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Abstract

Crohn’s Disease (CD) and Ulcerative Colitis (UC) are the two main Inflammatory Bowel
Disease (IBD) types. We developed interpretable deep learning models to identify histolog-
ical disease features for both CD and UC using only endoscopic labels. We explored fine-
tuning and end-to-end training of two state-of-the-art self-supervised models for predicting
three different endoscopic categories (i) CD vs UC (AUC=0.87), (ii) normal vs lesional
(AUC=0.81), (iii) low vs high disease severity score (AUC=0.80). With the support of
a pathologist, we explored the relationship between endoscopic labels, model predictions
and histological evaluations qualitatively and quantitatively and identified cases where the
pathologist’s descriptions of inflammation were consistent with regions of high attention. In
parallel, we used a model trained on the Colon Nuclei Identification and Counting (CoNIC)
dataset to predict and explore 6 cell populations. We observed consistency between areas
enriched with the predicted immune cells in biopsies and the pathologist’s feedback on the
attention maps. Finally, we identified several cell level features indicative of disease severity
in CD and UC. These models can enhance our understanding about the pathology behind
IBD and can shape our strategies for patient stratification in clinical trials.
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1. Introduction

Inflammatory bowel diseases (IBD) are chronic, relapsing-remitting inflammatory disorders
of the gastrointestinal (GI) tract. Crohn’s disease (CD) and Ulcerative colitis (UC) repre-
sent the two main types of IBD. Both result from a complex interplay of several factors,
including abnormal immune responses, genetics, microbiome and environmental triggers
(Baumgart and Carding, 2007). CD can affect any region of the gut, and is characterised
by segmental mucosal ulceration, transmural inflammation, fissures, fibrosis, and stricture
formation. In contrast, UC principally involves the colon, and manifests as continuous
mucosal inflammation extending from the rectum proximally, with variable extent, and
a more superficial inflammatory infiltrate. CD and UC share similar symptoms, but are
pathophysiologically distinct diseases (Shanahan, 2001).

IBD is diagnosed based on a combination of clinical presentation, radiographic, en-
doscopic and histopathological findings (DeRoche et al., 2014). Defining the extent and
severity of inflammation in IBD can influence treatment decisions and support predic-
tion of a patient’s prognosis. While endoscopic evaluation assesses the macroscopic tis-
sue, histopathological evaluation assesses the microscopic tissue and is typically carried out
through a trained pathologist’s visual inspection of a Haematoxylin & Eosin (H&E)-stained
tissue, digitised into a whole slide image (WSI). While there is a strong correlation between
endoscopic and histopathological assessment (Irani et al., 2018), the relationship between
these two data modalities (especially the relationship of endoscopic scores to histopathol-
ogy) is not completely understood (Lemmens et al., 2013) and can potentially be improved
through the development of interpretable machine learning models that predict endoscopic
categories from H&E stained WSIs coupled with the interpretation of model predictions by
a pathologist.

In this paper we demonstrate that applying self-supervised learning coupled with weakly-
supervised learning to H&E-stained IBD biopsies can accurately distinguish disease type,
macroscopic tissue appearance, and endoscopic scores. Specifically, we trained two recent
state-of-the-art architectures, including Dual-Stream Multiple Instance Learning (DSMIL)
(Li et al., 2021a) and Hierarchical Image Pyramid Transformer (HIPT) (Chen et al., 2022)
on the large SPARC IBD dataset containing 1394 WSIs, and explored two training strategies
- fine-tuning and end-to-end (E2E) training. We explored the relationship between endo-
scopic prediction and histology through pathologist collaboration, where we found that the
high attention regions identified by the models were confirmed, qualitatively, to contain
epithelial and stromal morphological/structural features consistent with inflammation. We
further validated these models by leveraging a model trained on the publicly available Colon
Nuclei Identification and Counting (CoNIC) dataset (Graham et al., 2021), which can seg-
ment and classify 6 types of cells. These predictions were compared with the attention maps
produced by the weakly-supervised models.

