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Abstract

Detection of pathologies is a fundamental task in medical imaging and the evaluation of
algorithms that can perform this task automatically is crucial. However, current object
detection metrics for natural images do not reflect the specific clinical requirements in
pathology detection sufficiently. To tackle this problem, we propose Robust Detection
Outcome (RoDeO); a novel metric for evaluating algorithms for pathology detection in
medical images, especially in chest X-rays. RoDeO evaluates different errors directly and
individually, and reflects clinical needs better than current metrics. Extensive evaluation
on the ChestX-ray8 dataset shows the superiority of our metrics compared to existing ones.
We released the code at https://github.com/FeliMe/RoDeO and published RoDeO as pip
package (rodeometric).

Figure 1: Example images from the ChestX-ray8 dataset (Wang et al., 2017) with example
predicted (dashed) and target (solid) bounding boxes, and the corresponding IoU,
acc@IoU, AP@IoU, and RoDeO results. Left to right: Correct box with mis-
classification, partly overlapping box, too large predicted box, wrong prediction.

Keywords: Metric, Pathology Detection, Object Detection.

∗ Contributed equally

© 2023 CC-BY 4.0, F. Meissen, P. Müller, G. Kaissis & D. Rueckert.

https://github.com/FeliMe/RoDeO
https://creativecommons.org/licenses/by/4.0/


Robust Detection Outcome

1. Introduction

Localization of pathologies in medical images is of high clinical relevance. It does not
only speed up diagnosis but is also valuable to asses the interpretability of machine learning
models. Bounding boxes are especially useful in this regard, as they both satisfy the clinical
need for coarse localization and are easier to obtain than exact segmentations. However,
assessing the quality of predicted bounding boxes is non-trivial. For object detection on
natural images, metrics based on IoU-thresholds – like Average Precision at IoU (AP@IoU)
or mean Average Precision (mAP) – are typically used. We found these to be unsuitable
for pathology detection in some medical images, such as chest radiographs.

The metric AP@IoU first performs a greedy matching between predicted and target
boxes while only considering predicted boxes that have the same class and an Intersection
over Union (IoU) above a defined threshold with the target box. Each target box can
be matched to at most one predicted box (the one with the highest IoU). All unmatched
boxes and those below the threshold are considered false positives. In the next step, the
average precision (AP) between the associated classes of the predicted and target boxes
is computed. To obtain the mAP, the results of multiple IoU thresholds are averaged.
Similarly, other classification metrics can be converted to detection metrics by computing
them at IoU-thresholds, such as acc@IoU, recall@IoU, or precision@IoU (cf. Appendix E).

Although the tasks are similar, the requirements of object detection in natural images
and pathology detection in medical images are much different. For medical pathology de-
tection, coarse localization is already clinically useful and the detection of pathologies is
valuable even under misclassification since radiologists are well-trained to classify a pathol-
ogy correctly once it is detected. Lastly, different sources of detection errors need to be
measured separately, a common requirement for all object detection tasks. Current object
detection metrics do not reflect these requirements well: IoU-based metrics are commonly
used at high IoU-thresholds (≥ 0.5). Since these are typically hard to obtain in pathology
detection, and earlier works have used significantly lower thresholds (Baumgartner et al.,
2021; Jaeger et al., 2020). Additionally, these metrics do not differentiate between different
types of errors: misclassification, faulty localization, box shape mismatch, and overpredic-
tion all cause false positives and thus degrade the score in the same way, although their
underlying sources are much different. This makes metrics like AP@IoU hard to inter-
pret and models hard to compare if they are only evaluated under this metric. Moreover,
AP@IoU and mAP are sensitive to misclassification and do not attribute the detection of
pathologies if their predicted class is wrong. Lastly, all metrics based on IoU thresholds
only have a limited notion of proximity and drop harshly if the box overlap falls below the
IoU-threshold. Figure 1 shows cases where AP@IoU (and therefore also mAP) and acc@IoU
exhibit such undesired behaviors.

