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Abstract

We present a novel approach to transcranial ultrasound computed tomography that utilizes
normalizing flows to improve the speed of imaging and provide Bayesian uncertainty quan-
tification. Our method combines physics-informed methods and data-driven methods to
accelerate the reconstruction of the final image. We make use of a physics-informed sum-
mary statistic to incorporate the known ultrasound physics with the goal of compressing
large incoming observations. This compression enables efficient training of the normaliz-
ing flow and standardizes the size of the data regardless of imaging configurations. The
combinations of these methods results in fast uncertainty-aware image reconstruction that
generalizes to a variety of transducer configurations. We evaluate our approach with in
silico experiments and demonstrate that it can significantly improve the imaging speed
while quantifying uncertainty. We validate the quality of our image reconstructions by
comparing against the traditional physics-only method and also verify that our provided
uncertainty is calibrated with the error.

Keywords: Invertible Networks, Medical Imaging, Bayesian Estimation, Uncertainty
Quantification, Physics and Machine Learning Hybrid

1. Introduction

Transcranial ultrasound computed tomography (TUCT) is a non-invasive, non-toxic imag-
ing technique that aims to create images of internal brain tissue by transmission and recep-
tion of acoustic waves (Dines et al., 1981). Its clinical applications range from hemorrhage
detection to tumour imaging Becker et al. (1994). Previous approaches to TUCT utilized
time-of-flight methods such as B-mode ultrasound (Smith et al., 1978). These methods are
limited in their imaging resolution for a variety of reasons, the foremost of which is due to
their approximate treatment of wave physics (Williamson, 1991). Following the pioneer-
ing work by Guasch et al. (2020), it was shown that modeling all aspects of the acoustic
wavefield enables high-resolution imaging of brain structures and anomalies. Since then,
many works Taskin et al. (2020); Marty et al. (2021); Tong et al. (2022); Cudeiro-Blanco
et al. (2022); Bates et al. (2022) are demonstrating increasing evidence from both in silico
and controlled laboratory experiments that these full wavefield methods are capable of pro-
ducing reliable brain images bringing this novel approach closer to clinical viability. These
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full wavefield methods are denoted full-waveform inversion (FWI) and are adapted from
sophisticated seismic imaging methods (Virieux and Operto, 2009; Tarantola and Valette,
1982). On the downside, FWI methods are computationally intensive since they require
the application of forward and gradient operators related to expensive partial differential
equation (PDE) solutions. This limits the clinical use of FWI methods towards TUCT since
they can take up 36 hours to form an image Guasch et al. (2020). In addition, the imaging
process is affected by incomplete measurements, noise and other sources of uncertainty that
can limit the accuracy and reliability of TUCT. To alleviate these problems and facilitate
the adoption of this new imaging modality, we propose a data-driven approach to TUCT
that leverages normalizing flows to dramatically improve the speed of imaging and provide
uncertainty quantification (UQ). While deep learning has tremendous potential in acceler-
ating computational imaging (Ongie et al., 2020), we identify the limitation that ultrasound
measurements in TUCT are impractically large and contain complex relationships that are
difficult to undo without the aid of the underlying physics model. We propose to solve
these problems by using a physics-informed summary function that takes the physical wave
model into account. For our data recording setup, this summary compresses the size of
observations by a factor of 70× allowing the use of GPU hardware accelerators. Figure 1
contains a schematic of our full proposed framework.

Figure 1: Proposed transcranial image reconstruction framework with normalizing flows for
uncertainty quantification.

2. Methods

2.1. Ultrasound modeling

Our imaging approach, solves the inverse problem of finding acoustic properties of internal
brain tissue that match observed ultrasound data. To model the propagation of ultrasound
waves through a human skull, we use the scalar acoustic wave equation with variable density.

