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Abstract

Transformers have shown great success in medical image segmentation. However, trans-
formers may exhibit a limited generalization ability due to the underlying single-scale self-
attention (SA) mechanism. In this paper, we address this issue by introducing a Multi-
scale hiERarchical vIsion Transformer (MERIT) backbone network, which improves the
generalizability of the model by computing SA at multiple scales. We also incorporate an
attention-based decoder, namely Cascaded Attention Decoding (CASCADE), for further
refinement of the multi-stage features generated by MERIT. Finally, we introduce an ef-
fective multi-stage feature mixing loss aggregation (MUTATION) method for better model
training via implicit ensembling. Our experiments on two widely used medical image seg-
mentation benchmarks (i.e., Synapse Multi-organ and ACDC) demonstrate the superior
performance of MERIT over state-of-the-art methods. Our MERIT architecture and MU-
TATION loss aggregation can be used with other downstream medical image and semantic
segmentation tasks.

Keywords: Medical image segmentation, Vision transformer, Multi-scale transformer,
Feature-mixing augmentation, Self-attention.

1. Introduction

Automatic medical image segmentation has become an important step in disease diagnosis
nowadays. Since the emergence of UNet (Ronneberger et al., 2015), U-shaped convolutional
neural networks (CNNs) (Oktay et al., 2018; Huang et al., 2020; Zhou et al., 2018; Fan et al.,
2020) have become de facto methods for medical image segmentation. By producing high-
resolution segmentation maps through aggregating multi-stage features via skip connections,
UNet variants, such as UNet++ (Zhou et al., 2018) and UNet3Plus (Huang et al., 2020),
have shown good performance in medical image segmentation. However, the spatial context
of the convolution operation limits the ability of CNN-based methods to learn the long-range
relations among pixels (Cao et al., 2021). Some work (Chen et al., 2018; Oktay et al., 2018;
Fan et al., 2020) try to address this issue by embedding attention mechanisms in the encoder
or decoder. However, despite the significant efforts made in this direction, the CNN-based
methods still have insufficient ability to capture long-range dependencies.

With the emergence of Vision transformers (Dosovitskiy et al., 2020), many works (Cao
et al., 2021; Chen et al., 2021; Dong et al., 2021; Wang et al., 2022b) try to address the above
problem using a transformer encoder, specifically designed for medical image segmentation.
Transformers capture long-range dependencies among pixels by learning correlations among
all the input patches using self-attention (SA). Recently, hierarchical vision transformers,
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such as pyramid vision transformer (PVT) (Wang et al., 2021) with spatial reduction at-
tention, Swin transformer (Liu et al., 2021) with window-based attention, and MaxViT
(Tu et al., 2022) with multi-axis attention have been introduced to improve performance.
Indeed, these hierarchical vision transformers are very effective for medical image segmen-
tation tasks (Cao et al., 2021; Dong et al., 2021; Wang et al., 2022b). However, these
transformer-based architectures have two limitations: 1) self-attention is performed with
a single attention window (scale) which has limited feature processing ability, and 2) self-
attention modules used in transformers have limited ability to learn spatial relations among
pixels (Chu et al., 2021).

More recently, PVTv2 (Wang et al., 2022c) embeds convolution layers in transformer
encoders, while CASCADE (Rahman and Marculescu, 2023) introduces an attention-based
decoder to address the limitation of learning spatial relations among pixels. Although these
methods enable learning of the local (spatial) relations among pixels, they still have limited
ability to capture features of multi-scale (e.g., small, large) organs/lesions/objects due to
the single-scale attention window used to compute the self-attention. To address this limi-
tation, we introduce a novel multi-scale hierarchical vision transformer (MERIT) backbone
which computes self-attention across multiple attention windows to improve the generaliz-
ability of the model. We also incorporate multiple CASCADE decoders to produce better
high-resolution segmentation maps by effectively aggregating and enhancing multi-scale hi-
erarchical features. Finally, we introduce a novel effective multi-stage (hierarchical) feature-
mixing loss aggregation (MUTATION) strategy for implicit ensembling/augmentation which
produces new synthetic predictions by mixing hierarchical prediction maps from the decoder.
The aggregated loss from these synthetic predictions improves the performance of medical
image segmentation. Our contributions are as follows:

e New Transformer Architecture: We propose a new multi-scale hierarchical vision
transformer (MERIT) for 2D medical image segmentation which captures both multi-
scale and multi-resolution features. Besides, we incorporate a cascaded attention-
based decoder for better hierarchical multi-scale feature aggregation and refinement.

e Multi-stage Feature-mixing Loss Aggregation: We propose a new simple, yet
effective way, namely MUTATION, to create synthetic predictions by mixing features
during loss calculation; this improves the medical image segmentation performance.

e Better State-of-the-art Results: We perform rigorous experiments and ablation
studies on two medical image segmentation benchmarks, namely Synapse multi-organ
and ACDC cardiac diagnosis. Our implementation of MERIT using two instances
(with different windows for SA) of MaxViT (Tu et al., 2022) backbone with CAS-
CADE decoder and MUTATION loss aggregation strategy produces new state-of-the-
art (SOTA) results.