These models have applications in clinical trials since they can speed up the workflow of
pathologists by ranking WSIs by disease severity so that pathologists can prioritise the most
severe tissues first as well as drawing their attention to the most diseased regions in the
WSI. To our knowledge, this is the first work on exploring and validating weakly-supervised
methods to associate endoscopic appearance with H&E morphology for large-scale IBD
biopsies. Our code is available online at https://github.com/AstraZeneca/ibd-interpret.
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2. Related work

WSI classification using only slide-level labels is commonly framed as a multiple instance
learning (MIL) problem (Augustine, 2022) in which image patches are mapped to fixed-
length embeddings followed by aggregation by an operator, for example max-pooling. How-
ever, these MIL methods suffer from several limitations that have been recently addressed
by the research community. For example, MIL methods are prone to misclassifications
in the case of an unbalanced number of positive instances when using a simple aggrega-
tion operation such as max-pooling (Li et al., 2021a). This can be addressed by utilising
attention-based aggregation where each instance is given a specific attention weight dur-
ing training (Tomita et al., 2019). Additionally, MIL methods can ignore the correlation
among different instances across the WSI, which can be mitigated by using transformers
to consider morphological and spatial information (Shao et al., 2021) as well as generating
attention maps for improved interpretability. Attention map interpretability was further
improved by incorporating non-local attention into a dual-stream MIL (DSMIL) architec-
ture to calculate an attention weight for each patch (Li et al., 2021a). MIL models often use
fixed patch-based features extracted by a CNN or only features extracted by a fine-tuned
model since end-to-end training is expensive and time-demanding for large slides. These
sub-optimal extracted features can be improved by incorporating a multi-resolution feature
fusion mechanism to leverage varied-size tissue features such as glands vs cells (Li et al.,
2021b). Recently, HIPT (Chen et al., 2022) extended multi-resolution feature fusion by
introducing hierarchical pre-training, enabling a bottom-up aggregation of tissue features
from cells to tissue morphology.

Following these advancements, we leverage DSMIL (Li et al., 2021a) and HIPT (Chen
et al., 2022) due to their superior performance over the aforementioned methods on large
public H&E classification datasets such as The Cancer Genome Atlas (TCGA). DSMIL
achieves strong performance by combining self-supervised pre-training using SimCLR (Chen
et al., 2020) with a dual-stream attention-based MIL aggregator. Since both local and
global contexts are important for WSI classification, DSMIL takes patches extracted at
multiple magnifications with the same resolution as input. This is disadvantageous since
fine details are lost at low magnification. By contrast, HIPT extracts patches at a fixed
high magnification but with a relatively large resolution, such that fine and coarse-grained
details are captured at the same resolution.

In this paper, we predict clinically relevant IBD endoscopic categories including disease
types, macroscopic appearances, and endoscopic scores from H&E biopsies which, to our
knowledge, has not been addressed previously. Prior work mostly focused on electronic
health records (Reddy et al., 2019), genomics, metagenomics (Abbas et al., 2019), biological
and clinical parameters for predicting endoscopic scores in UC patients (Popa et al., 2020).
Recently a fully supervised approach using H&E images to predict remission and the Nancy
Histological Index scores for UC was investigated by Najdawi et al. (2022). In contrast, we
consider both CD and UC and use weakly supervised methods with macroscopic patient
level labels, without any detailed pathologist annotations at the microscopic level, which
are inexpensive relative to the supervised method.
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Figure 1: Overview of the implemented pipeline.

3. Methodology

The proposed methodology is summarised in Figure 1. First, we used an image quality
control (QC) algorithm and extracted patches for training DSMIL and HIPT to predict 3
clinically relevant endoscopic categories and generate visual attention maps. A cell classifi-
cation model was also applied to all slides and the individual cell predictions were aggregated
into heatmaps for comparison with the weakly-supervised attention maps. Finally, attention
maps and cell heatmaps were visualised in HALO Link for discussion with the pathologist.
More details on these steps are in the subsections below.

3.1. Patch Extraction and Quality Control (QC)

To process gigapixel WSIs using deep learning models, we first split each WSI into many
small, non-overlapping image patches using the Histolab (Marcolini et al., 2022) and CLAM
(Lu et al., 2021) Python packages. We trained a QC model based on DenseNet (Huang
et al., 2017) to automatically identify and remove regions from the WSIs with imaging
and/or tissue artefacts such as overstaining, tissue folds, debris, out-of-focus areas and
variations in contrast and hue markings. The QC model provided readouts at the slide-
level, identifying how much of the slide was rejected as a proportion of the tissue. These
readouts were used to exclude slides containing large areas of rejected tissue (e.g. >50%).
The QC model was also integrated into the patch extraction pipeline to save individual
patches containing >50% accepted tissue (see Appendix A).