We express the data recording process (solving the wave equation in Equation (4) of
the Appendix, followed by a restriction of the wavefield to the transducer locations) by the
discrete nonlinear operator, F , acting on the ith known source represented by the vector
qi. This nonlinear forward model is parameterized by the unknown acoustic impedance,
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discretized on a Nx × Ny grid (with Nx = 512, Ny = 512) and represented by the vector,
x ∈ RNx×Ny . For each source, qi, data is collected at Nr receivers for Nt time steps yielding

yi = F(x)qi + εεεi, (1)

with y[1:Ns] = {yi}Ns
i=1 being the full observation over Ns sources. To account for errors in

the measurements, an additive noise term is included as εεε ∈ RNr×Nt . Typical 3D hardware
setups haveNs = 1024 sources and for our 2D simulation we use up toNs = 32 sources. This
makes the full observation y[1:Ns] ∈ RNr×Nt×Ns . Figure 2(b) shows data of a single source
experiment with the acoustic impedance shown in Figure 2(a). In our setup, we model
Nr = 256 transducer receivers around the skull, of which Ns = 32 also act as sources. They
record for Nt = 2377 time steps. Given observed transcranial ultrasound data, y[1:Ns], our
aim is to invert for internal structures x. We solve this inverse problem in a Bayesian
framework so uncertainty due to incomplete measurements, modeling errors, and noise, can
be quantified systematically.

2.2. Bayesian transcranial ultrasound

Upon receiving observations y, solving a Bayesian inverse problem involves sampling the
conditional distribution of x given y (Tarantola, 2005). This conditional distribution p(x|y)
is called the posterior distribution. This posterior gives the full set of acoustic models x that
explain the observations y. To form an image reconstruction, one can use posterior samples
to calculate high-quality point estimates such as the maximum a posteriori (MAP) and the
minimum mean squared error (MMSE) estimator, while also providing uncertainty of those
estimates. In general, the posterior distribution p(x|y) is computationally costly to sam-
ple from. Traditional methods like Markov chain Monte Carlo (McMC) require thousands
of iterations, each of which needs to evaluate the expensive forward operator F (Martin
et al., 2012; Curtis and Lomax, 2001). This makes these methods impractical for clinical
use scenarios that require fast results (Bauer et al., 2013). In this paper, we suggest a vari-
ational inference method (Jordan et al., 1999) that accomplishes fast posterior sampling by
exploiting the distribution learning capabilities of generative models (Ruthotto and Haber,
2021). We will explain how our method derives from amortized density estimation where
an expensive offline pre-training phase leads to fast posterior sampling at inference time for
any in-distribution observation.

2.3. Amortized normalizing flows for posterior distribution sampling

Our goal is to sample from the distribution p(x | y) so that we can study the variation of
different x that explain the observed data y. Normalizing flows are a deep learning tech-
nique that have shown to be capable of learning to sample from complicated distributions
(Dinh et al., 2014, 2016). This method works by learning to map samples from the target
distribution to standard white Gaussian noise using an invertible neural network fθ with
learned layers parameterized by θ. Once trained, the inverse of the network f−1

θ̂
is evaluated

on realizations of standard white Gaussian noise to generate new samples from the target
distribution. Due to multi-scale transformations, normalizing flows scale favorably with
dimension of the target distribution and allow for fast sampling (Bond-Taylor et al., 2021)
making them a good candidate for our high-dimensional medical image reconstruction task.
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The posterior distribution p(x | y) we want to sample from is a conditional distribution
so we use conditional normalizing flows (Ardizzone et al., 2019; Winkler et al., 2019). These
learn to sample from a distribution conditioned on an observation y by minimizing the
following objective:

θ̂ = argmin
θ

1

N

N∑
n=1

(
∥fθ(x(n);y(n))∥22 − log |detJfθ |

)
(2)

where Jfθ is the Jacobian of the network and {(x(n),y(n))}Nn=1 are training pairs given by
Equation (1) and samples x ∼ p(x) drawn from the prior. Intuitively, Equation (2) learns
the posterior distribution by maximizing the likelihood of the x conditioned on y under the
normalizing transformation fθ. The first term is the likelihood in Normal distribution (ℓ2
norm). Because the transformation is invertible, the change of variables formula is used to
evaluate the likelihood in Normal space by controlling for volume changes caused under the
normalizing transformation fθ as quantified by the second Jacobian term. Mathematically,
Equation (2) minimizes the Kullback-Leibler divergence between the learned posterior and
the true posterior (Radev et al., 2020; Kovachki et al., 2020; Siahkoohi et al., 2022). Cru-
cially to our application, this method learns the posterior in an amortized fashion since it
minimizes the objective over a distribution of y. After training, the conditional normalizing
flow can sample the posterior for unseen y at the cheap cost of passing noise through the
inverse network. See Figure 1 for a schematic of the sampling process from noise.

Normalizing flows, due to their architecture, have closed-form inverses (up to numerical
precision), that cost the same as forward evaluation and the term |detJfθ | can be efficiently
calculated. In general, training pairs needed to optimize Equation (2) are generated in
the simulation-based inference framework (Cranmer et al., 2020) but for our ultrasound
application, y is complicated acoustic data and is too large for GPU training thus we
explore a physics-informed method to extract important features and compress its size.

2.4. Physics-informed summary statistic

For our ultrasound application, we identify three difficulties of working with acoustic data
y. First, the observation for all sources y[1:Ns]

is too large (Nt ×Nr ×Ns ≈ 19× 106) to fit

in a GPU for training. Second, different experimental configurations (i.e. varying number
of sources) change the size of observations meaning generalization on data space requires
sophisticated architectures (Radev et al., 2020). Finally, imaging complicated structures
directly from acoustic data is a difficult task (Orozco et al., 2022). These considerations
motivate the need of a function h that reduces the size and “summarizes” the observation
ȳ = h(y[1:Ns]

) while preserving information it carries about x. These summaries are formally

known as summary statistics (Deans, 2002; Radev et al., 2020). In the context of maximum
likelihood estimation, Alsing and Wandelt (2018) proposed the score of the likelihood as a
summary statistic. This score is defined as the gradient of the log-likelihood L = log p(y | x)
with respect to x. Alsing and Wandelt (2018) proved that the score is asymptotically
maximally informative of x. Inspired by this approach, we explore using the score as a
summary function for posterior sampling. We assume a Gaussian noise model leading to
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the gradient being the Jacobian adjoint J⊤ on the data residual:

ȳ = h(y[1:Ns]) := ∇x0L =

Ns∑
i=1

J(x0,qi)
⊤(F(x0)qi − yi) (3)

where x0 is a starting point at which the gradient is calculated. Note, Equation (3) involves
evaluating the forward physical model F and its Jacobian adjoint J⊤. Thus this summary
is informed by the physics (domain knowledge). As a result, the summarized data ȳ lives
in the reduced Nx × Ny image space (reduction factor of about 70). According to Fluri
et al. (2021), the informativeness of this summary statistic also implies that p(x | y) =
p(x | ȳ) thus we propose to use the same conditional distribution learning objective as
Equation (2) but replace the data y with the summary ȳ. See Algorithm 1 in the Appendix
for our full training process. The technical assumptions for the informativeness of this
summary statistic are discussed in Appendix 4.5 alongside studies to understand the effect
of deviations from the assumptions. One of the assumptions is that the starting point x0

needs to be carefully chosen as it will affect how informative the summary statistic will be.
For our application, x0 is the acoustically correct model of the skull bone and a constant
acoustic model inside the skull since the soft tissues inside the skull are the clinically relevant
structures we care to image. Inclusion of the skull is needed so that the physical operators
create meaningful results that inform the posterior. In practice, acoustic values of skull
bone can be calculated from CT scans (Aubry et al., 2003). See Figure 2(c) for an example
of x0 and Figure 2(d) for the physics-informed summary ȳ it creates.

