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Abstract

Concerns about the reproducibility of deep learning research are more prominent than ever,
with no clear solution in sight. The Medical Imaging with Deep Learning (MIDL) confer-
ence has made advancements in employing empirical rigor with regards to reproducibility
by advocating open access, and recently also recommending authors to make their code
public—both aspects being adopted by the majority of the conference submissions.

We have evaluated all accepted full paper submissions to MIDL between 2018 and 2022
using established, but adjusted guidelines addressing the reproducibility and quality of the
public repositories.

The evaluations show that publishing repositories and using public datasets are becom-
ing more popular, which helps traceability, but the quality of the repositories shows room
for improvement in every aspect. Merely 22% of all submissions contain a repository that
was deemed repeatable using our evaluations.

From the commonly encountered issues during the evaluations, we propose a set of
guidelines for machine learning-related research for medical imaging applications, adjusted
specifically for future submissions to MIDL. We presented our results to future MIDL
authors who were eager to continue an open discussion on the topic of code reproducibility.

Keywords: Reproducibility, Reproducibility of the Methods, Deep Learning, Medical
Imaging, Open Science, Transparent Research

1. Introduction

Concerns about reproducibility are present in all research fields, however the rapid speed
of advancement in deep learning makes it an especially sensitive area. Much of current
machine learning research is exploratory, gathering new observations and expanding the
scope of our knowledge on earlier, but often still relatively recent research that perhaps
was not evaluated appropriately or extensively enough. This leads to a risk that important
research remains unnoticed if it does not follow the current trends, or even worse it risks
entire lines of research collapsing if one of their building blocks is later disproven (Sculley
et al., 2018). A grim example is a study (Melis et al., 2018) which showed that many novel
model proposals in NLP that claim to be state-of-the-art are outperformed by a simple
LSTM model, if it is well-tuned.
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These concerns need to be acknowledged, discussed, and overcome. Implementing em-
pirical rigor is important, such as advocating for Open Science, and it is certainly a way
forward for improved reproducibility. However, there are some aspects that can be addressed
to speed up the progress (Bohr and Memarzadeh, 2020).

As one form of reproducibility (Claerbout and Karrenbach, 1992), the main body of the
paper should aim for reproducibility of the conclusions (Bouthillier et al., 2019). But since
so many details are needed in a text for a method to be reproducible (Renard et al., 2020),
it might not be feasible to include everything, especially when there are page constraint.
Despite the authors being well intentioned, there might be a lack of awareness on how to
achieve reproducibility of conclusions (Bouthillier et al., 2019), and the commonly used
solutions might achieve something different.

Reproducibility of the method or traceability means that on the exact same hardware,
using the same dataset and random seeds, one should be able to generate the same re-
sults as were presented in the paper. Practically, this is what code sharing achieves (if done
properly), and a common method used by researchers that pursue transparency. However it
does not necessarily improve the reproducibility of the conclusions. First of all, submitting
a repository is not a trade-off for focusing less on the main body of the paper (Raff, 2019),
and many new concerns arise by making code publicly available, especially so when han-
dling sensitive medical data. We believe that a well-managed, high-quality repository can
improve the overall readability, reproducibility, and therefore also the impact of a submis-
sion; and similarly, a systematic low-quality repository can weaken the general submission.
Conference organizers could take the initiative here, and set up a common direction for the
quality of supplementary code repositories, to help those authors that aim for transparency
and reproducibility.

We are by no means the first to raise concerns about the lack of empirical rigor in the
field, see e.g. (Sculley et al., 2018; Jacobs and Bram van, 2019). Some empirical rigor has
been proposed for reporting findings (Mongan et al., 2020), by Nature1 and some large
machine learning conferences (NeurIPS2 (Pineda et al., 2020), MICCAI (Balsiger et al.,
2021)) have recently introduced guidelines for code submissions. There is also a paper
evaluating the checklist provided by NeuroIPS (Pineau et al., 2021) and other initiatives
that shed light on unrepeatable research3. But this doesn’t necessarily translate directly
to other conferences, that are expected to have their own individual concerns, such as
the sensitivity of the data for example. The proposed guidelines often pose requirements
to the authors, and we have decided to focus only on suggestions, using the checklist4

implemented by NeurIPS as a baseline, adjusting it to better fit MIDL with regards to
commonly encountered sensitive data, and a goal for transparency. We believe that the
evaluations we have made will add to the conversation, and that our proposals can help to
address reproducibility at the conference level.