3.2. Self-Supervised Pre-training and Weakly-Supervised Classification

In the following sections, we briefly outline how we distinguish self-supervised pre-training
and weakly-supervised classification in DSMIL and HIPT - further details are provided in
Section 4 and Appendix A.

Self-supervised Pre-training. We only consider the self-supervised representation
learning components of DSMIL and HIPT. For DSMIL, this involves the SimCLR compo-
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nent, while for HIPT, this involves the ViT16 − 256 and ViT256 − 4096 components, which
learn to output embeddings at the patch level. These self-supervised components, once
trained, are used to generate patch embeddings for all WSIs, which are subsequently used
for training the weakly-supervised classification components.

Weakly-supervised classification. We only consider the weakly-supervised compo-
nents of DSMIL and HIPT for predicting 3 endoscopic categories. For DSMIL the attention-
based MIL aggregator, and for HIPT the ViT4096 −WSI component were considered.

3.3. Interpretation of Model Predictions

Following weakly-supervised training, we generated visual attention maps, which facilitated
optimal collaboration with the pathologist to interrogate the models’ predictions.

DSMIL attention maps are visualised using the per-patch attention weights of MIL
aggregator as a heatmap overlay on the WSI (Li et al., 2021a). A weight value close to 1.0
indicates that the patch contributes heavily to the final prediction compared with a patch
that has a score close to 0.0. We generated these attention maps for all WSIs in our dataset.

HIPT attention maps are a natural part of HIPT due to its transformer backbone
(Chen et al., 2022). The attention maps in the original paper demonstrated that they
can highlight unique cancer-relevant tissue morphologies. Therefore, we also sought to
understand what IBD-relevant tissue morphologies HIPT could learn.

HALO Link Integration was used to make the attention map review process inter-
active and straightforward for the pathologist. HALO is an image analysis platform for
quantitative tissue analysis in digital pathology. We used HALO Link for sharing the WSIs
and our predictions with the pathologists. The pathologist was not aware of any slide level
endoscopic labels prior to assessment. For each slide, we asked the pathologist to describe
the critical histopathological features for each slide including identification of inflamma-
tory regions cellular composition, and morphological/structural features of the epithelium
and stroma. We used HALO Link1 to compare the attention maps and the pathologist
comments side by side to interpret features learnt by the models.

A cell prediction model for detection and classification of six cell types trained on the
publicly available annotated CoNIC H&E dataset (Graham et al., 2021) was used for under-
standing 6 cell populations. The CoNIC dataset was part of a grand medical challenge with
the aim of predicting six types of cells on H&E slides, including epithelial cells, neutrophils,
lymphocytes, plasma cells, connective cells, and eosinophils. We aggregated the cell pre-
dictions into statistics per patch and then visualised these as the heatmaps (Appendix E).
The heatmaps were compared with the attention maps produced by DSMIL and HIPT and
several representative examples were reviewed by the pathologist. Finally, several human
interpretable features (HIFs) were calculated from the readouts and correlated with the
endoscopic scores for both CD and UC - see Appendix E for an example calculation.

4. Experimental Setup

We included 1394 H&E-stained biopsies from 418 CD and 218 UC patients enrolled in a
multi-centred longitudinal Study of a Prospective Adult Research Cohort with IBD (SPARC

1. https://indicalab.com/halolink/
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IBD). The samples reside in the IBD Plexus database, provided with informed consent by
the Crohn’s and Colitis Foundation (Raffals et al., 2022). The total tissue area in 1394
biopsies is ≈7500µm2 whereas the TCGA-lung resection dataset used to train DSMIL in
the original work (Li et al., 2021a) has a total area of ≈65000µm2 across 1054 slides, making
SPARC IBD a relatively challenging dataset for classification.

We used 3 clinically-relevant labels from the SPARC IBD dataset that were acquired
from endoscopy to define weakly-supervised classification tasks. These included: i) disease
diagnosis (num. WSIs: CD=903 vs UC=491), ii) macroscopic tissue appearance (num.
WSIs: normal=922 vs lesional=472), and iii) CD and UC-specific endoscopic severity scores
(num. WSIs: low (CD=714, UC=134) vs high (CD=281, UC=131) score) - see Appendix
A for more details on the exact splits. We used 4 NVIDIA A100 GPUs for training.