To tackle the aforementioned weaknesses of existing metrics, we introduce Robust Detec-
tion Outcome (RoDeO), a new metric for pathology detection based on three types of errors
that cause the detection quality to deteriorate: classification errors, localization errors, and
shape mismatch. RoDeO is easy to interpret, returns sub-scores for different error types,
degrades gracefully, and reflects the specific requirements of pathology detection.

Our contributions are the following

• We identify weaknesses in current detection metrics when used for pathology detection.
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• We propose RoDeO, a new metric for pathology detection that better reflects the
clinical needs for course localization and separation of different error sources.

• We perform extensive evaluation of our proposed metric compared to existing ones
and show that RoDeO is then only metrics capable of identifying weaknesses of an
exemplary pathology detection model.

2. Related Work

The default metric for object detection in computer vision tasks is average precision. In
the PASCAL VOC challenge (Everingham et al., a,b), AP@50 is used, while in the COCO
detection challenge (Lin et al., 2014), mAP is the main challenge metric (with IoU-thresholds
from 0.5 to 0.95 in steps of 0.05). Several attempts have been made to isolate different error
types of AP@IoU and mAP by observing how the metric changes when certain errors in the
predictions are fixed (Bolya et al., 2020; Borji and Iranmanesh, 2019; Hoiem et al., 2012).
However, these techniques are merely fighting symptoms of average precision and inherit
all other weaknesses of the metric minus its explainability. Moreover, they add another
layer of complexity on top of the original metrics, again complicating their interpretability.
Recall@IoU – or specifically the mean average recall over multiple IoU thresholds – is also
evaluated in the COCO detection challenge. Other popular object detection metrics are
also IoU-based. To evaluate a baseline model on the ChestX-ray8 dataset, Wang et al.
(2017) use the accuracy or number of average positive predictions at a given threshold 1.

All of the above metrics compute classification quantities after thresholding at an IoU.
RoDeO overcomes this limitation and provides per-error metrics that are easily inter-
pretable, degrade gracefully, and are tailored to clinical needs in pathology detection.

Recently, Maier-Hein et al. (2022) stressed the importance stressed the importance of
adequate metric selection for the usefulness of machine learning algorithms in clinical prac-
tice. While they acknowleddge that rough localization lies in the nature of object detection
tasks, they only consider threshold-based metrics, such as AP Our proposed metric follows
their recommendation in first solving the assignment issue and then computing the selected
metric on top, but we complement sole classification with other important factors, such as
localization and shape correspondence.

3. RoDeO Metric

Overview In RoDeO, firstly one-to-one correspondences between the predicted and tar-
get bounding boxes are established. Then, three sub-metrics (localization, shape similarity,
and classification) are computed using the matched boxes. The scores for over- and un-
derpredictions are then linearly combined with the scores of each sub-metric. Lastly, the
harmonic mean of the three sub-metrics is computed to obtain one summary metric.

Matching To be able to compute subsequent sub-metrics, first, a matching between the
predicted and target boxes is required for every image. We find these correspondences
using the Hungarian method, taking into account correct classifications, as well as shape

1. Wang et al. chose the Intersection over Bounding Box (IoBB) instead of the IoU. This metric does not
consider the size of the predicted box in the denominator and therefore favors large boxes.
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and distance information via the generalized IoU (gIoU) (Rezatofighi et al., 2019). Given
the sets of target and predicted boxes, Mt and Mp, the cost matrix C is:

CBt,Bp = −1[yBt=yBp ] ∗ ωcls − gIoU(Bt,Bp) ∗ ωshape ∀Bt ∈ Mt,Bp ∈ Mp , (1)

with Bt and Bp being the boxes – described by a vector (x, y, w, h)T – and yBt and yBp being
the classes of the target and predicted box respectively. ωshape and ωcls are parameters
to weigh the importance of the two terms. By default, ωshape is set to 1, and ωcls is
determined by the sample-wise classification performance of the predictions such that wrong
class information does not confuse the matching when the model’s class predictions are
inaccurate. We thus set ωcls = max