2. Related Work
2.1. Vision transformers

Dosovitskiy et al. (Dosovitskiy et al., 2020) build the first vision transformer (ViT), which
can learn long-range (global) relations among the pixels through SA. Recent works focus
on improving ViT in different ways, such as designing new SA blocks (Liu et al., 2021; Tu
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et al., 2022), incorporating CNNs (Wang et al., 2022¢; Tu et al., 2022), or introducing new
architectural designs (Wang et al., 2021; Xie et al., 2021). Liu et al. (Liu et al., 2021)
introduce a sliding window attention mechanism in the hierarchical Swin transformer. In
DeiT (Touvron et al., 2021), authors explore data-efficient training strategies to minimize
the computational cost for ViT. SegFormer (Xie et al., 2021) proposes a positional-encoding-
free hierarchical transformer using Mix-FFN blocks. In PVT, authors (Wang et al., 2021)
develop a pyramid vision transformer using a spatial reduction attention mechanism. The
authors extend the PVT to PVTv2 (Wang et al., 2022c) by embedding an overlapping
patch embedding, a linear complexity attention layer, and a convolutional feed-forward
network. Recently, in MaxViT (Tu et al., 2022), authors propose a multi-axis self-attention
mechanism to build a hierarchical hybrid CNN transformer.

Although vision transformers have shown excellent promise, they have limited spatial
information processing ability; also, there is little effort in designing multi-scale transformer
backbones (Lin et al., 2022). In this paper, we address these very limitations by introducing
a multi-scale hierarchical vision transformer with attention-based decoding.

2.2. Medical image segmentation

Medical image segmentation can be formulated as a dense prediction task of classifying
the pixels of lesions or organs in endoscopy, CT, MRI, etc. (Dong et al., 2021; Chen
et al., 2021). U-shaped architectures (Ronneberger et al., 2015; Oktay et al., 2018; Zhou
et al., 2018; Huang et al., 2020; Lou et al., 2021) are commonly used in medical image
segmentation because of their sophisticated encoder-decoder architecture. Ronneberger
et al. (Ronneberger et al., 2015) introduce UNet, an encoder-decoder architecture that
aggregates features from multiple stages through skip connections. In UNet++ (Zhou et al.,
2018), authors use nested encoder-decoder sub-networks that are linked using dense skip
connections. Finally, UNet3Plus (Huang et al., 2020) explores the full-scale skip connections
having intra-connections among the decoder blocks.

Transformers are nowadays widely used in medical image segmentation (Cao et al.,
2021; Chen et al., 2021; Dong et al., 2021). In TransUNet (Chen et al., 2021), authors
propose a hybrid CNN transformer architecture to learn both local and global relations
among pixels. Swin-Unet (Cao et al., 2021) introduces a pure U-shaped transformer using
Swin transformer (Liu et al., 2021) blocks. Recently, in CASTFormer (You et al., 2022),
authors introduce a class-aware transformer with adversarial training.

Some studies explore attention mechanisms with CNN (Oktay et al., 2018; Fan et al.,
2020) and transformer-based architectures (Dong et al., 2021) for medical image segmen-
tation. In PraNet (Fan et al., 2020), authors utilize the reverse attention (Chen et al.,
2018). PolypPVT (Dong et al., 2021) uses PVTv2 (Wang et al., 2022c) as the encoder
and adopts a CBAM (Woo et al., 2018) attention block in the decoder with other modules.
In CASCADE (Rahman and Marculescu, 2023), authors propose a cascaded decoder using
attention modules for feature refinement. Due to its remarkable performance in medical
image segmentation, we incorporate the CASCADE decoder within our architecture.
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(a) Cascaded MERIT Backbones || (b) Decoders with cascaded skip connections || (c) Aggregation

Figure 1: Cascaded MERIT architecture. (a) Cascaded MERIT backbone, (b) Decoders
with cascaded skip connections from the decoder 1, (c¢) Prediction maps aggrega-
tion of two decoders. pl, p2, p3, and p4 are the aggregated multi-stage prediction
maps.

3. Method

In this section, we first introduce our proposed multi-scale hierarchical vision transformer
(MERIT) backbone and decoder. We then describe an overall architecture combining our
MERIT (i.e., MaxViT (Tu et al., 2022)) with the decoder (i.e., CASCADE (Rahman and
Marculescu, 2023)). Finally, we introduce a new hierarchical feature-mixing loss aggregation
method.

3.1. Multi-scale hierarchical vision transformer (MERIT)

To improve the generalizability of the model across small and large objects in an image, we
propose two designs (i.e., Cascaded and Parallel) based on the MERIT backbone network.