The QC model was trained on representative subset of 19 WSIs. We reserved a set of
10 WSIs for testing on which the Dice score of the QC model in segmenting background,
good tissue and artefacts was 0.730. The QC model was then applied to all SPARC IBD
WSIs. We excluded 11 slides with >50% rejected tissue and then DSMIL and HIPT were
trained on patches extracted at 40x (Appendix A).

In training, we initially used DSMIL and HIPT models, which were pre-trained on
the TCGA dataset and fine-tuned on our dataset, in order to assess the transferability of
knowledge from TCGA cancer resections to IBD biopsies. In fine-tuning, the weights of the
self-supervised components of both models (SimCLR in DSMIL and ViT16−256 & ViT256−
4096 in HIPT) were frozen and only the weakly-supervised classification components (MIL
aggregator in DSMIL and ViT4096 − WSI in HIPT) were trained to predict the weakly-
supervised classification tasks in SPARC IBD. We labelled the models that were fine-tuned
on SPARC IBD as DSMIL-F and HIPT-F.

We also explored training DSMIL and HIPT end-to-end (E2E) on SPARC IBD. The self-
supervised and weakly-supervised components of both models were trained on SPARC IBD
from scratch to compare with the performance of fine-tuned models mentioned previously.
We labeled the models that were trained end-to-end on SPARC IBD as DSMIL-E2E and
HIPT-E2E (see Appendix A). In self-supervised and weakly-supervised training, we closely
followed the training settings in the original papers (Li et al., 2021a; Chen et al., 2022).

In weakly-supervised training, we performed 5-fold cross validation, with an 80:20 split in
all three prediction categories stratified on patients and ensuring that distributions of disease
diagnosis, macroscopic appearance, biopsy location and the target label were consistent
across all training and testing splits (more details in Appendix A). The same cross-validation
splits were used for both DSMIL and HIPT models in all experiments. We used area under
the receiver-operator characteristic curve (AUROC) to measure predictive performance. For
further evaluation, the visual attention maps for all slides were generated and compared with
the cell prediction heatmaps from the CoNIC model. To obtain a quantitative evaluation
within reasonable pathologist effort, we sorted the WSIs by tissue size and selected 10 WSIs
from CD and UC patients, each containing 5 normal and 5 lesional.

5. Results and Discussion

Model Performance. In Table 1 we compare the performance of end-to-end and fine-
tuned DSMIL and HIPT models for predicting 3 weakly-supervised tasks in SPARC IBD.
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Figure 2: H&E image, Attention maps, cell level predictions and pathologist annotation for
UC patient with lesional macroscopic appearance and high endoscopic score.

Table 1: Mean AUROC ± standard error (5-fold cross validation) of trained models across
different prediction tasks.

Model Disease
Diagnosis

Macroscopic
Appearance

Endoscopic
Score (CD)

Endoscopic
Score (UC)

DSMIL-F 0.656±0.007 0.522±0.008 0.528±0.016 0.592±0.007
DSMIL-E2E 0.692±0.010 0.750±0.006 0.740±0.009 0.634±0.017
HIPT-F 0.825±0.017 0.780±0.012 0.766±0.026 0.788±0.034
HIPT-E2E 0.865±0.019 0.814±0.008 0.786±0.017 0.802±0.014

Table 2: Performance of DSMIL-E2E and HIPT-E2E trained on clinically-relevant subsets
of SPARC IBD for the task of predicting macroscopic appearance.

Model All data Just CD Just UC Just Ileum Just Colon

DSMIL-E2E 0.750±0.006 0.689±0.010 0.808±0.013 0.586±0.010 0.775±0.019
HIPT-E2E 0.814±0.008 0.804±0.010 0.837±0.015 0.739±0.032 0.823±0.036

HIPT-E2E significantly outperforms DSMIL-E2E across all tasks (two-tailed t-test: diag-
nosis - p<0.0001, macroscopic appearance - p<0.0005, endoscopic scores (CD) - p<0.05 and
(UC) - p<0.0001). It is likely that both the spatial patterns among cells and the context
of the tissue microenvironment are well captured by HIPT’s transformer backbone, leading
to improved performance. In addition, we found that E2E training on SPARC IBD was
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the optimal strategy for both DSMIL and HIPT training across all tasks. We suggest that
the embeddings learned by E2E models through self-supervised pre-training on SPARC IBD
were more useful for downstream prediction tasks than pre-trained embeddings from TCGA.
This difference can be attributed to the differences between IBD and cancer morphologies
as well as the difference between TCGA resections vs IBD biopsies.