(
0,MCC

(
yt,yp

))
, where yti and ypi are the classes of

all target and predicted bounding boxes for image i, respectively, and MCC is Matthews
Correlation Coefficient (Matthews, 1975), as defined in Eq. (14) in Appendix E. This results
in a set of matched boxes denoted by M = (Bp,Bt) | Bp ∈ Mp,Bt ∈ Mt, where (Bp,Bt) is
a pair of matched bounding boxes. The set of unmatched targets is denoted by U t =
Mt \ Bt | (Bp,Bt) ∈ M, and the set of unmatched predicted bounding boxes is denoted by
Up = Mp \ Bp ∀ (Bp,Bt) ∈ M.

Localization We measure the localization quality of the matched boxes in M by

RoDeOloc
matched =

1

|M|
∑

(Bt,Bp)∈M

exp

−
(
Bt
x−Bp

x

Bt
w

)2
+
(
Bt
y−Bp

y

Bt
h

)2

C

 , (2)

where C is a scaling coefficient, set such that for a box pair (Bt,Bp) with relative Euclidean
distance equalling one, the value is exactly 0.5, i.e. 1

C = ln 2 ≈ 0.69. The localization
value for a single box pair thus follows the probability density of a (2D separable) normal
distribution, such that (i) its maximum value is reached when box centers are aligned,
(ii) it degrades slowly for small distances, then fast, until degrading slowly again for large
distances. Compared to IoU-based distance functions (used by acc@IoU, AP@IoU, or mAP),
which degrade to zero very quickly and prefer axis-aligned boxes; RoDeOloc

matched degrades
smoothly and isotropically in euclidean space, as highlighted in Figure 2.

Shape The shape score encodes differences in size and aspect ratio but must be indepen-
dent of the distance between the boxes as this is already measured in the localization score.
We compute it as the Intersection over Union (IoU) between each matched predicted and
target box when assuming the boxes have the same center coordinates (cIoU):

RoDeOshape
matched =

1

|M|
∑

(Bt,Bp)∈M

cIoU(Bt,Bp) . (3)

We refer to Appendix C for discussion on the preference of cIoU over alternative options.

Classification As classification score, RoDeO again uses MCC (c.f. Equation (14) in
Appendix E):

RoDeOcls
matched = max

(
0,MCC(Y t,Yp)

)
, (4)
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Figure 2: Sensitivity of different metrics to position offsets. For simplicity, we assume both,
the target and predicted box, to be square and equal-sized. We plot the values

of each metric with position offsets (∆x = Bt
x−Bp

x

Bt
w

,∆y =
Bt
y−Bp

y

Bt
h

) between the

predicted box and the target box (dashed box). For mAP, we consider seven IoU-
thresholds from 0.1 to 0.7. IoU-based distances (AP@50, mAP, IoU) degrade to
zero very quickly and prefer axis-aligned boxes, while RoDeO loc degrades more
smoothly and is isotropic in Eucledian space.

where Y t = {yBt},Yp = {yBp} ∀(Bt,Bp) ∈ M, and yBt and yBp are the classes of the
target and predicted box respectively. In contrast to other classification metrics like F1-score
or accuracy, MCC only gives positive scores for performance above random, regardless of
possible class imbalances in the dataset. Since scores below 0 indicate negative correlations,
they should be valued the same as the outputs of completely random models.