We believe that the conference Medical Imaging with Deep Learning (MIDL) is in a
perfect position to implement and follow their own set of guidelines to help authors and
help to improve the quality and reproducibility of research in the field.

1. https://www.nature.com/documents/GuidelinesCodePublication.pdf
2. https://nips.cc/Conferences/2021/PaperInformation/CodeSubmissionPolicy
3. https://www.paperswithoutcode.com/
4. https://github.com/paperswithcode/releasing-research-code
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2. Why MIDL?

MIDL has always been an advocate of open research, with the author guidelines recom-
mending open access and using an open review system since the first conference in 2018.
This innate focus on transparency adds to the impact and the quality of the conference,
and given the field the approach is understandable, as both medical imaging (MI) and deep
learning (DL) are particularly sensitive to the reproducibility problem (Renard et al., 2020).

The MIDL organizers show an active interest regarding the issues of reproducibility, but
there is currently little or no support for further evaluation of these supplementary material,
making them vulnerable to poor quality, which affects the impact of the entire submission.

The open review system makes it easy to add evaluation metrics regarding the reposi-
tories for the review phase, and the system also allows for easy follow-up evaluations. This
way, we can recognize more relevant concerns and the guidelines can be adjusted accordingly
to better fit MIDL, and to better reflect the current state of machine learning research.

As the MIDL conference continues to grow, we think it is in a perfect position to shine
more light and take a stand regarding the issues of reproducibility.

3. Materials and Methods

We evaluated the submissions to MIDL using a combination of already existing guidelines
(NeurIPS and MICCAI, as mentioned in Sec. 1), and also recorded any other issues that we
observed. From these results we propose a set of guidelines with primary focus on future
MIDL submissions, but which would likely be useful for other conferences as well. The eval-
uations focus on data and code availability with an in-depth analysis of the corresponding
code repositories, when available.

For 23 papers, some evaluations were not applicable (e.g. providing trained models if
the paper focuses on loss functions), these papers were excluded from further evaluations.

3.1. Public content

We report if the paper has an official public repository and if it used a publicly available
dataset for either training or evaluation. For code sharing, the most common option is a
public Git repository, for instance on Github. If storing large trained models is an issue,
Zenodo, AWS, OneDrive, Google Drive, Dropbox, huggingface, etc. are popular choices.
The increasing number and variety of publicly available datasets would allow authors to
evaluate their methods on public data even if they were trained on privately acquired
datasets. This would increase transparency and allow future methods for easier comparison
to the ones presented in the paper. The popularity of public datasets is boosted by public
challenges, that maintain high quality datasets and often offer the top teams a cash prize
and the opportunity to publish their findings in high impact journals5.

5. https://grand-challenge.org/
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3.2. Repository evaluation

Each available repository is graded using a 6-point system (find the full details in Ap-
pendix A). Based on a more general guideline for building repositories6, the evaluation
consist of the following metrics:

Dependencies A list of all the packages that were used when training the model, includ-
ing their exact version numbers. The most commonly used pip and conda both support
exporting the packages to text files, while tools also exist to export only the necessary
packages7.

Code for model training Code that builds the model architecture reported in the
submission, using the reported loss functions, and given a path to the training data, it
begins training using the provided data loaders (experiment log files are also accepted).

Code for evaluation Code to evaluate the trained model using the metrics reported in
the paper. Alternatively, simple examples performing predictions with the trained model.

Trained model Access to the exact trained model or model’s weights used for the eval-
uations reported in the paper. Access to at least one model highlighted in the conclusions
if multiple were presented and evaluated.

Documentation A document (such as, e.g., a readme file on Github) describing what’s
available in the repository and how to use it. The documentation should detail the loading
and pre-processing of the data, the required dependencies, training, evaluation, and where
to find the trained models.

Licensing A description on how the files from the repository can be used. Github supports
selecting from commonly used licenses (such as MIT8, Apache-2.09, GPL 3.010). For further
information about licenses we refer the readers to a related website11. Authors asking others
to cite their papers if their code was used, was not considered as sufficient licensing.