(a) (b) (c) (d)

Figure 2: 2D transcranial ultrasound imaging setup. (a) Ground truth acoustic impedance
x∗ including source/receiver layout; (b) Observed data yi from a single source;
(c) Starting model, x0, which includes detailed acoustic information on the skull;
(d) summarized data ȳ for all Ns=32 sources.

While previous work has used the adjoint operator and pseudo-inverse to summarize
data (Adler and Öktem, 2018; Adler et al., 2022) to the best of our knowledge this is the
first work that explores based on theoretical arguments the use of the score of the likelihood
as a summary statistic for direct posterior sampling in a inverse problem with an expensive
physics-based nonlinear operator.
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3. Experiments and Results

3.1. Normalizing flow training

To create training pairs, we require samples from the prior distribution p(x) of ground
truth brain acoustic impedance models. In Appendix 4.2, we detail our automatic process
for deriving acoustic models from the FastMRI dataset (Zbontar et al., 2018). For training
and testing, we use 250 3D acoustic brains models each containing 11 512× 512 slices. Out
of these, we used 90% for training, 5% for validation and 5% for testing. We simulated the
forward wave propagation F from Equation (4) and its Jacobian adjoint J⊤ using Devito
(Luporini et al., 2020; Louboutin et al., 2019) and JUDI (Witte et al., 2019).

The conditional normalizing flow is implemented with InvertibleNetworks.jl (Witte et al.,
2020). Each epoch takes about 20 minutes and we trained for a total of 18 hours on a 32GB
A100 GPU. We did not observe over fitting on the validation set (Appendix Figure 6).

3.2. Image reconstruction from posterior samples

Once trained, our conditional normalizing flow can generate samples from the posterior with
Algorithm 2. The computational cost of posterior sampling is dominated by the calculation
of the physics-informed summary ȳ. This takes ≈ 1 second per source and 44.8 seconds in
total for all 32 sources (on 4 core Intel Skylake CPU). This calculation only needs to be done
once per ultrasound experiment after which many posterior samples can be generated each
at the cheap cost of one inverse network evaluation (20ms/sample). With these posterior
samples, statistical point estimates can be calculated including the minimum mean squared
error (MMSE) estimator given by the posterior/conditional mean xPM = Ex[ p(x | ȳ)] that
serves as our image reconstruction. For UQ, we look at the intra-sample variation between
posterior samples. To visualize UQ on the entire image reconstruction we use the posterior
variance Var[ p(x | ȳ)]. The posterior mean (and variance) is calculated by approximating
their expectations with an average over Npost = 128 posterior samples

xPM = Ex[ p(x | ȳ)] ≈ 1

Npost

Npost∑
i=1

xi where xi = f−1

θ̂
(zi; ȳ) and zi ∼ N (0, I).

See Appendix 4.7 for an analysis of the quality of xPM as the number of posterior samples
increases. In this work, we concentrate on the posterior mean because it is the estimator
with minimal mean squared error (Whang et al., 2021). Figure 3 contains an example of
the input and output of the proposed image reconstruction algorithm including UQ.

To assess the performance of our reconstruction, xPM, we compare with two baseline
methods, namely physics-only FWI, yielding xFWI obtained by gradient descent, and a
supervised U-Net xUNET (Ronneberger et al., 2015) trained on the same N data pairs
{(x(n), ȳ(n))}Nn=1 as our method. Compared to the learned methods, which incur off-line
training costs prior to inference, FWI is computationally intensive since it requires ∼ 40
calls to the forward and gradient for each source while our method only requires one gradient
per source. Refer to Appendix 4.3 for FWI and network training hyperparameters.

From Figure 4, we make the following observations: (i) our result contains fewer arti-
facts compared to FWI; (ii) it performs better than U-Net; (iii) it captures the full posterior
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Figure 3: Image reconstruction with UQ using our method including samples from the
posterior.