3.1.1. CascapED MERIT

In the cascaded design of our MERIT architecture, we add (i.e., cascade) feedback from a
backbone to the next backbone. We extract the hierarchical features from four different
stages of the backbone network. Then, we cascade these features with the features from the
previous backbone and pass them to the skip connections and bottleneck modules of the
respective decoders, except the first decoder. We also pass feedback from the decoder of one
backbone to the next backbone, except the last. This design captures the multi-scale, as
well as multi-resolution features due to using multiple attention windows and hierarchical
features. It also refines the features well due to adding some feedback from the decoder
of a backbone to the next backbone via cascaded skip connections. Fig. 1(a) presents the
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Cascaded MERIT architecture with two backbone networks. For each backbone network,
the images with size (H, W) are first put into a Stem layer (TB1 Stem, TB2 Stem in Fig.
1(a)) which reduces the resolution of the features to (H/4, W/4). Afterward, these features
are passed through four stages of transformer backbones (this reduces the resolution of the
features by 2 times at each stage, except the fourth). The features from the last stage of
the first decoder are combined with the input image to cascade it with the second backbone
in Fig. 1(a). To do this, we reduce the number of channels to one and produce logits by
applying a 1 x 1 convolution followed by Sigmoid activation. We also resize the feature map
to the input resolution (i.e., 224 x 224 in our implementation) of Backbone 2.

3.1.2. PARALLEL MERIT

Unlike Cascaded MERIT, in the parallel design of the MERIT backbone, we pass input
images of multiple resolutions in parallel into separate hierarchical transformer backbone
encoders with different attention windows. Similar to the Cascaded MERIT, we extract
the hierarchical features from four different stages of the backbone networks and pass those
features to the respective parallel decoders. This design also captures multi-scale features
due to using hierarchical backbones with multiple attention windows. Fig. 2(a) in Appendix
A presents a design for the Parallel MERIT with two backbone networks. The input images
are passed through similar steps in the backbone networks, just as in the Cascaded MERIT.
However, the Parallel MERIT shares information among the backbone networks only at the
very end during the feature aggregation step (Fig. 2(c) in Appendix A).

3.2. Decoder

We propose using a separate decoder for each transformer backbone. As shown in Fig. 1(b),
we use cascaded skip connections in the decoder of our cascaded MERIT architecture. Here,
we add the skip connections from the first backbone to the skip connections of the second
backbone network. In this case, we share information across backbones in three phases, i.e.,
during backbone cascading, skip connections cascading, and aggregating prediction maps.
This sharing of information helps to capture richer information than the single-resolution
backbone, as well as our Parallel MERIT.

Unlike Fig. 1(b), in Fig. 2(b) in Appendix A, we have two parallel decoders for our
parallel backbones. Each decoder has four stages that correspond to four stages of the
transformer backbone. We only aggregate the multi-stage prediction maps produced by the
decoders in Fig. 2(b) at the aggregation step shown in Fig. 2(c).

3.3. Overall Architecture

In our experiments, we use one of the most recent SOTA transformers, MaxViT (Tu et al.,
2022). We use two instances of MaxViT-S (standard) backbone with 8 x8 and 7x 7 attention
windows to create our MERIT backbone. Each MaxViT backbone has two Stem blocks fol-
lowed by four stages that consist of multiple (i.e., 2, 2, 5, 2) MaxViT blocks. Each MaxViT
block is built with a Mobile Convolution Block (MBConv), a Block Attention having Block
Self-Attention (SA) followed by a Feed Forward Network (FFN), a Grid Attention having a
Grid SA followed by an FFN. We note that although we use the MaxViT backbone in our
experiments, other transformer backbones can easily be used with our MERIT.
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Pure transformers have limited (spatial) contextual information processing ability among
pixels. As a result, the transformer-based models face difficulties in locating discriminative
local features. To address this issue, we adopt a recent attention-based cascaded decoder,
CASCADE (Rahman and Marculescu, 2023), for multi-stage feature refinement and aggre-
gation. CASCADE decoder uses the attention gate (AG) (Oktay et al., 2018) for cascaded
feature aggregation and the convolutional attention module (CAM) for robust feature map
enhancement. CASCADE decoder has four CAM blocks for the four stages of hierar-
chical features from the transformer backbone and three AGs for three skip connections.
CASCADE decoder aggregates the multi-resolution features by combining the upsampled
features from the previous stage of the decoder with the features from the skip connections
using AG. Then, CASCADE decoder processes the aggregated features using the CAM
module (consists of channel attention (Hu et al., 2018) followed by spatial attention (Chen
et al., 2017)) which groups pixels together and suppresses background information. Lastly,
CASCADE decoder sends the output from the CAM block of each stage to a prediction
head to produce prediction maps.

We produce four prediction maps from the four stages of the CASCADE decoder. As
shown in Figs. 1(c) and 2(c) in Appendix A, we aggregate (add) the prediction maps for
each stage of our two decoders. We generate the final prediction map, ¢, using Equation 1:

Jg=axpl+B8xp2+~yxp3+1 xpd (1)

where pl, p2, p3, and p4 represent the prediction maps, and «, 3, 7, and ¢ are the weights
of each prediction heads. We use the value of 1.0 for «, 8, 7, and ¥. Finally, we apply
Softmax activation on ¢ to get the multi-class segmentation output.

