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Abstract
Magnetic Resonance Imaging (MRI) is considered the gold standard of medical imaging because
of the excellent soft-tissue contrast exhibited in the images reconstructed by the MRI pipeline,
which in-turn enables the human radiologist to discern many pathologies easily. More recently,
Deep Learning (DL) models have also achieved state-of-the-art performance in diagnosing multiple
diseases using these reconstructed images as input. However, the image reconstruction process within
the MRI pipeline, which requires the use of complex hardware and adjustment of a large number of
scanner parameters, is highly susceptible to noise of various forms, resulting in arbitrary artifacts
within the images. Furthermore, the noise distribution is not stationary and varies within a machine,
across machines, and patients, leading to varying artifacts within the images. Unfortunately, DL
models are quite sensitive to these varying artifacts as it leads to changes in the input data distribution
between the training and testing phases. The lack of robustness of these models against varying
artifacts impedes their use in medical applications where safety is critical. In this work, we focus
on improving the generalization performance of these models in the presence of multiple varying
artifacts that manifest due to the complexity of the MR data acquisition. In our experiments, we
observe that Batch Normalization (BN), a widely used technique during the training of DL models
for medical image analysis, is a significant cause of performance degradation in these changing
environments. As a solution, we propose to use other normalization techniques, such as Group
Normalization (GN) and Layer Normalization (LN), to inject robustness into model performance
against varying image artifacts. Through a systematic set of experiments, we show that GN and LN
provide better accuracy for various MR artifacts and distribution shifts.
Keywords: Deep learning, Distribution shifts, MR image diagnosis

1. Introduction

Magnetic Resonance Imaging (MRI) (Lauterbur, 1973) is a non-invasive medical imaging technique
considered the gold standard of diagnostic imaging because of its excellent soft-tissue contrast and
non-ionizing nature. It is an indirect imaging process in which the MR scanner (a complex piece of
hardware) collects measurements of the electromagnetic activity within the human subject’s body
after exposing the subject to a combination of magnetic field and radio frequency pulses. These
complex-valued measurements are collected in the frequency space called the k-space. The final
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grayscale volumetric image is generated from these measurements in two steps. First, a multi-
dimensional inverse Fourier transform is used to generate an image in the complex space. Then the
grayscale human interpretable image is generated by taking the magnitude of this complex image,
which the radiologist reads to render a diagnosis.

While MRI is a vital diagnostic tool, the acquisition process can be challenging. It requires a
great deal of expertise to operate the complex hardware, and the process can be time-consuming and
costly. A wide range of acquisition parameters must be carefully controlled and optimized to obtain
high-quality images, including tissue and scanner settings, sequence types, and parameters. This
complexity can lead to various image artifacts (Sled and Pike, 1998; Heiland, 2008), both within a
single machine and across different machines and patients. Another significant challenge of MRI
is the sensitivity to motion artifacts (Zaitsev et al., 2015; Shaw et al., 2019; Lee et al., 2020; Wang
et al., 2020). Due to the long acquisition time, even small movements by the patient can result in
ghosting, blurring, and affine transformations in the images. Additionally, when training systems for
automatic medical diagnosis, these artifacts can cause discrepancies in the training and validation
datasets, as they are often removed from the collected data, making them out of distribution.

More recently, Deep neural networks (DNNs) have shown great potential in improving various
aspects of the MRI pipeline, including 1) speeding up the measurement acquisition process by gener-
ating diagnostic quality images using under-sampled k-space data (Vellagoundar and Machireddy,
2015; Schlemper et al., 2018; Gözcü et al., 2019; Bakker et al., 2020), and 2) performing pathology
segmentation or inferring the presence/absence of diseases from the volumetric grayscale images
to assist radiologists in more accurate and faster diagnosis (Hammernik et al., 2018; Knoll et al.,
2019; Liang et al., 2019; Putzky and Welling, 2019; Sriram et al., 2020). Despite the impressive
performance of DNNs in disease identification on retrospective data sets, their use in real clinical
practice has remained elusive. Among the many reasons contributing to this discrepancy, one of them
is the sensitivity of these models to changes in input data distribution shifts (Goodfellow et al., 2014;
Hendrycks and Dietterich, 2019; Geirhos et al., 2019). Unfortunately, as discussed in the previous
paragraph, such input distribution shifts are quite prevalent in the MR imaging pipeline due to
multiple noise sources in the acquired measurements. This leads to artifacts within the reconstructed
images, varying across patients, machines, and even within the same machine.