3.3. Model repeatability

To easily train a model for the same task as described in a given submission, it is required
to reference a public dataset that can be used for training, to list the correct dependencies,
and to provide code to build and train the model. If these requirements are fulfilled, the
model is deemed repeatable. This is only one form of reproducibility, showing only that a
similar model performing a similar task can be trained by publicly available content. We
used this metric as a proxy for reproducibility of the methods.

6. https://github.com/paperswithcode/releasing-research-code
7. https://github.com/drivendata/cookiecutter-data-science
8. https://choosealicense.com/licenses/mit/
9. https://choosealicense.com/licenses/apache-2.0/

10. https://choosealicense.com/licenses/gpl-3.0/
11. https://choosealicense.com/
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Table 1: Results of the evaluations. The results “Has Repository” and “Public Data” evalu-
ate all valid submissions, while the other metrics evaluate all available repositories.
The standard error is also shown for the average score.

2018 2019 2020 2021 2022

Number of submissions 47 47 65 59 98
Has Repository (%) 29,8 29,8 43,1 57,6 74,5
Public Data (%) 57,4 57,4 80,0 69,5 74,5

Dependencies (%) 50,0 28,6 53,6 52,9 56,2
Training Code (%) 78,6 78,6 75,0 76,5 79,5
Evaluation/Demo (%) 71,4 78,6 82,1 82,4 79,5
Trained model (%) 28,6 21,4 28,6 29,4 21,9
Documentation (%) 78,6 57,1 67,9 67,6 68,5
Licensing (%) 71,4 35,7 57,1 38,2 50,7
Model repeatability (%) 35,7 21,4 42,9 50,0 43,8

Average score 4,00±1,81 3,00±1,52 3,73±1,58 3,58±1,74 3,64±1,55

4. Evaluations

We evaluated all full paper submissions to the MIDL conference between 2018 and 2022
using the proposed guidelines for evaluating repository reproducibility. The guidelines are
included in Appendix A.

We evaluated if the data used was available to the public or not. Then the 6-point
checklist was filled out, based on the quality of the repository with respect to if they ad-
dressed package dependencies, had training code available, had evaluation code available, if
the trained models evaluated in the paper were available, and if documentation and licens-
ing existed for the repository. The model repeatability was evaluated using the collected
factors, namely: The availability of the data, the dependencies, and the training code.

The evaluation was performed in June 2022 and repeated in October 2022 as some
repositories have been updated following the conference. The licensing information was
collected afterwards, in February 2023.

5. Results

Between 2018 and 2022, there were a total of 316 submissions to MIDL. In Table 5 the
percentage of available code repositories and using public datasets are reported for all sub-
missions. While the six quality metrics and their average score is reported for all repositories.
Our checklist in full detail can be found in the appendix A).

For transparency, we have decided to publish the individual results as well. As a dis-
claimer, our goal was never to criticize individual submissions, but to show year-by-year
trends. However if you don’t agree with our evaluations for a specific submission, feel free
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to contact us for a revision of the score. The presented results are based on the summary
in an online spreadsheet12 collected until January 9, 2024.

6. Discussion

For reproducible research in machine learning a plethora of hyperparameters need to be
detailed. To circumvent in-depth details in the main body of the paper, the code used for
the research is often made publicly available. Our evaluations of the submissions for the
MIDL conference show that this practice is getting increasingly more popular, however the
published repositories show serious flaws (seen in Table 5) — hindering their practicality
and effectiveness. Publishing code is encouraged by the conference organizers (and it is
common for other conferences as well), but the repositories are not reviewed. Poor quality
or completely empty repositories are not discouraged and well-documented repositories are
not awarded, hence focusing on their quality is not important. We argue that for this reason,
they show no signs of improvements over the years. In contrast, areas where guidelines are
in place (links for code and data) show an improving trend year by year.

The frequency of using public datasets peaked in 2021. A possible reason for this could
be the impact of the Covid-19 pandemic, which could have led many to seek public datasets
during 2020 for their 2021 submissions, but to draw such a conclusion would require other
data than what we have collected here.

A total of 64 repositories were deemed repeatable according to our requirements, of the
163 repositories (42%), merely 22% of all submissions.