Figure 4: Comparison with physics-only and data-only methods of FWI and supervised U-
Net. Note that areas in our pointwise variance correlate well with areas of high
error.
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Method Timing (seconds) PSNR ↑ SSIM ↑ RMSE ↓

FWI (xFWI) 2100 33.25 0.9450 0.0215
Supervised UNet (xUNET) 44.8 + 0.02 35.63 0.9332 0.0168
Our posterior mean (xPM) 44.8 + 3.23 38.67 0.9646 0.0119

Table 1: Image reconstruction timing and quality metric comparison

yielding pointwise variances that correlate well with error; (iv) due to averaging over pos-
terior samples our result blurs a few details as compared to FWI. For a more quantitative
comparison of the reconstruction quality, refer to Table 1 in which the average quality met-
rics for peak signal to noise ratio (PSNR); structural similarity index metric (SSIM); and
root mean squared error (RMSE) are computed from 50 unseen test slices. Our method
shows high performance on all metrics while keeping the online inference time significantly
lower than the FWI method. For more direct comparison, we avoided measurement noise.

3.3. Generalization over experimental configurations

In Figure 5, we show how our method generalizes over different source configurations. Aside
from handling different acquisition constraints, practitioners can also quickly prototype
different configurations to decide which one meets their threshold of uncertainty.

Figure 5: Generalization over different imaging configurations. The three FWI results took
≈1.5 compute hours but the three posterior means and UQ were calculated in ≈3
minutes. We observe that our method shows better results than the pure-physics
FWI when there is less source coverage.
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Related work: The gradient we calculate for our summary statistic is connected to re-
verse time migration from seismic imaging (Baysal et al., 1983). For accessing uncertainty
information in TUCT, (Bates et al., 2022) use the mean-field Gaussian approximation.
Their method uses gradient descent with many expensive forward/gradient calls and as-
sumes a Gaussian prior on the ground truth images while neglecting correlations between
pixels. Our work, instead makes no underlining assumptions on the posterior/prior dis-
tributions and requires only one set of forward/gradient calls during inference. (Radev
et al., 2020) explored learned summary statistics for posterior inference. Here we exploit
knowledge of the underlying physics by introducing physics-informed summary statistics.
Instead of including physics in learned simulations as in physics-informed neural networks,
we include the physics in the data summary, which makes sense when dealing with inverse
problems where observed data serves as input.

Future work: Normalizing flows are likelihood models so they allow for natural anomaly
detection (Gudovskiy et al., 2022). We will explore the possibility of evaluating our method
on brains with anomalies for automatic detection of tumors or hemorrhages.

We highlight that our method assumes access to good starting points x0. In Appendix
4.5 we show that as this starting point gets worse then the physics-informed summary
statistic fails to inform the posterior. This results in degradation of the samples. We see
this result as a quality assurance since our generative model does not falsely generate realistic
but wrong samples. This is a limitation of gradient approaches in nonlinear problems as
demonstrated by FWI also failing for the poor starting points Appendix Figure 9. In future
works, we would like to find ways to be robust against poor starting points.

Conclusions: The application of machine-learning methods and systematic uncertainty
quantification to ultrasound imaging has been extremely challenging because of the high-
dimensionality and high computational costs associated with handling the correct wave
physics. Through the combination of conditional normalizing flows with physics-informed
summary statistics, we arrive at a formulation capable of producing high-fidelity images
with uncertainty quantification. By incurring an off-line pretraining cost, our method is
faster than traditional physics-only methods.
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4. Appendix

4.1. Wave equation modeling

The wave equation we use is

1

ρ(x, y)c(x, y)2
∂2

∂t2
u(x, y, t)−∇ · 1

ρ(x, y)
∇u(x, y, t) = q(t, x, y). (4)

In Equation (4): ρ(x, y) represents density as a function of space, c(x, y) is acoustic
velocity, u(x, y, t) is the acoustic pressure as a function in space and time, ∇ is the derivative
in space and q(t, x, y) is the acoustic source that is defined by the experimental transducer.
For our experiments, the transducers where impulsed using a 3-cycle burst with central
frequency of 400kHz. All values are defined on a discrete grid with spacing of 0.5[mm].