Pathologist Evaluation. Through the pathologist evaluation of 20 WSIs, there were 8
TP, 7 TN, 4 FP and 1 FN when using the endoscopic labels whereas there were 9 TP, 7 TN,
3 FP and 1 FN when using the pathologist’s evaluation as ground truth. Therefore, while
not perfectly related, endoscopic and histological labels are strongly correlated, and the
model was able to learn histologically relevant features via supervised training on endoscopic
labels. Additionally, we obtained pathologist annotations of inflammatory regions for 1 WSI
(Figure 2) and computed the Dice coefficient between the annotation and the thresholded
attention map, obtaining 0.625, suggesting that inflammatory infiltrate was well localised
in this WSI.

Cell Prediction Model. From the cell model’s predictions, we found that the most
indicative HIF in UC was the ratio of neutrophils to all cells in the tissue (p=0.0007), while
in CD it was the ratio of eosinophils to all cells in the tissue (p=0.0002). These findings
are reflected in Alhmoud et al. (2020). Qualitatively, there are similarities between the cell
prediction maps and the pathologist’s description of inflammation (for example, Figure 5).
However, the quantitative performance at the cell level must be explored further. As this is
a labor-intensive and time-consuming task for pathologists, we suggest combining weakly-
supervised learning with supervised models is an alternative, more efficient, approach.

Applications. The trained models can be used to automatically rank biopsies by
disease severity allowing pathologists to save time by prioritising more severe biopsies.
This is important since the majority of biopsies received by pathologists are within normal
limits. For biopsies outside of normal limits, the attention maps can be used for guiding
the pathologist during microscopic evaluation of potentially malignant areas. We intend
to quantitatively assess the speed up of pathologist workflow in future works. For clinical
applications, we explored training DSMIL and HIPT using only CD or only UC biopsies
as well as exclusively ileum or colon biopsies for predicting macroscopic appearance since
disease features can present differently within these subsets (Table 2). We found that
model performance can be improved by training on just UC and just colon subsets, while
performance decreases when training on just ileum, suggesting that this is a more difficult
task due to fewer ileum biopsies. We consider these types of modifications critical in applying
these models to clinical trials and will be further explored in future works.

6. Conclusion and Future Work

We demonstrated that weakly supervised learning can produce accurate models trained on
H&E-stained biopsies with endoscopic labels only. We observed potential in the publicly
available CoNIC model and the attention maps. However, further quantitative and quali-
tative assessment of their generalisability is needed. Through reviewing the attention maps
with pathologists, we can potentially better understand the relationship between histolog-
ical and endoscopic labels. We plan to validate the trained SPARC IBD models with the
corresponding attention maps on external IBD datasets from clincal trials.
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rante, Paul Rutgeerts, Séverine Vermeire, and Gert De Hertogh. Correlation between the
endoscopic and histologic score in assessing the activity of ulcerative colitis. Inflammatory
bowel diseases, 19(6):1194–1201, 2013.

487



Mokhtari et al.

Bin Li, Yin Li, and Kevin W Eliceiri. Dual-stream multiple instance learning network for
whole slide image classification with self-supervised contrastive learning. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pages 14318–
14328, 2021a.

Jiayun Li, Wenyuan Li, Anthony Sisk, Huihui Ye, W Dean Wallace, William Speier, and
Corey W Arnold. A multi-resolution model for histopathology image classification and
localization with multiple instance learning. Computers in biology and medicine, 131:
104253, 2021b.

Ming Y Lu, Drew FK Williamson, Tiffany Y Chen, Richard J Chen, Matteo Barbieri,
and Faisal Mahmood. Data-efficient and weakly supervised computational pathology on
whole-slide images. Nature biomedical engineering, 5(6):555–570, 2021.

Alessia Marcolini, Ernesto Arbitrio, and Nicole Bussola. Histolab, 2022. URL https:

//github.com/histolab/histolab.

Fedaa Najdawi, Kathleen Sucipto, Pratik Mistry, Stephanie Hennek, Christina Jayson,
Mary Lin, Darren Fahy, Shawn Kinsey, Ilan Wapinski, Andrew H Beck, et al. Artificial
intelligence enables quantitative assessment of ulcerative colitis histology. medRxiv, 2022.