A total of 13 repositories were found completely empty or with broken links. Possibly
with the fear of being rejected, or due to privacy concerns, access to the repositories at
the time of submission is often replaced by texts along the lines of “the implementation
will be made publicly available at the time of publication”. However, it appears that often
such sentences remain empty promises, and also with no chance for the reviewers to follow
up on them at the time of publication. Although the long-term maintenance can not be
overseen by a conference, a quick evaluation of the repositories could be encouraged for
reviewers. For instance, to see if the repositories exist at the time of review or at least
by the camera-ready deadline. Following conference-specific requirements for designing a
repository can lead to extra work in case the submission is rejected and has to be submitted
elsewhere, however we believe following a general set of guidelines makes the repository easy
to translate between submissions.

We have noticed that public datasets are often used without the proper use of citations,
and without links. This makes it hard to understand if the dataset is public or not, without
prior knowledge of the particular datasets. We do not mean to advocate against using
privately collected datasets, but for such cases we propose evaluating on public datasets or
at least mentioning alternatives that are comparable to the privately collected data used
and are available for the interested reader. This helps the reproducibility of the results and
conclusions, and still makes it possible to publish the code.

When training a model on privately acquired data, we warn against privacy violation
attacks (Tariq et al., 2020) where attackers could get information about the training data
through the trained model weights.

12. https://docs.google.com/spreadsheets/d/1ndMJ0RbcsByOfr6Cygo8-wxYmzWZFkzI2T34IH1EZW8
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One reason for authors to hesitate could be the fear of having to maintain a published
repository, which is a valid point. But a well-designed repository requires no maintenance
after submission, unless the authors wish to adjust it long-term.

The submissions were originally evaluated approximately a month before MIDL 2022.
A month after the conference we have revisited the empty repositories from that year and
found that 4 out of 9 have been modified. These changes did not affect our conclusions,
however the later evaluations have been presented in this work. A great opportunity of
online repositories is the possibility to modify, expand and improve, however it should be
suggested to the authors that the repository is a part of their submission, and should be
focused on before the conference. Since the repositories are adjustable, the results of our
presented work might also change over time, if authors decide to revisit their old repositories.
Therefore we wish to keep both our results and our proposed guidelines similarly dynamic,
revisiting the online spreadsheet regularly.

The set of values represented by MIDL, such as advocating open review, using public
datasets and publishing repositories, have made it possible for us to perform these eval-
uations, therefore we believe that our conclusions and suggestions can also help MIDL in
improving reproducible research.

7. Conclusions

We have evaluated all submissions to the MIDL conference since its inception in 2018, and
through 2022, and propose a reproducibility checklist for machine learning researchers with
a focus on medical imaging. The checklist can be found in Appendix A.

To help conference organizers and attendees, we propose that the review process should
include a quick evaluation of published repositories as well, just so that submissions with
empty repositories and broken links can be addressed. We propose additional optional
fields in the OpenReview submission form that follow the proposed checklist, addressing
the availability and the reproducibility of the research. Reviewers should address when
publicly available data is reported as future work, and point out that it adds no meaningful
contribution to the research without it actually being available. The European Conference
on Machine Learning and Data Mining (ECML-PKDD) allows authors to flag their sub-
mission as “reproducible”, which requires posting evaluated code and the data, but it is
rewarded by the conference in return. We suggest that MIDL acknowledges submissions
that fill out the checklist and repositories that fulfill all the requirements.

To help authors, we propose to follow a reproducibility checklist, e.g. the one in Ap-
pendix A, when preparing a submission and a corresponding repository. Despite the pos-
sibility to address the code and data availability in the OpenReview process, we highlight
the importance of addressing these in the main body of the paper as well.

We hope that with adequate guidance, such as a reproducibility checklist, many aspects
of the reproducibility concerns surrounding deep learning methods can be resolved already
at the submission or latest at the peer-review level. We further hope that this sparks a
conversation about other aspects of reproducibility that also needs to be addressed, which
would be very beneficial for the research field as a whole.
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8. Preliminary impact

After contacting the MIDL board they suggested us to present our results to a wider au-
dience within the framework of the MIDL Autumn Academy as an interactive session.
This provided a great opportunity to get extremely valuable feedback from authors in the
field. A poll regarding their experiences with code repositories was filled out by 81 of the
participants (from an average total of 90 participants).