4.2. Generating acoustic models from FastMRI

To make acoustic training models, we start from the FastMRI dataset (Zbontar et al.,
2018) that contains MRI images of human brains. There is no immediate relation-
ship between MRI intensity and acoustic values. As a heuristic, we took the acoustic
values of the main brain tissues (Brain Grey Matter = 1505[m/s], Cerebellum White
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Matter=1552[m/s], Blood Veins=1578[m/s]) and (Brain Grey Matter=1044.5[Kg/m3],
Cerebellum White Matter = 1041.5[Kg/m3], Blood Veins=1049.8[Kg/m3]), and used k-
means to assign acoustic values to MRI intensities. This process is automatic and we
generated 2D slices of acoustic values from 250 brains. In future work, we will explore more
complicated workflows to produce acoustic models required for training.

4.3. Training details and FWI setup

We trained the conditional normalizing flow using ADAM optimizer (Kingma and Ba, 2014)
with learning rate of 0.001. We did not find the need to taper the learning rate. The mini-
batch size was 8. The supervised UNet uses the same implementation as Ronneberger et al.
(2015) with 5 downsampling levels. The UNet was trained with ADAM and a learning
rate of 0.0001 and needed exponential decay for stable training. We implemented FWI on
acoustic velocity by performing stochastic gradient descent on the ℓ2 misfit until convergence
or 35 minutes had elapsed. To accelerate convergence, we used a backtracking line-search
and box bounds projection onto the minimum and maximum acoustic values of water and
bone.

Algorithm 1 Pre-training phase

Need: N samples from prior p(x)
for i ∈ 1 : N do

Sample from prior: x ∼ p(x); Sample from noise model: ϵ ∼ p(ϵ)
Generate synthetic observation by solving forward PDE Equation (4): yi = F(x)qi + ϵ
Generate starting point: x0 = extractskull(x)
Summarize data with physics-informed gradient: ȳ =

∑Ns
i=1 J(x0,qi)

⊤(F(x0)qi − yi)
Add pairs to dataset: Di = (x, ȳ)

end
while normalizing flow fθ is not converged do

Evaluate fθ on dataset D using Equation (2) and update θ using backpropagation
end

Algorithm 2 Amortized posterior inference (given unseen observation y[1:Ns])

Need: starting point x0

Calculate gradient summary ȳ =
∑Ns

i=1 J(x0,qi)
⊤(F(x0)qi − yi)

Sample Npost Gaussian normal noise z ∼ N (0, I)
Pass z’s through inverse of normalizing flow f−1

θ̂
(z; ȳ) to generate posterior samples.

4.4. Evaluating sensitivity to size of training dataset

Since our method is Bayesian, its UQ results depend on how well it has learned the prior from
training examples. In the case of conditional normalizing flows the prior is not explicitly
accessible from the network since the network directly learns to sample the conditional
distribution. Nonetheless, we would like to gain intuition on the effect of more training
samples on the methods performance. In Figure 7, we demonstrate the effect of increasing
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Figure 6: Training log of normalizing flow with values from a leave-out validation set for
early stopping.

the training dataset size, on the posterior mean quality and on the UQ map that is produced.
We observe from Figure 7 that as training samples increase, the posterior mean gets closer
to the ground truth and that the UQ map becomes more contracted. These observations
are similar to what happens when we increase the amount of observed data as explained in
Section 4.6.

4.5. Considerations on quality of physics-informed summary statistic

Alsing and Wandelt (2018) proved that the score is asymptotically maximally informative
of x. Informativeness is defined by the Fisher information that ȳ carries about x. The
term “asymptotically” refers to two conditions, firstly how close the assumed likelihood
is to the ground truth one and secondly how close the starting point x0 is to the ground
truth x. Deviations from these two assumptions, will produce a summary statistic that is
uninformative.

