are able to outperform our 2D baselines
on smaller datasets and across multiple chest CT tasks. Practitioners often favor 2D models
because of their greater performance on smaller datasets (Ebrahimi et al., 2020; Gao et al.,
2017), even though large-scale supervised or self-supervised pretraining for a specific 3D
model has outperformed some 2D models (Zhou et al., 2021b; Lang et al., 2021). From the
recent RSNA PE competition, all of the top 10 submissions used 2D models, with some
reporting that 2D models outperformed the 3D models they studied. Only the 8th and 10th
best submissions incorporated a 3D model (without video pretraining) (noa).

Currently, modeling for CT tasks often uses 2D models to featurize each slice, which
ignores cross-sectional information unlike 3D models. In fact, we selected our 2D model uni-
verse (ResNet, ResNext, and LRCN) based on their success on 3D medical tasks (Rajpurkar
et al., 2020; Ebrahimi et al., 2020; noa). 3D architectures have not been recently popular
for classification and few have investigated their pretraining (Domingues et al., 2020).

In the human action recognition domain, 2D models applied to individual frames were
solid performers when datasets were small (Tran et al., 2018), but with larger datasets, 3D
models consistently outperform 2D feature extractors (Carreira and Zisserman, 2017; Hara
et al., 2018). We speculate that a similar shift from 2D to 3D models may be in store for 3D
medical tasks, and we demonstrate that supervision from a large dataset of natural videos
yields significant performance boosts that make 3D models immediately competitive with
2D models on the same dataset sizes.

4.3. Video pretraining outperforms small-scale CT pretraining

We observed that natural video pretraining yields greater downstream performance than
supervised pretraining on a typically-sized dataset of chest CTs. Because 3D models require
much larger datasets to train (Carreira and Zisserman, 2017), Kinetics-400 was found to be
the first dataset of sufficient scale to avoid overfitting for 3D models in action recognition
(Hara et al., 2018). Thus despite the domain gap, natural videos are one of the few datasets
with sufficient scale to tame 3D models for 3D medical tasks.

Further, self-supervised learning (SSL) has shown promise in addressing labeled data
scarcity. On 2D medical tasks, SSL has been suggested as a complementary or subsequent
technique to supervised pretraining (Azizi et al., 2021, 2022). Islam et al. (2021) evaluates
SSL against ImageNet pretraining on slices from the RSNA PE detection task, but does
not reason about 3D models or video pretraining. On 3D medical tasks, Zhou et al. (2021b)
demonstrate outperformance of their in-domain SSL method against supervised 2D and 3D
approaches, but because the self vs. fully supervised decision can interact with the in- vs.
out-of-domain data decision, they are not equipped for supervised comparisons. Although
we constrain our conclusions to supervised pretraining, we study it thoroughly and suggest
future work may investigate the interactions and compositionality between SSL and our
in-domain and out-of-domain pretraining strategies.

In contrast to our findings for 3D models, CT pretraining provided useful supervision
beyond that from natural image classification for our 2D models. Our observed boosts were
larger on the PE detection task than the nodule detection task, as expected since our CT
pretraining task was PE detection.
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5. Conclusion

Video pretraining has several practical clinical implications. First, large public video
datasets do not contain sensitive patient information, thus comparably large CT datasets
may not be public. Video supervision thus could aid development of more effective CT
imaging models. Second, video pretraining is appropriate for 3D medical imaging tasks
where data is often scarce, such as new or rare conditions. The success of video pretraining
for CT suggests investigation into its benefits for ultrasound, MRI, and other 3D modalities.
In conclusion, we demonstrate the utility of video pretraining through, to the best of
our knowledge, the first broad-scale study across 3D models, chest CT tasks, pretraining
setups, and dataset sizes. We verify that only datasets of sufficient scale as Kinetics-400,
even though its task is out-of-domain, can unlock 3D models’ performance to outperform
2D baselines. We expect that this work will encourage the more widespread use of video
pretraining to enable improvements in 3D medical imaging tasks using 3D models.
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Appendix A. Detailed Methods
A.1. Data
A.1.1. PRETRAINING DATASETS

Our 3D models are pretrained on Kinetics-400, a dataset containing 306,245 YouTube clips
each around 10 seconds long. Like in 2D transfer learning, we replace the 400-way classifi-
cation head with a single output head for our downstream tasks regularized with dropout.