3.4. Multi-stage feature-mixing loss aggregation (MUTATION)

We now introduce a simple, yet effective multi-stage feature mixing loss aggregation strategy
for image segmentation, which enables better model training. Our intention is to create new
prediction maps by combining the available prediction maps. So, we take all the prediction
maps from different stages of a network as input and aggregate the losses of prediction maps
generated using 2" — 1 non-empty subsets of n prediction maps. For example, if a network
produces 4 prediction maps, our multi-stage feature-mixing loss aggregation produces a
total of 24 — 1 = 15 prediction maps including 4 original maps. This mixing strategy is
simple, as it does not require additional parameters to calculate, and it does not introduce
inference overheads. Due to its potential benefits, this strategy can be used with any multi-
stage image segmentation or dense prediction networks. Algorithm 1 presents the steps to
produce new prediction maps and loss aggregation.

4. Experiments

In this section, we demonstrate the superiority of our proposed MERIT architectures by
comparing the results with SOTA methods. We introduce datasets, evaluation metrics, and
implementation details in Appendix B. More experiments and ablation studies to answer
questions related to our architectures are given in Appendix C.1-C.7.
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Algorithm 1: Multi-stage Feature-Mixing Loss Aggregation

Input: y; the ground truth mask
A list [P]; i =0,1,--- ,n — 1, where each element is a prediction map
Output: loss; the aggregated loss
1 loss «+ 0.0;
2 S « find all non-empty subsets of prediction map indices, {0,...,n —1}; // S is
the set of non-empty subsets of {0,...,n—1}
3 foreach s € S do
4 y40.0; // y is a new prediction map
5 foreach i € s do
6 | 99+ P
7 end
8 loss < loss_function(y,y); // loss_function(.) is any loss function (e.g.,
CrossEntropy, DICE)

end

©

Table 1: Results on Synapse multi-organ dataset. DICE scores (%) are reported for indi-
vidual organs. The results of UNet, AttnUNet, PolypPVT, and SSFormerPVT
are taken from CASCADE (Rahman and Marculescu, 2023). MERIT results are
averaged over five runs for MERIT + CASCADE decoder (Additive) + MUTA-
TION. 1 denotes higher the better, | denotes lower the better. The best results

are in bold.

Architectures DI ng’“’;g]g%a | Aorta GB' KL' KR’ Live PCt SP*  SMY

UNet (Ronneberger et al., 2015) 7011 4460 8400 5670 7241 62.64 86.98 4873 8148 67.96
AttnUNet (Oktay et al., 2018) 7170 3447 8261 6194 7607 7042 8754 4670 80.67 67.66
R50-+UNet (Chen et al., 2021) 7468 3687 8418 6284 7919 7129 9335 4823 8441 73.92
R50-+AttnUNet (Chen et al., 2021) 7557 3697 5592 63.91 79.20 7271 9356 49.37 87.19 74.95
SSFormerPVT (Wang et al., 2022b) 7801 2572 8278 6374 80.72 7811 9353 6153 S87.07 76.61
PolypPVT (Dong et al., 2021) 78.08 2561 8234 6614 8121 7378 9437 5934 8805 794
TransUNet (Chen et al., 2021) 7748 3169 87.23 63.13 8187 77.02 9408 5586 85.08 75.6G2
SwinUNet (Cao et al., 2021) 7913 2155 8547 66.53 8328 79.61 9420 5658 90.66  76.60
MT-UNet (Wang et al., 2022a) 7859 2659 87.92 6499 8147 77.29 93.06 59.46 87.75 76.81
MISSFormer (Huang et al., 2021) 81.96 1820 8699 68.65 85.21 82.00 9441 65.67 91.92 80.81
CASTformer (You et al., 2022) 82.55 2273 89.05 6748 8605 8217 95.61 6749 91.00 8155

PVT-CASCADE (Rahman and Marculescu, 2023)  81.06 20.23 83.01 70.59 82.23 80.37 94.08 64.43 90.1  83.69
TransCASCADE (Rahman and Marculescu, 2023) 82.68 17.34 86.63 68.48 87.66 84.56 94.43 65.33 90.79  83.52

Parallel MERIT (Ours) 84.22 16.51 88.38 73.48 87.21 84.31 95.06 69.97 91.21 84.15
Cascaded MERIT (Ours) 84.90 13.22 87.71 74.40 87.79 84.85 9526 71.81 92.01 85.38

@ More details in Appendix B.2. ® More details in Appendix B.1.

4.1. Results on Synapse multi-organ segmentation

Table 1 presents the results of Synapse multi-organ segmentation; it can be seen that both
variants of our MERIT significantly outperform all the SOTA CNN- and transformer-based
2D medical image segmentation methods. Among all the methods, our Cascaded MERIT
achieves the best average DICE score (84.90%). Cascaded MERIT outperforms two popular
methods on this dataset, such as TransUNet and SwinUNet by 7.42% and 5.57%, respec-
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Table 2: Results on the ACDC dataset. DICE scores (%) are reported for individual organs.
We present the results of MERIT averaging over five runs with the setting MERIT
+ CASCADE decoder (Additive) + MUTATION. The best results are in bold.