Overprediction, Underprediction If over- and underpredictions (i.e. False Positives
and False Negatives) are not penalized in the sub-metrics, these could be tricked by a large
number of predictions. However, they can not be attributed to any of the aforementioned
error types alone. Instead, RoDeO integrates them globally into every sub-metric as a linear
combination of the score achieved by the sub-metric and zero, weighted by the number of
matched over- and underpredictions:

RoDeOsub =
|M|

|M|+ |U t|+ |Up|
RoDeOsub

matched ∀ sub ∈ {loc, shape, cls} . (5)

Summary Metric We further propose a summarization of all the sub-metrics into a
single number. We chose the harmonic mean (c.f. Appendix C) for aggregation because a
low score in any sub-metric indicates a faulty detection algorithm that should not receive a
high score in the summary metric. RoDeO total, abbreviated RoDeO, is thus computed as

RoDeO = 3

(
1

RoDeOloc
+

1

RoDeOshape
+

1

RoDeOcls

)−1

. (6)

Nevertheless, we recommend using the submetrics as well as the summary metric when
measuring performance and comparing algorithms. The summary metric alone does not
give a full picture of the different sources of errors.
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3.1. RoDeO per Class

The computation of RoDeO on a per-class basis is analogous to above. However, for a class
c, the set of matched boxes only contains the box pairs where the target box belongs to c.
The unmatched predicted and target boxes, are also filtered to the ones belonging to c.

4. Experimental Setup

Dataset We perform experiments on the ChestX-ray8 dataset by Wang et al. (2017).
It contains 108 948 anterioposterior chest radiographs of 32 717 unique patients acquired
at the National Institutes of Health Clinical Center in the USA. The images are labeled
for 8 different pathologies, each image can exhibit multiple pathologies. Additionally, a
board-certified radiologist manually labeled 882 of these images with bounding boxes. We
used 50% of the images with bounding boxes for evaluation and reserved the other 50%
for testing. The rest of the images were used for weakly-supervised training of a machine
learning model. There was no patient overlap between all subsets.

Compared Metrics We compare RoDeO to different threshold-based metrics: AP@IoU
(the standard object detection metric for natural images) and acc@IoU (Wang et al., 2017).

Oracle Models and Prediction Corruption We study the sensitivity of object detec-
tion metrics, including RoDeO, to prediction quality changes and randomness using oracle
models. These oracle models are not trained, but instead have access to the target boxes
(i.e. the oracle) during inference. The correct bounding boxes are then modified using pa-
rameterized random corruption models before they are returned as predictions. We run
these oracle models on the test set and study the effect of different corruptions and their
parameters. For each corruption setting (with specified parameters), we report the mean
results over five runs. We refer to Appendix A for details on the corruption models.

CheXNet To test the usefulness of our proposed metric in practice, we train a CheXNet
(Rajpurkar et al., 2017) as a weakly-supervised object detection model on the training
dataset, using only image-level labels. For the generation of bounding boxes from heatmaps,
we follow Wang et al. (2017). Implementation details are provided in Appendix B.

5. Experiments

In this section, we provide examples of undesired behavior of the compared metrics. In all
cases, RoDeO behaves as expected. Further experimental results are shown in Appendix D.

AP@IoU declines sharply with small localization errors. Figure 3 shows the in-
fluence of position- and size-corruptions on all compared metrics. While AP@IoU declines
rapidly with position errors, it stays high under severe size corruptions. acc@IoU shows
similar behavior but remains at a high base-value along all corruptions. RoDeO declines
more gracefully along both axes and shows a clear separation of the two corruptions.

Acc@IoU achieves high scores with underprediction. In Figure 4, acc@50 increases
with higher underprediction probability (i.e. more missed boxes). This leads to higher scores
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Figure 3: RoDeO (bottom) declines more smoothly than acc@IoU (top left) and AP@IoU
(top right) when position and shape are corrupted in our box oracle model. Posi-
tion and shape corruptions are idenfitied independently by the RoDeO submetrics.

for models that predict no boxes at all, especially at higher IoUs. With more underpredic-
tion, a higher number of false positives are exchanged with true negatives, leading to better
accuracy. AP@IoU and RoDeO do not suffer from this behavior.

Figure 4: Acc@IoU (left) increases with fewer predictions, whereas AP@IoU (middle) and
RoDeO (right) decline as expected when corrupting the box positions (σpos = 0.5)
and randomly dropping predicted boxes (punderpred) in our box oracle model.