We pretrain on CT scans from the in-domain RadFusion dataset (henceforth, the Stan-
ford dataset), containing 1,837 1.25 mm axial CT studies from Stanford Medicine (Zhou
et al., 2021a). 1,241 studies (449 PE positive, 792 PE negative) remained after removing
CT scans that overlapped with the RSNA dataset. We randomly split patients into training
(868 studies), validation (186 studies) and test (187 studies) sets.

A.1.2. FINETUNING DATASETS

We study PE detection using the RSNA PE CT dataset, the largest publicly available PE
dataset sourced across five international medical centers and annotated by 80 subspecialist
thoracic radiologists (Colak et al., 2021). Among the publicly labeled 7,279 studies, with

770


http://arxiv.org/abs/1904.02811
http://arxiv.org/abs/1904.02811

VIDEO PRETRAINING ADVANCES 3D DEEP LEARNING ON CHEST CT TASKS

one study per patient, the dataset was split into 5,095 studies for training, 1,092 studies for
validation, and 1,092 studies for testing. We use axial series with a slice thickness ranging
from 0.625 to 5.0 mm. Each study contains both study-level and slice-level annotations for
the presence or absence of PE. Slice-level annotations are used to supervise our models that
inference on the slice or window level, while study-level annotations are used to compute
performance metrics after aggregating window-level predictions for a study

We further validate our results on lung nodule detection using the LIDC-IDRI dataset,
a large publicly available dataset sourced from seven medical centers and eight medical
imaging companies and annotated by 12 thoracic radiologists (Armato et al., 2011). Among
the 1,018 studies from 1,010 patients, the dataset was split into 714 studies from 707 patients
for training, 152 studies from 151 patients for validation, and 152 studies from 152 patients
for testing, with no patient overlap between splits. We use the axial series with slice
thickness ranging from 0.6 to 4 mm. Each study contains both study-level and slice-level
annotations for nodules > 3mm from four radiologists, and we consider a slice as positive for
a nodule if at least three radiologists labeled the slice as positive. Similar to the RSNA PE
dataset, we use slice-level annotations to supervise our models and study-level annotations
for evaluation.

A.2. Training and Evaluation Procedure

We use public checkpoints of 3D models pretrained on Kinetics-400 available on PyTorchVideo’s
model zoo (Fan et al., 2021a). We chose 3D models released after 2018 with target ~ 30M
parameters, resulting in five models: MViT (Fan et al., 2021b), R(2+1)D R50 (Tran et al.,
2017), CSN R101 (Tran et al., 2019), SlowFast R50, Slow R50 (Feichtenhofer et al., 2018).
Noting the recent benchmark progress made by Swin Transformers, we also study Swin-T
with official Kinetics-400 weights (Liu et al., 2021). Finally, we incorporate an architecture
developed for PE detection (PENet) with official Kinetics-400 weights (Huang et al., 2020).
In total, this yields seven models in our 3D model universe. We benchmark these perfor-
mances against three 2D models, with ImageNet weights available on torchvision (Paszke
et al.): ResNet-18, ResNext-101, and LRCN (which uses a ResNext-101 backbone connected
through GRU layers).

Before training, slices consisting of raw Hounsfield Units are clipped to the ranges [400,
1000] for PE detection and [-600, 1500] for nodule detection and zero-centered. During
training, we resize each 512 x 512 pixel slice to 256 x 256 for computational efficiency,
apply an AutoAugment policy learned on ImageNet (Cubuk et al., 2019), randomly rotate
up to 20 degrees, and randomly crop to 224 x 224. We upsample positive studies to have
equal prevalence as negative studies during training. Instead of using the entire volumetric
CT scan, we use a sliding window of 32 consecutive slices as inputs to our 3D models (24
for PENet, as recommended by the authors (Huang et al., 2020)). A sliding window is
considered positive if at least four slices are labeled as positive.

We optimize the binary cross-entropy loss using Adam (81 = 0.9, 52 = 0.999). We use
an exponentially sampled grid search of learning rates over 10! to 107°, with a learning
rate schedule that halves the learning rate on validation loss plateau for 5 epochs. We
choose the learning rate that achieves the highest validation accuracy on 10% of a dataset
for computational efficiency and use that learning rate for 100% of the same dataset. We
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use a batch size of 32 for 2D models and 16 for 3D models. We use half precision (16-bit
precision) to train our models in order to lower memory requirements.

Slice- and window-level predictions are aggregated to study-level predictions using the
max function (if any window has a positive prediction, then the study has a positive predic-
tion). We train our models for a maximum of 50 epochs, with early stopping if study-level
validation AUC does not improve for five epochs. The model that achieves the greatest
validation AUC is chosen for evaluation on the test set.