Architectures Avg DICE RV® Myo® LV®

R50+UNet (Chen et al., 2021) 87.55 87.10 80.63 94.92
R50+AttnUNet (Chen et al., 2021) 86.75 87.58 79.20 93.47
ViT+CUP (Chen et al., 2021) 81.45 81.46 70.71 92.18
R504ViT+CUP (Chen et al., 2021) 87.57 86.07 81.88 94.75
TransUNet (Chen et al., 2021) 89.71 88.86 84.53 95.73
SwinUNet (Cao et al., 2021) 90.00 88.55 85.62  95.83
MT-UNet (Wang et al., 2022a) 90.43 86.64 89.04 95.62
MISSFormer (Huang et al., 2021) 90.86 89.55 88.04 94.99
PVT-CASCADE (Rahman and Marculescu, 2023) 91.46 88.9 89.97 95.50
TransCASCADE (Rahman and Marculescu, 2023) 91.63 89.14 90.25 95.50
Parallel MERIT (Ours) 92.32 90.87 90.00 96.08
Cascaded MERIT (Ours) 91.85 90.23 89.53 95.80

¢ More details in Appendix B.1.

tively, when compared to their original reported DICE scores. Cascaded MERIT achieves
2.22% better DICE than the existing best method, TransCASCADE (82.68% DICE), on
this dataset. When we compare the HD95 distance of all the methods, we find that both
variants of our MERIT achieve a lower HD95 distance. Cascaded MERIT has the lowest
HD95 distance (13.22) which is 18.47 lower than TransUNet (HD95 of 31.69) and 4.12 lower
than the best SOTA method, TransCASCADE (HD95 of 17.34).

If we look into the DICE score of individual organs, we observe that proposed MERIT
variants significantly outperform SOTA methods on six out of eight organs. We also can
conclude that Cascaded MERIT performs better both in large and small organs, though
it exhibits greater improvement for small organs. We believe that both MERIT variants
demonstrate better performance due to using the multi-scale hierarchical transformer en-
coder with cascaded attention-based decoding and the MUTATION loss aggregation.

4.2. Results on ACDC cardiac organ segmentation

Table 2 reports three cardiac organ segmentation results of different methods on the ACDC
dataset for MRI data modality. Both our Parallel and Cascaded MERIT have better DICE
scores than all other SOTA methods. Our Parallel MERIT achieves the best average DICE
score (92.32%) which outperforms TransUNet and SwinUNet by 2.61% and 2.32%, respec-
tively. Parallel MERIT also shows the best DICE scores in RVZ! (90.87%) and LVZ!
(96.08%) segmentation. We can conclude from these results that our method performs the
best across different medical imaging data modalities.
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5. Conclusion

In this paper, we have introduced a novel multi-scale hierarchical transformer architecture
(MERIT) that can capture both the multi-scale and multi-resolution features necessary for
accurate medical image segmentation. We have also incorporated an attention-based cas-
caded decoder to further refine features. Moreover, we have proposed a novel multi-stage fea-
ture mixing loss aggregation (MUTATION) strategy for implicit ensembling/augmentation
which ensures better model training and boosts the performance without introducing ad-
ditional hyper-parameters and inference overhead. Our experimental results on two well-
known multi-class medical image segmentation benchmarks demonstrate the superiority of
our proposed method over all SOTA approaches. Finally, we believe that our proposed
MERIT architectures and MUTATION loss aggregation strategy will improve other down-
stream medical image segmentation and semantic segmentation tasks.
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Figure 2: Parallel MERIT architecture. (a) Parallel MERIT backbone, (b) Parallel de-
coders, (c¢) Prediction maps aggregation from two decoders. pl, p2, p3, and p4
are the aggregated multi-stage prediction maps.

Appendix A. Parallel MERIT Architecture

Our Parallel MERIT architecture is given in Fig. 2. This architecture is described in Section
3.1.2 of the main text.

Appendix B. Experimental Setup

This section first describes datasets, then introduces evaluation metrics, and finally provides
the implementation details of our proposed architecture and experiments.

B.1. Datasets

Synapse multi-organ dataset. There are 30 abdominal CT scans with 3779 axial
contrast-enhanced abdominal CT images in the Synapse multi-organ dataset'. Each CT
scan has 85-198 slices of resolution 512 x 512 pixels, having a voxel spatial resolution of
([0:54-0:54] x [0:98-0:98] x [2:5-5:0])mm3. We extract 2D slices from the CT scans and
segment 8 abdominal organs, such as the aorta, gallbladder (GB), left kidney (KL), right
kidney (KR), liver, pancreas (PC), spleen (SP), and stomach (SM). Following the experi-
mental protocol of TransUNet (Chen et al., 2021), we split the dataset into 18 scans (2211
axial slices) for training, and 12 for validation.

ACDC dataset. The ACDC dataset? contains 100 cardiac MRI scans collected from
different patients. We extract 2D slices from each MRI scan and segment three organs, such

1. https://www.synapse.org/#!Synapse:syn3193805/wiki/217789
2. https://www.creatis.insa-lyon.fr/Challenge/acdc/
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as the right ventricle (RV), left ventricle (LV), and myocardium (Myo). Following MT-UNet
(Wang et al., 2022a), we split the dataset into 70 (1304 axial slices), 10 (182 axial slices),
and 20 cases for training, validation, and testing, respectively.