Iolanda Valentina Popa, Alexandru Burlacu, Catalina Mihai, and Cristina Cijevschi Pre-
lipcean. A machine learning model accurately predicts ulcerative colitis activity at one
year in patients treated with anti-tumour necrosis factor α agents. Medicina, 56(11):628,
2020.

Laura E Raffals, Sumona Saha, Meenakshi Bewtra, Cecile Norris, Angela Dobes, Caren
Heller, Sirimon O’Charoen, Tara Fehlmann, Sara Sweeney, Alandra Weaver, et al. The
development and initial findings of a study of a prospective adult research cohort with
inflammatory bowel disease (sparc ibd). Inflammatory bowel diseases, 28(2):192–199,
2022.

Bhargava K Reddy, Dursun Delen, and Rupesh K Agrawal. Predicting and explaining
inflammation in crohn’s disease patients using predictive analytics methods and electronic
medical record data. Health informatics journal, 25(4):1201–1218, 2019.

Fergus Shanahan. Inflammatory bowel disease: immunodiagnostics, immunotherapeutics,
and ecotherapeutics. Gastroenterology, 120(3):622–635, 2001.

Zhuchen Shao, Hao Bian, Yang Chen, Yifeng Wang, Jian Zhang, Xiangyang Ji, et al.
Transmil: Transformer based correlated multiple instance learning for whole slide image
classification. Advances in Neural Information Processing Systems, 34:2136–2147, 2021.

Naofumi Tomita, Behnaz Abdollahi, Jason Wei, Bing Ren, Arief Suriawinata, and Saeed
Hassanpour. Attention-based deep neural networks for detection of cancerous and precan-
cerous esophagus tissue on histopathological slides. JAMA network open, 2(11):e1914645–
e1914645, 2019.

488

https://github.com/histolab/histolab
https://github.com/histolab/histolab


Interpretable prediction of IBD disease features using WSL

Appendix A. Supplementary Methods

A.1. QC and Patch Extraction

From applying our QC model to all 1394 WSIs, we found that 6, 11, and 40 slides had,
respectively, >75, >50, and >25% rejected areas (Figure 3). Following QC, patches were
extracted at 40x for training DSMIL-E2E (224 by 244 resolution) and HIPT-E2E (4096
by 4096 resolution), following the methods of (Li et al., 2021a) and (Chen et al., 2022).
2,054,901 patches were extracted for DSMIL and 13,952 patches were extracted for HIPT.

IBD slides

IBD slides

6 slides >75% rejected

11 slides >50% rejected

40 slides >25% rejected

accepted tissue

rejected tissue

background

Figure 3: QC summary statistics on SPARC IBD and QC result on an additional slide

A.2. Cross-Validation

5-fold cross validation is performed on in all weakly-supervised classification tasks in SPARC
IBD. Splits are performed at the patient level, maintaining the distributions of biopsy
location, disease diagnosis and the target label - see Figure 4 for the exact splits for all
tasks. This was done to ensure that models are tested on a representative distribution of
biopsies. The same cross validation splits are used for both DSMIL and HIPT experiments to
allow them to be compared. For predicting macroscopic appearance, the “erosions/ulcers”
and “inflammation” labels were combined into a “lesional” class. For endoscopic score, the
median of SES score for CD and modified Mayo endoscopic score for UC were 0, so we
treated the negative class as a score of 0 and positive class as score >0.

A.3. Model Training

The hyperparameters used in self-supervised pretraining and weakly-supervised training for
all DSMIL and HIPT models are shown in Table 3. To follow closely the methods of (Li
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Endoscopic 
Scores (CD)

Endoscopic 
Scores (UC)

Macroscopic 
Appearance

Disease 
Diagnosis

Biopsy Location Disease Diagnosis Target Label Macroscopic Appearance

20cm ileum cecum a. colon other rectum d. colon

20cm ileum cecum a. colon other rectum d. colon

CD UC CD UC normal erosions/ulcers inflammation

CD UC CD UC normal erosions/ulcers inflammation

d. colon ileum rectum CD remission mild/moderate/severe normal erosions/ulcers inflammation