Assumption 1. Assumed likelihood must be close to true likelihood: The ground
truth likelihood in our synthetic case is related to the noise model that we used to simulate
our forward data. We used colored noise that was made by band-limiting Gaussian noise
with the frequency content of the transducer wavelet. This would correspond to a noise
model of non-isotropic Gaussian with covariance related to the noise level and the particular
wavelet used. The likelihood we assumed to calculate the score is of an isotropic Gaussian
with σ = 1. This is already a deviation from the true likelihood but we did not notice a
degradation in quality.

Assumption 2. Starting point x0 must be close to x: An important consideration of
our method is that since it is gradient based, we need a starting point at which to calculate
the gradient. we assume that we have access to an acoustically correct model of the skull.
Practically, we envisage that by using x-ray based computed tomography (CT) we will
build an acoustic model of the patients skull that we can then use to invert for the acoustic
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(a) xPM (b) Error (c) UQ

(d) xPM (e) UQ (f ) Error

(g) Ground truth (h) xPM (i) UQ (j ) Error

Figure 7: Increasing quantity of training samples increases the quality of the posterior mean
and also decreases the average uncertainty.

properties of the inside brain tissue. The process of recovering acoustic properties of bone
from CT measurements is well-documented (Aubry et al., 2003). Acoustic properties of
bone are well-recovered by CT but the acoustic properties of soft tissue (the imaging goal
of our method) are not.

Since our wave physics model is nonlinear, the process will be particularly sensitive
to the starting point used to calculate the gradient. This phenomena well appreciated in
the seismic imaging community where much work is dedicated to designing good starting
points.

We study the effect of this starting model on the result of our method by adding a
constant shift to the constant velocity inside the skull of the starting model. Unsurprisingly,
our method degrades in quality as the starting point degrades Figure 9. This behaviour is
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expected and unavoidable since our method is gradient based and nonlinear. As evidenced
by failure of FWI Figure 9, this is a limitation to methods that use gradients.

Figure 8: Evaluating our method and FWI on a starting point x0 that is shifted by 1.5[m/s]
both methods still perform well

Figure 9: Evaluating our method and FWI on a starting point x0 that is shifted by 1.5[m/s].
Due to the poor starting point, both methods fail. The summary statistic ȳ loses
information useful for inference so our method fails as well.

4.6. Evaluating uncertainty

The large size of our problem, its nonlinearity and the non-Gaussianity of our prior prevents
us from a comparing against a ground truth posterior. Instead, we follow the literature and
evaluate our method using metrics designed the analyse the validity of the posterior from
a Bayesian sense and a practical sense.

We use the following two metrics to evaluate the quality of our uncertainty:
(i) Calibration: On expectation, the error made by our method should correlate with the
uncertainty (Guo et al., 2017). We use the method from Laves et al. (2020) to visualize
calibration in Figure 10(c).
(ii) Bayesian contraction: a Bayesian method needs to show contraction on the ground
truth as more data is observed (Ghosal and Van der Vaart, 2017). Here contraction means

348



Normalizing Flows for Transcranial Ultrasound

that more data should decrease the uncertainty. Not only that, the error made should also
decrease. Qualitatively we confirm this behaviour in Figure 5 where increasing the number
of source experiments decreases the overall uncertainty. Figures 10(a) and 10(b) show that
over the test set, increasing sources shows Bayesian contraction. As a scalar measure of
uncertainty, we use the sum of variance for all parameters.

(a) (b) (c)

Figure 10: Validation of uncertainty quantification (a) Posterior contracts as data is in-
creased; (b) Posterior contracts towards ground truth as measured by MSE; (c)
Uncertainty correlates with error in calibration plot.

4.7. Selecting number of posterior samples

(a) (b) (c)

Figure 11: Effect of number of posterior samples used to estimate posterior mean on: (a)
SSIM; (b) PSNR; (c) RMSE;
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