AP@IoU ignores overprediction at higher thresholds. While overprediction leads
to an exponential decay (as expected) of all sub-metrics of RoDeO, AP@IoU does not decay
with more overprediction at IoUs > 10% in Figure 5. Even worse, AP@50 shows a small
but significant increase as more boxes get predicted.
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Figure 5: AP@IoU (middle) at higher thresholds increases with more predictions. acc@IoU
(left) and RoDeO (right) decline as expected when corrupting the box positions
(σpos = 0.5) and randomly predicting multiple boxes per target (poverpred).

Table 1: Qualitative RoDeO, acc@30, and mAP results of a trained CheXNet model. For
mAP, we consider seven thresholds from 0.1 to 0.7.

RoDeO/cls RoDeO/loc RoDeO/shape RoDeO acc@30 mAP

Atelectasis 21.6 17.3 6.9 28.4 37.1 2.0
Cardiomegaly 55.7 70.4 45.8 55.6 86.2 31.7
Effusion 21.9 15.5 9.2 13.7 33.4 5.1
Infiltration 11.0 15.9 8.1 10.8 31.6 3.0
Mass 10.6 11.4 4.3 7.2 59.4 1.6
Nodule 16.9 3.0 0.8 1.9 55.7 0.0
Pneumonia 9.2 38.3 19.2 16.0 71.6 2.1
Pneumothorax 26.6 14.3 12.5 16.0 65.8 1.0
Total 19.8 19.9 10.9 15.6 55.1 5.8

5.1. Evaluating a Machine Learning Model

Table 1 shows qualitative results of RoDeO and mAP for a trained CheXNet (Rajpurkar
et al., 2017). In mAP, atelectasis and pneumonia achieve similar scores, the results of RoDeO
paint a more balanced picture. While atelectasis is classified quite well, its predicted shape
does often mismatch. For pneumonia, on the other hand, location and shape are predicted
quite well, but it was rarely classified correctly by the model – acc@IoU, however, gives
one of the highest scores to pneumonia, which is due to the dominance of true negatives
in accuracy and renders the metric almost completely useless. RoDeO also reveals that
the most severe problem in nodule detection is the shape (or size) mismatch followed by
localization, while classification is comparably good.

6. Discussion

The above experiments have shown that compared to IoU-based metrics (cf. Sec. 1), RoDeO
has more desirable behaviors for medical object detection: It can not be tricked by over- or
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under-prediction, it does not consider boxes with class confusion as useless but values the
detection of pathologies separately, and it uses a notion of distance that reflects the clinical
need for coarse localization better. Our experiments have further shown that different error
sources affect sub-metrics independently and that RoDeO degrades gracefully along all sub-
metrics. Further evaluation in Appendix D shows that RoDeO also behaves as desired in
a plethora of different corruption settings. While we have shown the usefulness of RoDeO
for pathology detection, we argue that other medical object detection tasks, such as organ
detection, could also benefit from the adavantages of RoDeO.

7. Conclusion

We have proposed RoDeO, a novel metric to evaluate object detection algorithms, that is
tailored to the requirements in medical pathology detection, especially from chest X-rays.
Extensive experiments have shown that RoDeO considers different error-sources more ap-
propriately than previous metrics. It is easy to interpret and use; with robust default values
that can easily be adapted to the specific needs of an application. RoDeO allows for better
evaluation of pathology detection algorithms and can increase their clinical usefulness.
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Appendix A. Corruption Models

Position and shape corruption For position and shape corruption we consider each
oracle box individually. Assume the oracle box is defined by its center coordinates (x, y)
and its size (w, h). Given the standard deviation σpos ∈ [0,∞) of the (relative) position
offset (a parameter of the corruption model which will be scaled by the box size), we sample
the corrupted center coordinates as

x̂ ∼ N
(
x, (w · σpos)2

)
, ŷ ∼ N

(
y, (h · σpos)2

)
, (7)

where for σpos = 0 we define x̂ = x and ŷ = y. This position corruption model is used in
Figures 3, 4, and 5 from the main paper and Figures 8, 10, and 11 in Appendix D.