With an over-arching goal of making DNNs suitable for use within real clinical practice, in this
research, we try to better understand the source(s) behind such brittleness of DNN models. Upon
extensive literature review, we identify at least one common underlying theme that connects all the
works involving DNNs for medical imaging tasks. We observed that across the board, these models
are trained using Batch Normalization (BN) (Ma and Jia, 2020; Sharma et al., 2021; Chiang et al.,
2021; Wahlang et al., 2022; Mallya and Hamarneh, 2022; Chikontwe et al., 2022), normalization
methodology extensively used in successfully training DNNs for a variety of tasks involving natural
images (Szegedy et al., 2016; He et al., 2016a; Hu et al., 2018; Sandler et al., 2018). We posit
that BN contributes to model vulnerability when dealing with distribution shifts during automatic
diagnosis. Specifically, BN statistics obtained from the training phase are sub-optimal during
inference when evaluated with various out-of-distribution scenarios, such as MR artifacts resulting
from the data acquisition process. To support this argument, we focus on the task of identifying
multiple clinically significant pathologies from the MR scans and simulate various artifacts (see
Figure 1), including herringbone artifact, Rician noise artifact (Rice, 1944; Gudbjartsson and Patz,
1995), biased field intensity (Sled and Pike, 1998), and subject-related motion artifacts (Zaitsev
et al., 2015; Godenschweger et al., 2016; Shaw et al., 2019; Lee et al., 2020) on the publicly
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available fastMRI dataset (Zbontar et al., 2018; Zhao et al., 2021). Our experiments reveal that batch
normalization leads to a significant degradation in the model performance with up to 10% drop on
the AUROC (BRA, 1997) for distribution shifts caused by certain artifacts.

These results are particularly noteworthy because, until now, the research community in this
field has focused on training DNNs primarily using batch normalization for automated diagnosis.
Recently, techniques such as Group Normalization (GN) (Wu and He, 2018) and Layer Normalization
(LN) (Ba et al., 2016) have gained popularity for image segmentation (Kao et al., 2019; Zhou and
Yang, 2019; Chen et al., 2021). However, to the best of our knowledge, this is the first work to
demonstrate their robustness to various changes and artifacts in the MR disease identification task.
To better understand these observations, we compare the BN statistics computed during training
with the statistics of the test samples and observe that the training statistics do not align with the
test environment. Additionally, we found that adapting the statistics during testing can improve
performance; however, alternate normalization strategies are crucial for ensuring the robustness and
applicability of these models in real-world clinical scenarios with changing conditions. Our findings
provide new insight for the community to consider different normalization strategies for DNNs in
medical imaging. The key contributions of our work are:

• We highlight the susceptibility of batch normalization in the task of disease prediction when
encountering distribution shifts and various artifacts present in practical clinical scenarios of
Magnetic Resonance Imaging (MRI).

• We show that alternate normalization strategies, such as group normalization and layer normal-
ization for intermediate layers, are more robust compared to batch normalization and essential
for training deep neural networks that are more robust to these issues.

• We further explore the reasons for the susceptibility of batch normalization.

2. Related Work

Application of deep learning to MRI. Over the last years, DNNs have experienced significant
success in solving image reconstruction and image analysis problems within the MRI pipeline. Image
reconstruction involves improving the efficiency of this process by reconstructing diagnostic quality
images from a fraction of the frequency space data, thereby significantly reducing the burden on
the data acquisition process (Lustig et al., 2007; Vellagoundar and Machireddy, 2015; Schlemper
et al., 2018; Gözcü et al., 2018; Haldar and Kim, 2019; Gözcü et al., 2019; Sanchez et al., 2020;
Bakker et al., 2020). For image analysis, DNNs have been trained to perform tasks like tissue/organ
segmentation or disease identification with high accuracy (Schmah et al., 2008; Liu et al., 2014;
Hatakeyama et al., 2014; Moeskops et al., 2016; Milletari et al., 2016; Chen et al., 2016; Hwang and
Kim, 2016; Pinaya et al., 2016; Lakhani and Sundaram, 2017; Park et al., 2019; Kim et al., 2019).
While successful, the evaluation of these models has been limited to carefully collected retrospective
data sets where special attention is paid to ensure that the input samples in the test set have the same
distribution as the input distribution of the training set.