We use the nonparametric bootstrap to estimate 95% confidence intervals for each statis-
tic. For AUC as an example, we draw 1,000 replicates with replacement from the test set
and calculate the AUC on each replicate. We report the 2.5 and 97.5 percentiles of the
resulting distribution as our confidence interval. Statistical significance is assessed at the
0.05 level.
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Appendix B. AUC [95% CI] for model universe on all training setups

Table 1: The Video/Image column denotes if out-of-domain pretraining was used: video for
3D models and image for for 2D models. The CT column denotes if CT pretraining

was used.
Video = op  Down - Fine | g net 18 ResNext-101 LRCN PENet
/Image -stream -tune
yes yes  RSNA 10% 0.689 [0.654, 0.723] _ 0.642 [0.605, 0.677] _ 0.722 [0.691, 0.754] __ 0.539 [0.500, 0.576
100% | 0.774 [0.743, 0.803]  0.753 [0.719, 0.782]  0.770 [0.738, 0.797]  0.527 [0.482, 0.569
LIDC 10% 0.754 [0.665, 0.832]  0.847 [0.781, 0.909]  0.778 [0.698, 0.848]  0.679 [0.590, 0.765
100% | 0.801 [0.727, 0.868]  0.833 [0.760, 0.898]  0.766 [0.685, 0.840]  0.654 [0.562, 0.740
no RSNA 1% 0.543 [0.506, 0.578]  0.544 [0.508, 0.579]  0.618 [0.582, 0.651]  0.476 [0.441, 0.514
10% 0.584 [0.546, 0.620]  0.642 [0.605, 0.677]  0.629 [0.592, 0.665]  0.505 [0.484, 0.524
100% | 0.679 [0.644, 0.713]  0.758 [0.723, 0.789]  0.784 [0.754, 0.810]  0.713 [0.694, 0.733
LIDC 10% 0.832 [0.758, 0.895]  0.817 [0.735, 0.891]  0.699 [0.603, 0.786]  0.537 [0.450, 0.628
100% | 0.788 [0.711, 0.859]  0.832 [0.761, 0.893]  0.770 [0.685, 0.848]  0.617 [0.525, 0.706
no yes  RSNA 10% 0.612 [0.578, 0.648]  0.654 [0.618, 0.690]  0.718 [0.684, 0.748]  0.539 [0.500, 0.576
100% | 0.741 [0.706, 0.773]  0.723 [0.691, 0.755]  0.723 [0.690, 0.754]  0.520 [0.482, 0.556
LIDC 10% 0.787 [0.707, 0.854]  0.836 [0.763, 0.899]  0.765 [0.677, 0.842]  0.530 [0.440, 0.619
100% | 0.809 [0.729, 0.882] ~ 0.811 [0.732, 0.884]  0.745 [0.658, 0.823]  0.508 [0.412, 0.606
no RSNA 1% 0.492 [0.462, 0.521]  0.492 [0.462, 0.521]  0.553 [0.519, 0.588]  0.476 [0.441, 0.513
10% 0.524 [0.487, 0.558]  0.519 [0.483, 0.554]  0.531 [0.494, 0.564]  0.482 [0.461, 0.503
100% | 0.599 [0.564, 0.633]  0.554 [0.520, 0.590]  0.588 [0.554, 0.622]  0.558 [0.514, 0.604
LIDC 10% 0.778 [0.693, 0.849]  0.831 [0.750, 0.902]  0.707 [0.622, 0.787]  0.579 [0.494, 0.668
100% | 0.768 [0.689, 0.839]  0.834 [0.757, 0.898]  0.809 [0.728, 0.879]  0.525 [0.440, 0.615]
Video  op  Down Fine | niviT Swin-T Slow R50 SlowFast R50
/Image -stream -tune
yes yes  RSNA 10% 0.609 [0.571, 0.643]  0.500 [0.500, 0.500]  0.479 [0.441, 0.514]  0.486 [0.449, 0.523
100% | 0.781 [0.643, 0.810]  0.504 [0.468, 0.542]  0.500 [0.500, 0.500]  0.615 [0.577, 0.653
LIDC 10% 0.532 [0.445, 0.625]  0.561 [0.470, 0.649]  0.562 [0.467, 0.656]  0.488 [0.429, 0.551
100% | 0.702 [0.620, 0.780]  0.888 [0.833, 0.937]  0.500 [0.500, 0.500]  0.500 [0.500, 0.500