For Figure 8 in Appendix D, we additionally corrupt the box positions by introducing a
position bias |∆p| ∈ [0,∞). For each predicted box, we randomly sample an angle ϕ ∈ [0, 2π]
and offset the box into that direction, i.e.

x̂ = x+
|∆p| · cosϕ

w
, ŷ = y +

|∆p| · sinϕ
h

. (8)

For shape corruption, we assume a multiplicative corruption model and therefore sample
from the Lognormal distribution as follows

ln(ŵ) ∼ N
(
ln(w), σ2

shape

)
ln(ĥ) ∼ N

(
ln(h), σ2

shape

)
, (9)

where for σshape = 0, we define ŵ = w and ĥ = h. This shape corruption model is used in
Figure 3 in the main paper.

For Figure 9 in Appendix D, we corrupt size and aspect ratio of boxes independently.
The size is again corrupted multplicatively, but width and height are corrupted by the same
factor s sampled from a Lognormal as

ln(∆s) ∼ N
(
ln(1), σ2

size

)
, (10)

and then new width and height are computed as

ŵ = ∆s · w , ĥ = ∆s · h . (11)

For corrupting the aspect ratio in Figure 9 the area A = w · h of a box is kept constant
while modifying the aspect ratio a = w

h as

ln(â) ∼ N
(
ln(a), σ2

ratio

)
, (12)

and then computing the new width and height as

ŵ =
√
A · â , ĥ =

√
A

â
. (13)

Class Underprediction For class underprediction, we consider each sample indepen-
dently and randomly decide for each positive class c+ in its oracle whether to flip it to
negative by sampling from a Bernoulli distribution with probability punderpred ∈ [0, 1]. We
then discard all boxes for the flipped classes in the current sample. For simulating more
realistic behavior we additionally apply random position corruption with σpos = 0.5 to all
remaining boxes. This corruption model is used in Figure 4 from the main paper.
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Class Overprediction For class overprediction we proceed similarly and randomly decide
for each negative class c− in its oracle whether to flip it to positive by sampling from a
Bernoulli distribution with probability poverpred ∈ [0, 1]. We then generate one additional
box for each of the classes that have been flipped to positive, where the box size is set to
0.25 for width and height (the mean box size in the dataset) and the center position is
sampled uniformly such that the whole box is contained within the image. This corruption
model is used in Figure 10 in Appendix D.

Box Overprediction For box overprediction per class we do not predict additional classes
but duplicate oracle boxes. We, therefore, sample the number of duplications D of each
box independently from a geometric distribution with a specified expected number of du-
plications E[D]. Just like in the underprediction scenario, we additionally apply random
position corruption with σpos = 0.5 to the original and all duplicated boxes, resulting in
duplicated boxes slightly deviating from the original boxes. This corruption model is used
in Figure 5 from the main paper.

Class confusion For class confusion, we consider each sample individually and randomly
decide which of the classes c ∈ C to confuse with each other. We, therefore, first randomly
select a subset of classes to confuse by sampling from a Bernoulli distribution with prob-
ability pcls-confuse ∈ [0, 1] for each class independently, where pcls-confuse = 0 corresponds to
no confusion at all and pcls-confuse = 1 to confusing all classes. We then randomly permute
the set of selected classes in this sample while leaving the non-selected classes unchanged.
This corruption model is used in Figure 11 in Appendix D.

Class oracle with random positioned boxes We also experiment with randomly po-
sitioning boxes. In this case we assume only a class oracle, i.e. we know the correct set
of positive classes but not the related bounding boxes. First, we randomly add additional
classes (i.e. class overprediction) by randomly flipping negative classes to positive using a
Bernoulli distribution with probability poverpred. Based on this new set of positive classes
(the correctly positive and the flipped negative classes) we sample one bounding box per
positive class. The sampled boxes are square with pre-defined size s and each box position is
sampled uniformly such that the whole box is contained within the image. This corruption
model is used in Figure 7 in Appendix D.