Distribution shifts in MR image diagnosis. Previous research in computer vision (Goodfellow
et al., 2014; Hendrycks and Dietterich, 2019; Geirhos et al., 2019) has revealed that DL classification
models are vulnerable to distribution shifts, which can negatively impact their performance. On the
other hand, the medical imaging community has mainly focused on the robustness of segmentation
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models (Karani et al., 2021; Zhang et al., 2020; Yan et al., 2020; Tomar et al., 2022) to understand the
impact of anatomy, dataset, modality, and acceleration shifts. However, collecting data from different
scanners and medical sites is a difficult task due to the sensitive nature of patient data. Additionally,
there is still much to be learned about the robustness of deep-learning models for disease identification.
Therefore, in this work, we investigate the impact of input distribution shifts (Sled and Pike, 1998;
Zaitsev et al., 2015; Godenschweger et al., 2016) that might occur in actual clinical settings because
of the complexities associated with the MR data acquisition process on the performance of DNNs.

3. Automatic MR Image Diagnosis with Input Distribution Shifts

3.1. Motivation

The MR data acquisition process is multi-faceted, with a long-acquisition time that combines individ-
ual signals of different contrasts and adjusts various parameters such as proton density, temperature,
and field strength. However, the multi-parameter dependency can result in unwanted noise and
artifacts in the acquired MR signals, which can make interpretation of the images challenging,
especially in cases where diagnostic accuracy is critical.

The long acquisition times also lead to many clinical and research application challenges. For
example, patients may find the process uncomfortable or claustrophobic, and the procedure may
not be suitable for patients with certain medical conditions. Efforts have been made to reduce the
acquisition time (Lustig et al., 2007; Vellagoundar and Machireddy, 2015; Schlemper et al., 2018;
Sanchez et al., 2020; Bakker et al., 2020), but these methods reduce the image resolution, contrast,
and signal-to-noise ratio. These challenges are further exacerbated by the use of low-field scanners,
which despite being inexpensive, have yet to see widespread adoption due to the poor diagnostic
quality of the images generated by them.

Therefore, to ensure the effectiveness of deep learning models in clinical applications, evaluating
them in real-world scenarios is crucial. This will provide a better understanding of the model’s ability
to generalize and perform in actual situations. In addition, such evaluations can aid researchers and
practitioners in identifying the limitations of the models and how they can be improved to serve
patients and healthcare providers better.

3.2. Problem Setup

We consider the task of disease prediction, where we are given the ground-truth MR images denoted
by D = {(xi, yi)Ni=1} with N examples and K pathologies. We consider a classifier fΘ : Rd → K
with L layers and Θ as parameters, optimize the cross-entropy loss L by minimizing the expected
loss over the training data distribution Dtr, mathematically represented as:

minimize
Θ

E(x,y)∼Dtr

[
L(fΘ(x), y)

]
. (1)

However, input data distribution can change during inference for various reasons in clinical applica-
tions. In this work, we focus on model evaluation in the presence of covariate shifts (Sugiyama and
Kawanabe, 2012; Schölkopf et al., 2012), where the conditional distribution ptrain(y|x) = ptest(y|x),
but ptrain(x) ̸= ptest(x). We denote the clean and corrupted images with x and x̂, respectively.
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(a) Spike artifact (b) Rician noise (c) Bias field (d) Ghosting (e) Rigid motion
Figure 1: Visualization of simulated artifacts for the ground truth images.