B.2. Evaluation metrics.

In our experiments on the Synapse Multi-organ dataset, we use DICE and 95% Hausdorff
Distance (HD95) as the evaluation metrics. However, we use only DICE scores as an
evaluation metric for the ACDC dataset. The DICE similarity scores DSC(Y,Y) and
HD95 distance Dy (Y, 57) (95th percentile of the distances between boundary points in Y
and Y) are calculated using Equations 2 and 3, respectively.

_2x|ynyY| y

DSC(Y,Y)=""1———1x100 (2)
Y[+ 1Y
Dy(Y,Y) = max{dy v, dy } = max{maxmind(y, y), {max min d(y, )} (3)
yeY gey gey yeYy

where Y and Y are the ground truth mask and predicted segmentation map, respectively.

B.3. Implementation details

We use PyTorch 1.12.0 with CUDA 11.6 in all of our experiments. Besides, we use a
single NVIDIA RTX A6000 GPU with 48GB of memory to train all models. We utilize
the Pytorch pre-trained weights on ImageNet from the timm library (Wightman, 2019)
for MaxViT backbone networks. We use the input resolutions and attention windows of
{(224 x 224), (256 x 256)} and {(8 x 8), (7 x 7)}, respectively, in our (dual-scale) MERIT.
We augment data using only random rotation and flipping. We train our model using
AdamW optimizer (Loshchilov and Hutter, 2017) with a weight decay and learning rate of
0.0001. We optimize the combined DICE and Cross-Entropy (CE) loss £ in Equation 4
with A\; = 0.7 and A2 = (1 — A1) = 0.3 (weights are selected empirically in Appendix C.7)
in all our experiments:

L= MLpice +XLcE (4)

where A\; and A\ are the weights for the DICE (Lp;cop) and CE (Log) losses, respectively.

We train each model a maximum of 300 epochs with a batch size of 24 for Synapse
multi-organ segmentation. For ACDC cardiac organ segmentation, we use a batch size of
12 and train each model for a maximum of 400 epochs.

Appendix C. Ablation Studies

In this section, we present a wide range of ablation studies to answer different intrinsic
questions related to our proposed architectures, loss aggregation, and experiments; these
are described in the following subsections.
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Table 3: Comparison with the baseline method on Synapse multi-organ and ACDC
datasets. We report the results of our MERIT with the setting
MERIT+CASCADE decoder(Additive)+ MUTATION. We report the average in-
ference time (ms) over 5000 samples. All reported DICE scores (%) in columns
Synapse Multi-organ and ACDC are averaged over five runs. The best results are

in bold.

. . Params (M)/ Inference Synapse
Architectures Input Resolutions FLOPS (G) Time (ms) Multi-organ ACDC
MaxViT 224 x 224 65.25/10.43 19.79 7711 90.56
MaxViT 256 x 256  65.25/14.19 20.58 78.53  90.98
MaxViT with CASCADE decoder 224 x 224 82.62/14.2 21.84 79.83 90.87
MaxViT with CASCADE decoder 256 x 256 82.62/19.11 23.07 80.20  91.15
Parallel MERIT (Ours) 256 x 256, 224 x 224 147.86/33.31 37.01 84.22  92.32
Cascaded MERIT (Ours) 256 x 256, 224 x 224  147.86/33.31 37.06 84.90 91.85

C.1. Comparison with the baseline method

We compare our proposed methods with baseline hierarchical MaxViT architecture. In the
case of MaxViT, we do the same multi-stage prediction for a fair comparison. We also
use a similar experimental setting except using MUTATION with our architectures. Table
3 presents the results of these experiments. We can see from Table 3 that our proposed
architectures with MUTATION loss (see "our” entries in Table 3) improve the baseline
hierarchical 256 x 256 resolution MaxViT (see 2" row entries in Table 3) by 6.37% and
1.34% DICE scores (with 1.62x more FLOPS and 1.8x longer inference time) in Synapse
multi-organ and ACDC datasets, respectively. We can also see that our MERIT architecture
has 147.86M parameters which is 1.8x larger than 256 x 256 resolution MaxViT with
CASCADE decoder (see 4" row entries in Table 3), but with a 4.7% better DICE score in
Synapse multi-organ. We think that this increase in parameters/FLOPS /inference time is
worth it given the improvement in performance.

C.2. Effect of multi-scale backbone

We have conducted experiments on the Synapse multi-organ dataset to show the effect of
our multi-scale backbone on medical image segmentation. In Table 4, we present the results
of all the methods with the CASCADE decoder (no MUTATION) to make a fair compar-
ison of our proposed architecture. It can be seen from Table 4 that the input resolution
has an impact on DICE score improvement. More precisely, 256 x 256 resolution backbones
have better DICE scores than the 224 x 224 resolution backbones. As shown, our Cascaded
MERIT achieves the best DICE score (83.35%) which improves the baseline 256 x 256 reso-
lution MaxViT (see 2"¢ row entries in Table 4) by 3.15%. When comparing with the double
backbone architectures with the same input scale (attention window), we can see that our
multi-scale (attention window) double backbone architectures achieve better DICE scores
due to their additive advantage of multi-scale feature extraction. We note that our Paral-
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Table 4: Effect of multi-scale backbone on Synapse multi-organ dataset. We report the
results of the backbone with CASCADE decoder (no MUTATION) to clarify the
effect of multi-scale backbones. All reported results are averaged over five runs.