Appendix B. CheXNet Implementation Details

Here we describe the implementation details of the CheXNet model (Rajpurkar et al., 2017).
It was trained using Adam (Kingma and Ba, 2014) with a learning rate of 3.6e− 5, weight
decay of 1e − 6, and gradient clipping at norm 1.0. Both training and testing images
were resized to 224× 224 pixels, and normalized to zero mean and unit variance using the
statistics of the training dataset. During training, we randomly applied random color jitter
and random gaussian blurring to the images, each with a probability of 50%. No data
augmentation was applied during testing. We trained for a maximum number of 50000
iterations with early stopping (patience = 10000) and a batch size of 128 on a single Nvidia
RTX A6000 GPU.
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Bounding Box Generation from Heatmaps We consider an input image represented
as x ∈ RH×W . A model produces C heatmaps ŝ ∈ RH×W , one for each class. These
heatmaps are generated by upsampling the spatially reduced score maps s ∈ Rh×w per
class using a bilinear interpolation. Following the box proposal method described in (Wang
et al., 2017), we normalize the heatmaps per image between 0 and 255 and create two sets
of binarized maps by threshold them at 60 and 180. From the resulting binarized heatmaps,
box proposals are drawn around each connected component, denoted as ŝk. The predicted
class for each box is determined by the connected component it encloses.

Appendix C. Additional Discussion of Design Decisions

Shape Sub-Metric using cIoU Fig 6 compares the cIoU with the Hausdorff similarity
when evaluating shape similarities (size and aspect-ratio) between bounding boxes. While
the Hausdorff similarity decreases linearly and has no lower bound, cIoU decreases faster for
small differences while decreasing slower for larger differences until converging towards zero.
Additionally, cIoU is measured relative to the target box size which is a desired property.
Lastly, cIoU is bound between zero and one, making it an easily interpretible sub-metric.

Figure 6: cIoU and Hausdorff similarity of a fixed box and another box with varying size
with fixed aspect-ratio (a) or varying aspect-ratio with fixed size (b).

Summary Metric using Harmonic Mean We propose the summary metric to describe
the detection quality of a model in a single number. Therefore, we impose the following
requirements on it: (i) the maximum value of the summary metric is capped based on
the value of the worst sub-metric, i.e. if one sub-metric performs low, the summary metric
cannot be arbitrarily improved by increasing the other sub-metrics; (ii) improving any of the
sub-metrics should lead to an improved summary metric, such that any form of improvement
is respected in the summary metric.

The harmonic mean fulfills both of these requirements, except if a sub-metric is exactly
zero, in which case the summary metric is zero as well, therefore breaking requirement
(ii). However, this is only possible for the classification sub-metric, in which case we argue
that the model does not predict any meaningful boxes and reporting zero for the summary
metric seems sensible. Other possible choices include the arithmetic mean, which however
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does not fulfill requirement (i), or the minimum of all sub-metrics, which however does not
fulfill requirement (ii).

Appendix D. Additional Results

Figure 7: Class oracle with random positioned boxes with class oversampling. RoDeO
(ours) and AP@IoU score low, as expected for randomly positioned boxes, while
acc@IoU reports high values. RoDeO shape achieves its maximum value at the
expected box size in the dataset (roughly 0.2) while AP@IoU and acc@IoU achieve
better scores with boxes larger than the expected size.

581



Meissen Müller Kaissis Rueckert

Figure 8: Box oracle with position offsets. AP@IoU and acc@IoU decline sharply with
small localization errors, especially when the predictions are consistently offset
(position bias), while RoDeO (ours) declines more smoothly for both, increasing
position bias and std. RoDeO shape and RoDeO cls are invariant to position
offsets, as expected.

Figure 9: Box oracle with random shape corruptions. Acc@IoU is mostly invariant to all
shape corruptions, while AP@10 is mostly invariant to aspect ratio corruptions.
RoDeO (ours) on the other hand declines smoothly for both, aspect ratio and size,
corruptions, while RoDeO loc and RoDeO cls are invariant to these corruptions,
as expected.