3.3. Simulation of Various Artifacts

Obtaining corrupted MR images through traditional data acquisition methods can take time and
resources. To overcome this limitation, we simulate various MR artifacts to evaluate the generalization
of DNNs in the presence of input distribution shifts while minimizing the burden on data acquisition.
Furthermore, by simulating different types of MR artifacts, we can create a diverse dataset to evaluate
DNNs, which can help improve their performance on real-world MR images.
Hardware-related artifacts. Technical defects in the MR acquisition components, such as gradient
coils and amplifiers, cause these artifacts. One typical example of such artifacts is the spike or
herringbone artifact, created by electronic discharge in the receiver chain. We manifest this artifact
as wave-like fringes within the MR image (see Figure 1(a)) and change the ratio between the spike
intensity and the spectrum maximum to vary the intensity levels.
Rician noise artifact. Rician noise artifact arises due to the change in the field strength of MRI
scanners. It is caused by the Gaussian distributed noise present in raw k-space data, which leads
to ground-truth images with noise that follows a Rician distribution (Rice, 1944; Gudbjartsson
and Patz, 1995) as shown in Figure 1(b). Mathematically, for SNR k, this can be formalized as
x̂ = |x+N1(0, σ)+ iN2(0, σ)|, where σ = signal strength/k, signal strength is the maximum pixel
intensity for each instance.
Intensity non-uniformity. This artifact is caused by variations in intensity due to inhomogeneous
RF excitation field, non-uniform reception coil sensitivity, RF penetration, and standing-wave
effects (Sled and Pike, 1998). The resulting bias field can be modeled as a linear combination of
polynomial basis functions (Van Leemput et al., 1999) as shown in Figure 1(c). In this work, we
model the bias field as a third-order multiplicative polynomial and vary the maximum magnitude of
the coefficients to change the intensity of the field.
Subject-related artifacts. Due to the long acquisition time, MRI is sensitive to the movement of the
subject that causes motion artifacts (Zaitsev et al., 2015; Godenschweger et al., 2016; Shaw et al.,
2019; Lee et al., 2020). Rigid motion is caused due to the random movement of the subject. It can be
observed in all body parts and quantified by translation and rotation parameters (see Figure 1(e)),
which are commonly used in computer vision when working with natural images. We vary the
translation between 0 and 10 mm and angle between 0 to 20◦ (Wang et al., 2020).

Non-rigid motion is caused by involuntary motion, cardiac and respiratory motion, vessel
pulsation, gastrointestinal peristalsis, and blood and CSF flow. This produces ghosting artifacts
– partial or complete replication of the subject along the phase-encoding dimensions, blurring, or
decreased SNR ratio. We simulate the ghosting effect using N distinct ghosts by zeroing every N th

plane in k-space in the phase-encoding axis as shown in Figure 1(d). The ghosting axis was randomly
chosen and intensity s was varied between (0, d), such that s ∼ U(0, d) for all pathologies.
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3.4. Feature Normalization

Over the past years, feature normalization has emerged as an important component for the faster
convergence and stability of training deep learning models. The general formulation of feature
normalization for features aℓi ∈ RN×C×H×W involves computing the mean µi and standard deviation
σi of the features and then using these statistics to normalize the features. Specifically, the normalized
version of a feature aℓi can be defined following Wu and He (2018):

âℓi =
1

σi
(ai − µi), where µi =

1

m

∑
k∈Si

ak, σi =

√
1

m

∑
k∈Si

(ak − µk)
2 + ϵ (2)

Batch normalization (BN) (Ioffe and Szegedy, 2015) is a powerful technique widely used in deep
learning models to improve their performance. The method normalizes the intermediate layer’s
features by utilizing the statistics computed across the training data, Si = {k|kC = iC}. However,
when the distribution of the test data changes, these pre-computed statistics may not be optimal.
Additionally, using smaller batch sizes during training can result in less accurate estimates.
Adaptive Batch normalization (AdaBN) (Li et al., 2016) is an extension of the standard Batch
Normalization technique, which recomputes the BN statistics using an exponential moving average
across the test distribution to improve model generalization. While prior works (Schneider et al.,
2020; Nado et al., 2020; Benz et al., 2021) have shown that it addresses the issue of input distribution
shifts, it is not sufficient to obtain robust models for clinical diagnosis. In particular, when the
distribution shift is severe, AdaBN may even degrade the model’s performance (see Figure 2).
Layer normalization (LN) (Ba et al., 2016) is an alternative normalization technique to Batch
Normalization and AdaBN. LN calculates the mean and standard deviation across all features in a
layer instead of only using the batch dimension as in Batch Normalization, Si = {k|kN = iN}. This
allows LN to be applied consistently in both the training and testing phases, making it less sensitive
to the data distribution. Additionally, Layer normalization is independent of re-scaling and shifting
of individual training examples.
Group normalization (GN) (Wu and He, 2018) divides channels into G groups and computes
the mean and standard deviation across groups. Si = {k|kN = iN , ⌊ kC

C/G⌋ = ⌊ iC
C/G⌋}. The

independence of GN from the batch dimension makes it less sensitive to the distribution of the data,
which allows for better generalization performance. The multiple groups also provide a way for the
model to learn different distributions for each group, which increases flexibility compared to Layer
Normalization, where the number of groups is set to one.