no RSNA 1% 0.516 [0.480, 0.554]  0.517 [0.479, 0.555]  0.545 [0.508, 0.579]  0.482 [0.446, 0.518
10% 0.645 [0.603, 0.678]  0.665 [0.630, 0.700]  0.518 [0.468, 0.563]  0.585 [0.537, 0.637
100% | 0.759 [0.725, 0.792]  0.902 [0.869, 0.931]  0.637 [0.587, 0.685]  0.658 [0.605, 0.706
LIDC 10% 0.586 [0.492, 0.682]  0.629 [0.537, 0.718]  0.637 [0.545, 0.725]  0.556 [0.458, 0.651
100% | 0.707 [0.616, 0.791]  0.883 [0.830, 0.934]  0.544 [0.452, 0.645]  0.556 [0.464, 0.655
no yes  RSNA 10% 0.538 [0.501, 0.572]  0.498 [0.461, 0.534]  0.477 [0.450, 0.504]  0.557 [0.522, 0.593
100% | 0.523 [0.572, 0.560]  0.698 [0.662, 0.730]  0.521 [0.495, 0.546]  0.500 [0.500, 0.500
LIDC 10% 0.481 [0.438, 0.519]  0.593 [0.510, 0.674]  0.502 [0.423, 0.583]  0.502 [0.416, 0.582
100% | 0.500 [0.500, 0.500]  0.530 [0.446, 0.610]  0.482 [0.403, 0.558]  0.503 [0.404, 0.595
no RSNA 1% 0.510 [0.494, 0.524]  0.499 [0.462, 0.539]  0.500 [0.500, 0.500]  0.499 [0.495, 0.500
10% 0.533 [0.495, 0.569]  0.536 [0.488, 0.581]  0.500 [0.500, 0.500]  0.487 [0.442, 0.525
100% | 0.517 [0.481, 0.557]  0.784 [0.739, 0.826]  0.539 [0.493, 0.586]  0.548 [0.505, 0.597
LIDC 10% 0.542 [0.447, 0.640]  0.481 [0.422, 0.540]  0.446 [0.362, 0.528]  0.494 [0.407, 0.586
100% | 0.491 [0.400, 0.584]  0.581 [0.493, 0.663]  0.500 [0.500, 0.500]  0.530 [0.437, 0.629
Video Down Fine
Jimage  CT  _stremm  -tume | CSN R101 R(2+1)D R50
yes yes  RSNA 0% 0.510 [0.475, 0.545] _ 0.479 [0.443, 0.516
100% | 0.677 [0.645, 0.713]  0.641 [0.605, 0.673
LIDC 10% 0.645 [0.550, 0.727]  0.507 [0.408, 0.600
100% | 0.535 [0.450, 0.627]  0.738 [0.661, 0.816
no RSNA 1% 0.502 [0.466, 0.538]  0.487 [0.449, 0.525
10% 0.657 [0.620, 0.690]  0.520 [0.475, 0.565
100% | 0.670 [0.618, 0.719]  0.693 [0.649, 0.739
LIDC 10% 0.575 [0.515, 0.637]  0.541 [0.483, 0.600
100% | 0.610 [0.518, 0.697]  0.588 [0.490, 0.678
no yes  RSNA 10% 0.497 [0.492, 0.501]  0.482 [0.466, 0.498
100% | 0.500 [0.500, 0.500]  0.500 [0.500, 0.500
LIDC 10% 0.490 [0.401, 0.581]  0.491 [0.397, 0.587
100% | 0.508 [0.415, 0.599]  0.464 [0.378, 0.564
no RSNA 1% 0.500 [0.500, 0.500]  0.500 [0.500, 0.500
10% 0.538 [0.491, 0.584]  0.501 [0.478, 0.525
100% | 0.563 [0.513, 0.609]  0.500 [0.500, 0.500
LIDC 10% 0.514 [0.435, 0.597]  0.464 [0.382, 0.550
100% | 0.527 [0.433, 0.620]  0.484 [0.388, 0.583

e



KE HuaNG O’CONNELL KLIMONT YEUNG RAJPURKAR

e



	Introduction
	Methods
	Experiments
	Video pretraining improves performance
	Video pretraining allows 3D models to outperform 2D baselines
	Video pretraining outperforms small-scale CT pretraining

	Discussion
	Video pretraining improves performance
	Video pretraining allows 3D models to outperform 2D baselines
	Video pretraining outperforms small-scale CT pretraining

	Conclusion
	Detailed Methods
	Data
	Pretraining datasets
	Finetuning datasets

	Training and Evaluation Procedure

	AUC [95% CI] for model universe on all training setups