582



Robust Detection Outcome

Figure 10: Box oracle with σpos = 0.5 (relative) position variation and oversampled
classes. All three metrics decline smoothly with increasing overprediction. While
AP@IoU and RoDeO show an exponential decay, as expected when sampling
overprediction from a geometric distribution, acc@IoU declines linearly.

Figure 11: Box oracle with σpos = 0.5 (relative) position variation and random class swaps.
All three metrics decline smoothly when classes are mispredicted, acc@IoU how-
ever never reaches zero even when classes are completely mispredicted. RoDeO
loc and RoDeO shape are invariant to these class corruptions, as expected.
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Appendix E. Definitions

Matthews Correlation Coefficient (MCC) The Matthews Correlation Coefficient
(MCC) (Matthews, 1975) is defined as follows:

MCC =
TP ∗ TN− FP ∗ FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
, (14)

where TP are the true positives, FP are the false positive, TN are the true negatives, and
FN are the false negatives of a classification model over the whole evaluation dataset. MCC
is bound between −1 and 1, where a perfect classification is 1, a random model achieves 0
and negative values indicate negative correlations.

Intersection over Union (IoU) The Intersection over Union (IoU) between two bound-
ing boxes Bt and Bp is defined as follows:

IoU =
|Bt ∩ Bp|
|Bt ∪ Bp|

=
|Bt ∩ Bp|

Bt
wBt

h + Bp
wBp

h − |Bt ∩ Bp|
, (15)

where

|Bt ∩ Bp| = (min(Bt
x+ ,Bp

x+)−max(Bt
x− ,Bp

x−))(min(Bt
y+ ,B

p
y+

)−max(Bt
y− ,B

p
y−)) (16)

with Bx− = Bx − Bw
2 and By− = By − Bh

2 are the upper left coordinates of each box, and

Bx+ = Bx +
Bw
2 and By+ = By +

Bh
2 are the lower right coordinates.

Centered IoU (cIoU) The centered IoU (cIoU) is computed as the normal IoU, but
assuming the same position for both boxes Bt and Bp, i.e. Bt

x = Bp
x and Bt

y = Bp
y.

Generalized IoU (gIoU) The generalized IoU (gIoU) (Rezatofighi et al., 2019) is the
IoU minus an additional term which is the ration between the convex hull C of the predicted
and target box minus their Union and C.

gIoU = IoU− |C| − |Bt ∪ Bp|
|C|

, (17)

where the convex hull |C| = (max(Bt
x+ ,Bp

x+)−min(Bt
x− ,Bp

x−))(max(Bt
y+ ,B

p
y+

)−min(Bt
y− ,B

p
y−)).

Computing IoU-based Classification Metrics for Object Detection For each im-
age, there is a set of predicted (Mp) and target boxes (Mt).

1. True positives are predicted boxes that have the same class as a target box, and an
IoU larger than or equal to a predefined threshold t (IoU(Bp,Bt) ≤ t ∧ yBp = yBt).
Note that there is a one-to-one mapping between predicted and target boxes: every
predicted box can only be mapped to one target box and every target box only to one
predicted box

2. If for a target box there are more than one predicted boxes that satisfy the above
constraints, only the one with the maximum IoU can be counted as true positive, all
others are false positives. Otherwise there could be more true positives than actual
targets which would lead to recall larger than 1
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3. All predicted boxes with IoU smaller than t to any target box are also considered
false positive

4. If for a target box no predicted box satisfies the constraints in 1., it is considered a
false negative

5. A true negative is when an image has no predicted and no target boxes of a specific
class

From here, typical classification metrics such as accuracy@IoU, precision@IoU, recall@IoU,
or F1@IoU can be computed. For AP@IoU (and mAP), each predicted box further needs a
confidence score to integrate over. At every point on the curve, only boxes with a confidence
threshold larger than or equal to the current confidence threshold are considered to be in
Mp for the above calculations.
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