4. Experiments

4.1. Experimental Setup

Data Sets. We consider the knee pathologies from the fastMRI (Zbontar et al., 2018) dataset,
where we use the ground-truth images with slice-level labels using fastMRI+ (Zhao et al., 2021)
for the three most significant pathologies as suggested by the clinicians. Concretely, we consider
1) Anterior Cruciate ligament (ACL) with 1,443 annotations of 254 subjects, 2) Meniscus tear with
5,658 annotations of 663 subjects, and 3) Cartilage with 3,600 annotations of 710 subjects. The
slices were cropped to 320× 320 and 15% of the dataset for validation and test sets.
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Models and Metrics. We conduct our experiments with PreactResNet-18 (He et al., 2016a) using
different normalization schemes as described in §3.4. We report the mean and standard deviation
across five independent runs. We evaluate with two commonly-used and widely accepted metrics,
AUROC (BRA, 1997) and Balanced Accuracy (García et al., 2009) on the varying intensity of
artifacts described in §3.3. The details for these metrics, code, hyper-parameters and the description
for the intensity levels of various artifacts are provided in Appendix A.

4.2. Quantitative Results

Evaluation on various artifacts. Figure 2 shows the evaluation of the model trained with clean
images on various artifacts. The results indicate that AdaBN is a simple yet effective method that
improves the AUROC on the spike and Ricean noise artifacts compared to traditional BN. However,
it is less effective on other types of artifacts. In contrast, GN and LN techniques overcome the
limitations of AdaBN and BN by demonstrating superior performance across all artifacts. The most
pronounced improvement is observed for spike and Ricean noise, resulting in an absolute increase of
10− 15% in AUROC at higher noise intensities. Similar performance gains are also observed for
field and ghosting artifacts, with an absolute improvement of 8% and 4%, respectively. Interestingly,
BN performs similarly to GN and LN when dealing with rigid-motion artifact. Further, we report the
balanced accuracy metric in Appendix B. Furthermore, in Figure C.13 and Figure C.12, we conduct
a comparison between models that were trained using Instance Normalization (IN) (Ulyanov et al.,
2016) and those that underwent no normalization. It is worth noting that for certain artifacts, the
model with no normalization achieved better performance than BN, while GN and LN outperformed
IN for most artifacts.

It is worth noting that AdaBN requires access to a set of test examples for adaptation, while GN
or LN only requires a single test example during inference. This makes GN and LN more practical
for real-world scenarios where the availability of examples from out-of-distribution shifts may be
limited. Overall, our evaluation suggests that GN and LN are more robust normalization schemes for
improving the performance of a model trained on clean images when dealing with various artifacts.
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Figure 3: ℓ2 distance between first batch norm layer
statistics and inference data statistics for various shifts
(mean on the left and variance on right) for Ricean
artifact, motion artifact, spike artifact and ghosting
artifact. We observe that performance degradation for
BN models is consistent with the increase in the drift
of BN statistics from the test distributions.

Further analysis. To understand the behav-
ior of batch normalization (BN), we compare
the statistics calculated during training with
the input statistics during testing. Specifically,
for the mean µi and variance σ2

i of layer i,
we calculate the ℓ2 distance between the mean
and variance of the test data and BN statistics
(∥µh − Etest[h]∥2, ∥σ2

h − Var[h]∥2) in Figure 3.
The results show that the spike and Ricean ar-
tifacts have a more significant impact on the
difference in the variance of the BN layer from
the test distributions compared to other shifts.
This is consistent with our evaluations in Fig-
ure 2, which have shown a significant decline in
the performance of models trained with BN under these distributions. We observed that the Ricean
artifact has a more substantial change in the mean compared to other artifacts. We defer the partial
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adaptation of BN statistics to Appendix B. Further, Figure C.14 shows a consistent degradation with
BN across all shifts irrespective of the batch size.