20cm rectum UC remission mild/moderate/severe normal erosions/ulcers inflammation
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Distributions of patient biopsy locations, disease diagnoses, target labels and macroscopic 
appearance across original dataset, train and test sets
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Figure 4: Proportion of patients (n=638) in original, train and test sets across 5 cross
validation folds and across biopsy location, disease diagnosis and macroscopic appearance
for all tasks. Proportions of patients in each category are kept consistent across all train
and test splits.

et al., 2021a) and (Chen et al., 2022), we use the default parameters for both models across
the board, but for HIPT we found that self-supervised pretraining converged after 30 epochs
and in weakly-supervised learning we use only 1 transformer encoder layer. The same cross
validation splits are used for both DSMIL and HIPT in all experiments.
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Table 3: Hyperparameters used to train DSMIL and HIPT models.

Model Self-supervised pretraining Weakly-supervised training

DSMIL-F Frozen from TCGA epochs: 200; embedding size: 512;
learning rate: 0.0002; weight de-
cay: 0.005

DSMIL-E2E epochs: 100; learning rate: 0.001;
weight decay: 0.000001; batch size:
1024; arch: ResNet18

epochs: 200; embedding size: 512;
learning rate: 0.0002; weight de-
cay: 0.005

HIPT-F Frozen from TCGA epochs: 20; layers: 1; heads:
3; dropout: 0.25, learning rate:
0.0003

HIPT-E2E epochs: 30; weight decay: 0.04;
learning rate: 0.0005, warmup
epochs: 10

epochs: 20; layers: 1; heads:
3; dropout: 0.25, learning rate:
0.0003

Appendix B. Additional Experiments

Since DSMIL can take as input patches extracted at different magnifications, we assessed the
performance of DSMIL in predicting disease diagnosis with different magnification datasets.
These results are summarised in Table 4. In order to be consistent with HIPT we used 40x
patches to train DSMIL-E2E for all main experiments (Table 1). However, we find that
for predicting macroscopic appearance, slightly improved performance can be achieved with
lower magnifications, although there is no statistically significant difference between these
models trained at different magnifications and HIPT-E2E still significantly outperforms
DSMIL-E2E at all magnifications.

Table 4: Comparison of DSMIL-E2E trained on different magnifications in predicting macro-
scopic appearance.

Dataset AUROC ± 1 SE

5x 0.645±0.008
10x 0.752±0.006
20x 0.758±0.006
40x 0.750±0.006
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Appendix C. Additional Attention Maps and Pathologist Feedback

Original H&E DSMIL-E2E HIPT-E2E

W
SI

 L
ev

el
C

el
l L

ev
el

WSI level
There is moderate 
transmural 
inflammation. Crypts 
are disorganised due 
to inflammatory 
infiltrate with fibrosis.

Cell level (red region)
Lymphoid follicle 
(lower left) with 
disorganised crypts 
(top). Many 
lymphocytes, plasma 
cells and eosinophils 
are present.

Pathologist Comments

0.0 1.0Attention weight

Cell model 
(lymphocytes density)

Epithelial

Lymphocyte

Plasma

Neutrophil

Eosinophil

Connective

Figure 5: H&E image, lymphocytes density by the cell level model, attention maps from
two models, at WSI level and cell level resolutions, and pathologist comments.
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Appendix D. Misclassified Cases

Figure 6: Two slides classified as “normal” from macroscopic appearance but predicted
as “lesional” by DSMIl-E2E. Both slides were confirmed by the pathologist to contain
inflammation and hence should be considered “lesional”.
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Appendix E. Supervised Cell Model

Figure 7: Six cell types predictions overlaid over two CoNIC patches.. CoNIC examples
have ground truth, annotations by pathologists available in the dataset.

Figure 8: Four immune cell density heatmaps overlaid over an IBDplexus WSI.
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epithelial cells (n=2)
connective cells (n=3)
lymphocytes (n=1)
neutrophils (n=1)
eosinophils (n=2)
plasma cells (n=1)

total cells = 10
total tissue area = 2 mm^2

density of lymphocytes in all tissue area =
lymphocytes / total tissue area = 

1 cell / 2 mm^2 = 0.5 cells/mm^2

ratio of lymphocytes to all cells in all tissue area =
lymphocytes / total cells = 

1 cell / 10 cells = 0.1

Total counts:
all tissue area

Figure 9: An example how human interpretable features (HIFs) are calculated from six
class cells predictions.
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