The best results are in bold.

. . Attention Params (M)/ Avg
Architectures Input Resolutions Windows ~FLOPS (G) DICE (%)
(single) MaxViT 224 x 224 Tx7 82.62/14.2 79.83
(single) MaxViT 256 x 256 8 x 8 82.62/19.11 80.20
Parallel Double MaxViT 224 x 224,224 x 224 T X7, 7 x7T 147.86/28.4 80.81
Parallel Double MaxViT 256 x 256, 256 x 256 8 x 8, 8 x 8  147.86/38.22 82.15
Cascaded Double MaxViT 224 x 224,224 x 224 7x7,7x7 147.86/28.4 81.06
Cascaded Double MaxViT 256 x 256, 256 x 256 8 x 8,8 x 8 147.86/38.22 83.02
Parallel MERIT (Ours) 256 x 256, 224 x 224 8 x 8, 7Tx 7 147.86/33.31 82.91
Cascaded MERIT (Ours) 256 x 256, 224 x 224 8 x 8, 7x 7 147.86/33.31 83.35

Table 5: Comparison of Tiny MERIT vs. Small MaxViT architectures on Synapse multi-
organ dataset. We report the results of the backbone with CASCADE decoder (no
MUTATION) to clarify the effect of multi-scale backbones. All reported results
are averaged over five runs. The best results are in bold.

. . Attention Params (M)/
Architectures Input Resolution Windows FLOPS (G) Avg DICE (%)
MaxViT-Tiny 224x224 <7 36.86/6.57 77.84
MaxViT-Tiny 256 %256 8x8 36.86/8.61 78.43
Parallel MERIT-Tiny (Ours) 256x256, 224x224  8x8, TxT 65.41/15.18 81.34
Cascaded MERIT-Tiny (Ours) 256x256, 224x224 8x8, 7x7 65.41/15.18 81.82
MaxViT-Small 224x224 X7 82.62/14.2 79.83
MaxViT-Small 256 %256 8x8 82.62/19.11 80.20

lel/Cascaded MERIT (33.31G) has a significantly lower computational complexity /FLOPS
than the 256 x 256 resolution Parallel/Cascaded Double MaxViT (38.22G) due to using
one 256 x 256 and another 224 x 224 resolution inputs. Despite that, our Parallel and Cas-
caded MERIT outperform the Double MaxViT by 0.76% and 0.33%, respectively. These
improvements in the DICE score support the claim regarding the benefit of calculating SA

in multiple scale attention windows.

We have conducted an additional set of experiments by implementing a tiny version of
MERIT using the tiny MaxViT backbones, to clarify that performance improvement is due
to the effect of multi-scale SA, not because of using a model with more parameters. As
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Table 6: Effect of CASCADE decoder and MUTATION loss aggregation in MERIT on
Synapse multi-organ dataset. We present the results of MERIT averaging over
five runs. The best results are in bold.

Architectures CASCADE decoder MUTATION Avg DICE (%)
Parallel MERIT No No 80.44
Parallel MERIT No Yes 81.06
Parallel MERIT Yes No 82.91
Parallel MERIT (Ours) Yes Yes 84.22
Cascaded MERIT No No 80.76
Cascaded MERIT No Yes 82.03
Cascaded MERIT Yes No 83.35
Cascaded MERIT (Ours) Yes Yes 84.90

shown in Table 5, when comparing against the Small MaxViT backbone which has more
model parameters, both our Tiny MERIT backbones perform better. Our Tiny Cascaded
MERIT backbone outperforms the Small MaxViT backbone (see 4" row entries in Table 5)
by up to 1.62% DICE score for a 256 x 256 input resolution while having 1.26x smaller model
parameters and 1.26 x fewer FLOPS. Therefore, again, we can conclude from these empirical
evaluations that our multi-scale SA calculation improves the performance of medical image
segmentation.