5. Conclusion

In this research, we investigate the robustness of DNNs when applied to disease identification. To
answer our research question, we conduct an empirical analysis to examine their effectiveness against
various artifacts commonly found in MRI such as hardware-related spiking artifact, Ricean artifact,
biased-field effect, and subject-related motion artifacts on fastMRI knee pathology data. Our findings
revealed that Batch Normalization, a widely used technique, is a significant contributing factor to the
sensitivity of DNNs to these artifacts. This is because the BN statistics computed during training
may not be optimal for handling distribution shifts that occur at test time. To tackle this problem, we
explored alternative normalization methods such as Group Normalization and Layer Normalization.
We found that these methods are more robust to input distribution shifts. In addition, we compared
the BN statistics computed during training with the statistics of the test-time input distribution, and
found that the performance drop of the model was proportional to the deviation between the two.
Our findings have several implications for developing more robust DNNs for medical imaging and
can potentially improve their accuracy and reliability of automatic disease identification.
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Supplementary Material
On Sensitivity and Robustness of Normalization Schemes to
Input Distribution Shifts in Automatic MR Image Diagnosis

Organization. The appendix is organized as follows: We provide the experimental details in
Appendix A. Next, we provide additional results and visualizations in Appendix B and additional
related work in Appendix C. The code is publicly available online.

Appendix A. Experimental Details

We extend the fastMRI (Zbontar et al., 2018) open-source codebase1 to the task of disease classifica-
tion for our experiments. We train all the methods with a batch size of 32 with early stopping using
mean validation AUC. We do a grid-search of learning rate in [1e−5, 1e−4, 1e−3, 1e−2] and weight
decay in [1e−5, 1e−4, 1e−3, 1e−2, 1e−1] for all the methods. We use a single NVIDIA Quadro
RTX 8000 for conducting all the normalization schemes. We evaluate all our experiments with:

(a)
Figure A.4: Preac-
tResNet block follow-
ing He et al. (2016b).

1. AUROC is a common metric used for the evaluation of medical prob-
lems solved in machine learning (Rajkomar et al., 2018; Rajpurkar et al.,
2017; Solares et al., 2020; Tschandl et al., 2019; Teixeira et al., 2017;
Dunnmon et al., 2019). It computes the area under the receiver operating
characteristic curve and can be calculated by the area under the False
Positive Rate (FPR) against the True Positive Rate (TPR) curve.

2. Balanced Accuracy (García et al., 2009). Due to the class-imabalance
across pathologies in the knee data set, we use this metric as it gives
equal weight to both majority and minority classes and is commonly
used in the presence of class imbalance learning (Khan et al., 2019).
It is computed as the average of the sensitivity and specificity, where
sensitivity and sensitivity are the true positive rate and true negative rate
respectively.

Architecture details. We adhere to the standard PreactResNet18 architec-
ture (He et al., 2016b) as shown in Figure A.4 and substitute the batch normal-
ization layers with alternate normalization layers.

Artifact details. We implement the Ricean artifact and utilize the TorchIO (Pérez-García et al.)
library to simulate other artifacts. The following details the parameters for varying intensities across
different artifacts:

• Hardware-related spike artifact has two key elements – the number of spikes and the
intensity. The intensity is defined as the ratio between the spike intensity and the maximum
of the spectrum. The number of spikes is selected randomly from a uniform distribution
between zero and the maximum number of spikes, and the intensity d is varied between
d ∈ {0.5, 0.7, 1.0, 1.5, 2.0} for all the pathologies. We visualize the different intensities
in Figure C.5.

1. https://github.com/facebookresearch/fastMRI
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• Ricean noise artifact has the SNR of the images as the hyper-parameter. The noisy images
generated by the SNR values considered for this artifact are visualized in Figure C.6.

• Biased field artifact has two hyper-parameters – the order of the basis polynomial function
and the maximum magnitude of polynomial coefficients. The order is fixed at three, and the
maximum coefficient varies between {0.5, 0.7, 1.0, 1.5, 2.0} (see Figure C.7).

• Subject-related ghosting artifact has two hyper-parameters – the number of ghosts and the
artifact strength in relation to the k-space maximum. We fix the number of ghosts to seven and
vary the strength between {0.5, 0.7, 1.0, 1.5, 2.0}. We visualize these variations in Figure C.8.

• Subject-related rigid motion artifact. has two parameters - the rotation range of the simulated
movements (in degrees) and the translation in mm of the simulated movements. The trans-
lation varies between {2, 46, 8, 10} and the rotation range varies between {5, 10, 15, 20, 25}
following Lee et al. (2020). These variations are shown in Figure C.9.

Appendix B. Additional Experiments

The balanced accuracy metric, a measure of the model’s overall performance is shown in Figure C.10
for various artifacts using models trained with different normalization schemes. Similar to the
AUROC metric in Figure 2, we observe consistent results for all evaluated artifacts for balanced
accuracy. This indicates that the model’s performance is stable and consistent across different types
of artifacts.