For building their own code repositories, 98% of the participants believe that the quality
of a supplementing code repository affects the impact of the overall submission. Despite
the perceived importance of the code quality, only 28% of the participants received help or
feedback from a colleague or supervisor, while the others had to figure out how to build
their repositories themselves, and only 53% said they had a good understanding on what
content to include and how. 82% of the participants who had previously built a repository
never got any feedback on it, neither from colleagues nor from other researchers. This lack
of feedback is essential to address if we want the code quality to improve.

About using the code repositories of other researchers, only 4% of the participants (3
people) had never encountered any of the issues covered by the guidelines, which further
underlines the importance of our work. However, 58% of the participants claimed to have
encountered issues outside of the proposed guidelines. These include more practical issues
(e.g., hardware differences, using a mixture of programming languages, and bugs in the
code) which clearly shows areas where the proposed guidelines could be further improved.

To motivate the rationality of our proposed checklist, we have collected the number of
citations of each paper with a code repository—from Google Scholar, serving as a metric for
the impact of the paper—excluding submissions from 2022 (the submissions are relatively
new and therefore have a small number of citations). The average number of citations is
plotted against our proposed reproducibility in the appendix in Fig. 1. Completely empty
repositories (that received a score of 0) have the lowest, while repositories with a score
above 3 generally have a larger average number of citations, further showing a connection
between the quality of the code and the impact of the paper.

Additionally, during the discussions the participants agreed that integrating a repro-
ducibility guideline into MIDL would be of great benefit to both the authors and for the
impact of the manuscript; and further, that such an integration should not manifest as
punishing incomplete repositories, but to reward reproducible code.

9. Future work

A logical next step would be to train and evaluate the models that are deemed repeatable, to
see if we face any issues during the implementation of the available code. Through further
discussions, the guidelines should be adjusted to cover commonly encountered practical
issues that are not included yet in the checklist (e.g., bugs in the code).

As reproducibility is becoming a more and more important part of future MIDL editions,
we wish to further adjust these guidelines to help authors improve the impact of their
submissions through high-quality code.
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Appendix A. Proposed Reproducibility Checklist

Authors could benefit from answering the following questions about their submitted papers,
to help readers interested in reproducing the presented results.

□ Is the reproducibility of the work addressed? [Yes, No]
Detail in the main body of the paper the publicly available materials from the sub-
mission. Is there published code with the submission to make reproducing the results
easier? Are there publicly available datasets to train a similar model? Is the trained
model public?

□ Is the code publicly available? [Yes, No]
Do property rights allow the authors to make their code publicly available? If so,
include a link to the repository that stores the code used for the project. Details
about how to access the code should be contained in the main body of the paper, and
not only in the paper submission form. The repository should be available long-term.

□ Are public datasets used? [Yes, No]
Address here, if the dataset was collected for the project and is not made publicly
available. If the training dataset is private, aim to evaluate on public datasets for
comparability. Alternatively, mention if there are similar publicly available datasets
for reference.

□ Repository: Are the required package dependencies listed? [Yes/No/NA]
The packages that have been used to achieve the reported results, and their version
numbers. Without exact version numbers, the repositories become more difficult to
use and therefore lose their value over time.

□ Repository: Is the code for model training available? [Yes/No/NA]
Code for building the model with the exact same hyper-parameters and loss functions
as reported in the paper, together with the training method.

□ Repository: Is the code for model evaluation available? [Yes/No/NA]
Code for evaluating the trained model with the metrics presented in the paper.

□ Repository: Is the presented trained model available? [Yes/No/NA]
If the trained model can be made publicly available, include the trained weights in
the repository. Common formats are .pt for PyTorch, .h5 for TensorFlow, .pb for
TensorFlow frozen graphs, or .onnx as an open format.

□ Repository: Is there documentation for the available material? [Yes/No/NA]
A thorough and detailed description of the repository can be a major help for the
interested reader to fully understand the code. Aim to describe the methods in a
similar way as in the main body of the paper for coherence.

□ Repository: Is there licensing for the available material? [Yes/No/NA]
A detailed description on how the shared material can be used for research and com-
mercial purposes.
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Figure 1: Results for evaluating the impact of the papers plotted against our proposed
reproducibility score. The average number of citations were collected from Google
Scholar for submissions with code repositories published before 2022.
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