C.3. Effect of CASCADE decoder and MUTATION loss aggregation in
MERIT

We have conducted some experiments on Synapse multi-organ dataset to demonstrate the
effect of CASCADE decoder and MUTATION loss aggregation strategy on our MERIT
architectures. Table 6 presents the results of our Parallel MERIT with or without CAS-
CADE decoder and MUTATION. We can see from Table 6 that Parallel and Cascaded
MERIT without both CASCADE decoder and MUTATION have the lowest DICE scores.
CASCADE decoder significantly increases the DICE scores (2.47-2.59%) due to capturing
the spatial (contextual) relations among pixels (usually limited in vision transformer), while
MUTATION alone marginally improves the DICE (0.62-1.27%). However, when MUTA-
TION is used with the outputs from CASCADE decoder, it achieves the best DICE scores
(84.22%, 84.90%) improving CASCADE decoder by 1.31-1.55%. We believe the reason be-
hind this is that MUTATION works well with the refined features of the CASCADE decoder.
Therefore, we can conclude that the synthesized prediction maps generated via combinatory
aggregation (MUTATION) help us improve the performance of the model; this is why we
prefer combinatory loss aggregation over linear aggregation. We believe that our combina-
tory loss aggregation (MUTATION) can be used as a beneficial ensembling/augmentation
method in other downstream semantic and medical image segmentation tasks.
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Figure 3: Qualitative results on Synapse multi-organ dataset. (a) Ground Truth (GT), (b)
MaxViT (input resolution 224 x224), (c¢) MaxViT (input resolution 256 x256), (d)
Parallel MERIT, (e) Cascaded MERIT. We produce all the segmentation maps
with the CASCADE decoder and overlay on top of original image/slice.

Table 7: Comparison of different aggregations in CASCADE decoder on Synapse multi-
organ dataset. We present the results of MERIT averaging over five runs with
the setting MERIT + CASCADE decoder + MUTATION. The best results are in

bold.

Architectures Aggregation in CASCADE decoder Avg DICE (%)
Parallel MERIT Concatenation 84.18
Parallel MERIT Concatenation 84.22
Cascaded MERIT Additive 84.88
Cascaded MERIT Additive 84.90

C.4. Qualitative results on Synapse Multi-organ Segmentation

Fig. 3 shows the qualitative results of the baseline hierarchical MaxViT and our proposed
MERIT architectures. As shown in the figure, our MERIT architecture can segment the
small organs (see the red rectangular box) well. In contrast, the single scale MaxViT
architecture with both 224 x 224 and 256 x 256 input resolutions fail to segment that small
organ. Our MERIT architecture also segments the larger organ much better than the single
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Table 8: Comparison of different interpolations in MERIT on Synapse multi-organ dataset.
We present the results of MERIT averaging over five runs with the setting MERIT
+ CASCADE decoder(Additive) + MUTATION. The best results are in bold.

Architectures Interpolations Avg DICE (%)
Parallel MERIT nearest-exact 81.67
Parallel MERIT area 81.76
Parallel MERIT bicubic 83.58
Parallel MERIT bilinear 84.22
Cascaded MERIT  nearest-exact 82.27
Cascaded MERIT area 82.38
Cascaded MERIT bicubic 84.05
Cascaded MERIT bilinear 84.90

scale MaxViT. We believe the reason behind this better segmentation of both small and
large organs by our MERIT architectures is the use of multi-scale SA.

C.5. Effect of different aggregations in CASCADE decoder

Table 7 presents the results of concatenation and additive aggregations in CASCADE de-
coder on Synapse multi-organ dataset. We can see from Table 7 that our MERIT architec-
tures with additive aggregation in CASCADE decoder are marginally better (0.04-0.02%)
than the concatenation. Therefore, we can conclude from these results that the aggrega-
tion techniques do not have much impact on the CASCADE decoder of our architectures
while using MUTATION. However, concatenation aggregation-based methods usually have
additional computational overheads due to increasing the number of channels after the
aggregation, while additive aggregation keeps the number of channels the same. Conse-
quently, we recommend using additive aggregation in our MERIT architectures due to its
computational benefits.

C.6. Effect of different interpolations in MERIT

We have conducted some experiments on Synapse multi-organ dataset to choose the best
interpolations methods for our proposed MERIT architectures. Table 8 presents the results
of Parallel and Cascaded MERIT using nearest-exact (nearest neighbor), area, bicubic, and
bilinear interpolation methods from Pytorch. The nearest-exact interpolation shows the
lowest DICE scores while bilinear and bicubic interpolation achieve the best and second
best DICE scores, respectively. Therefore, we recommend using bilinear interpolation in
our proposed MERIT architectures to re-scale the features and prediction maps.

C.7. Choosing weight for DICE and CE losses

We optimize the combined DICE and CE loss during the training of our models. Here,
we have conducted some experiments to choose the best weight pairs to combine these two
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Figure 4: Loss weight vs. DICE curve on Synapse multi-organ dataset. We report the
results of our Cascaded MERIT+CASCADE decoder(Additive) + MUTATION
with different weights for DICE and CE losses. X-axis presents the weights of
DICE loss, A1, while the weight for CE loss is Ao = 1 — Ay. The value of 0.0 on
the X-axis represents weights for DICE and CE losses of 0.0 and 1.0, respectively
(i.e., only CE loss is used). While the value of 1.0 on the X-axis represents weights
for DICE and CE losses of 1.0 and 0.0, respectively (i.e., only DICE loss is used)

losses. Fig. 4 presents the DICE scores for different weight pairs for losses. We can see in
the graph that the model shows the worst DICE score when using only the CE loss. We
get the best DICE score for the weights pair (A1, A2) = (0.7, 0.3) which we have used in all
of our experiments.

Appendix D. Supplementary Materials
We make our source code publicly available at https : //github.com/SLDGroup/ M ERIT.
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