Additionally, Figure C.11 illustrates the results for the partial adaptation of BN statistics. The
results demonstrate that adapting both the mean and variance is generally more effective than adapting
only one for most of the artifacts considered.

Appendix C. Additional Related Work

The studies conducted by Summers and Dinneen (2020) and Singh and Shrivastava (2019) aimed to
enhance the performance of BN by addressing its limitations, mainly when working with small batch
sizes. To achieve this, these studies leveraged various techniques, including inference level statistics
and the impact of weight decay on the scaling and shifting parameters of BN. Other research in this
field, such as the works by Henaff (2020) and Rivoir et al. (2022) also highlight the limitations of BN
in other contexts. For instance, Henaff (2020) showed that BN could negatively impact performance
with Contrastive Predictive Coding, while LN is a more practical alternative. Meanwhile, Rivoir et al.
(2022) investigated the robustness of BN in end-to-end video learning. Their findings showed that
CNN-LSTMs without BN outperformed the current state of the art in surgical phase recognition.

In contrast, our work is different from the previous work in multiple ways. First, our research
suggests that BN and Adaptive BN are not always effective in mitigating the artifacts likely to be
present in MR images, particularly when the data distribution shift due to the artifacts is large: we
show that alternative normalization techniques are more effective in these scenarios. Second, our
study exclusively focuses on medical imaging tasks (specifically MR imaging), where the research
community has primarily relied on BN for training DNNs (evident from the state-of-the-art references
cited in our work, showcasing the widespread use of BNs in the medical field). In that sense our
work can be seen as an important extension of the previous works, highlighting the deficiencies of
BN in medical imaging tasks.
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Figure 2: Comparison of PreactResNet-18 trained with batch normalization, group normalization, layer
normalization, and adaptive batch normalization on ACL (left), Meniscus Tear (middle), and cartilage
(right). We observe that GN and LN obtain better or comparable performance for majority of the shifts.1742
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(a) Intensity 0.5 (b) Intensity 0.7 (c) Intensity 1.0 (d) Intensity 1.5 (e) Intensity 2.0
Figure C.5: Visualization of spike artifact

(a) SNR 50 (b) SNR 20 (c) SNR 10 (d) SNR 5 (e) SNR 4
Figure C.6: Visualization of Ricean noise artifact

(a) Coefficient 0.5 (b) Coefficient 0.7 (c) Coefficient 1.0 (d) Coefficient 1.5 (e) Coefficient 2.0
Figure C.7: Visualization of biased field artifact

(a) Intensit 0.5 (b) Intensity 0.7 (c) Intensity 1.0 (d) Intensity 1.5 (e) Intensity 2.0
Figure C.8: Visualization of subject-related ghosting artifact

(a) Intensity 1.0 (b) Intensity 2.0 (c) Intensity 3.0 (d) Intensity 4.0 (e) Intensity 5.0
Figure C.9: Visualization of subject-related rigid motion artifact.
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Figure C.10: Balanced accuracy comparison of PreactResNet-18 trained with batch normalization, group
normalization, layer normalization, and adaptive batch normalization on ACL (left), Meniscus Tear
(middle), and cartilage (right).
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Figure C.11: Comparison of PreactResNet-18 trained adapted with both mean and variance, mean
only, and variance only on ACL (left), Meniscus Tear (middle), and cartilage (right) for grounth
truth images. We observe that adapting both is beneficial for majority of the artifacts.
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Figure C.12: Comparison of PreactResNet-18 trained with group normalization, layer normalization, and
instance normalization on ACL (left), Meniscus Tear (middle), and cartilage (right).
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Figure C.13: Comparison of PreactResNet-18 trained with batch normalization, instance normalization,
and no normalization on ACL (left), Meniscus Tear (middle), and cartilage (right).
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Figure C.14: Comparison of PreactResNet-18 trained with batch size 8, 16, 32, 64 and 128 on ACL
(left), Meniscus Tear (middle), and cartilage (right).
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Figure C.15: Comparison of PreactResNet-18 trained with batch normalization, group normal-
ization, layer normalization, and adaptive batch normalization on ACL (left), Meniscus Tear
(middle), and cartilage (right) on the combination of ricean and ghosting artifact.
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