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Abstract

Motion artifacts are a pervasive problem in MRI, leading to misdiagnosis or mischaracter-
ization in population-level imaging studies. Current retrospective rigid intra-slice motion
correction techniques jointly optimize estimates of the image and the motion parameters.
In this paper, we use a deep network to reduce the joint image-motion parameter search
to a search over rigid motion parameters alone. Our network produces a reconstruction
as a function of two inputs: corrupted k-space data and motion parameters. We train
the network using simulated, motion-corrupted k-space data generated with known mo-
tion parameters. At test-time, we estimate unknown motion parameters by minimizing a
data consistency loss between the motion parameters, the network-based image reconstruc-
tion given those parameters, and the acquired measurements. Intra-slice motion correction
experiments on simulated and realistic 2D fast spin echo brain MRI achieve high recon-
struction fidelity while providing the benefits of explicit data consistency optimization. Our
code is publicly available at https://www.github.com/nalinimsingh/neuroMoCo.

1. Introduction

Subject motion frequently corrupts brain magnetic resonance imaging (MRI) and obfus-
cates anatomical interpretation (Andre et al., 2015). Prospective motion correction strate-
gies adapt the acquisition in real-time to adjust for measured rigid-body motion (Tisdall
et al., 2012; Frost et al., 2019). Unfortunately, prospective strategies require altering clin-
ical workflows, prolonging scantime, or interfering with standard acquisition parameters.
Retrospective strategies correct motion algorithmically after acquisition, with or without
additional motion measurements (Batchelor et al., 2005; Bammer et al., 2007; Polak et al.,
2022). Retrospective motion correction without additional motion information is particu-
larly appealing, because it does not require external hardware or pulse sequence modifica-
tions and enables retroactive correction of large, previously collected k-space datasets. This
work develops a deep learning method for retrospective rigid motion correction. We focus
on intra-slice motion correction in multi-shot acquisitions, which acquire multiple k-space
segments per slice and are a workhorse of clinical screening exams (Mehan et al., 2014).
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Retrospective intra-slice motion correction is often formulated as joint optimization of
rigid motion parameters and the underlying image (Haskell et al., 2019; Cordero-Grande
et al., 2016). The result is a highly non-convex, ill-posed optimization problem with un-
desirable local minima. The challenging nature of joint estimation has inspired several
deep learning alternatives that train standard supervised convolutional neural networks
(CNNs) to reconstruct motion-free images directly from motion-corrupted inputs (Pawar
et al., 2018; Duffy et al., 2021; Levac et al., 2022b; Singh et al., 2022). Alternatively, GANs
can be used to provide priors on the reconstructed images (Küstner et al., 2019; Johnson
and Drangova, 2019). None of these methods incorporate the MR forward model or allow
the reconstruction strategy to depend on the motion parameters. Further, while these ap-
proaches provide visually appealing reconstructions, they do not enforce data consistency
between the estimated output and the acquired measurements. As a result, they are sus-
ceptible to producing hallucinations, i.e., visually plausible features inconsistent with the
acquired measurements.

Our work is closely related to methods that combine neural networks with enforced
data consistency. Haskell et al. (2019) use an iterative procedure where a CNN produces an
initial motion-corrected image, which initializes an alternating optimization over the motion
parameters and underlying image. Levac et al. (2022a) use a score-based generative model
that estimates the log probability of a reconstruction. At test-time, motion parameters and
the underlying image are optimized to find a solution that is both data consistent and has a
high prior probability under the generative model. Both methods incorporate optimizations
of the underlying image and motion parameters. Our proposed strategy reduces this joint
optimization to an optimization over just the motion parameters.

Our key insight is that the joint optimization can be simplified using a deep neural
network to learn a mapping from proposed motion parameters and corrupted k-space to a
motion-corrected reconstruction. Then, inference simplifies to a test-time search solely over
the motion parameters, which in turn imply a reconstructed image. This strategy eliminates
the search over images while retaining the benefits of iterative, optimization-based motion
parameter estimation. In particular, the discrepancy between acquired measurements and
the estimated image and motion parameters can be automatically monitored during the
optimization to reject failure cases with a poor quality reconstruction.

We demonstrate our intra-slice motion correction method on 2D fast spin echo (FSE)
brain MRI. Our method produces reconstructions that are consistent with the acquired k-
space measurements in the presence of inter-shot motion or provides an indicator when they
are not. The method is trained on simulated pairs of corrupted and motion-free examples
and generalizes to a proof-of-concept acquired k-space example. In both simulated and
realistic data, our method achieves consistently high quality reconstruction and motion
parameter estimation consistent with the forward imaging model.

2. Methods

There are two stages to our motion correction procedure: (1) training a network that maps
motion parameters to reconstructions and (2) performing a test-time optimization that
solves for the motion parameters for an unseen k-space example, which then maps to the
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Fig. 1: Information flow through our network. During a forward pass, true or estimated
motion parameters m serve as input to hypernetwork h(·; θh) which generates the weights θg
of a reconstruction subnetwork g(·; θg). Reconstruction subnetwork g(·; θg) takes corrupted
k-space data as input and produces a reconstruction. The hypernetwork weights θh are the
only network parameters directly updated during training. At test-time, we freeze θh and
use the data consistency loss to optimize the motion parameters m.

final reconstruction via the trained network (Fig. 1). We first describe the MRI forward
model and then detail its use in neural network training and motion parameter estimation.

Forward model. MRI acquires Fourier measurements described by the forward model

yi = Aix+ ϵ, (1)

where x is the underlying 2D image we wish to recover, yi are the acquired MRI measure-
ments from the ith coil element, and ϵ is i.i.d. complex-valued Gaussian noise. In the ideal
setting where no motion is present, the forward imaging operator Ai for the ith coil is

Ai = UFCi, (2)

where Ci denotes a diagonal matrix that encodes the coil sensitivity profile of the ith coil, F
is the 2D Fourier transform, and U encodes the undersampling pattern for the acquisition.

In the presence of motion, the forward operator Ai is a function of unknown motion
parameters m. We consider in-plane rigid-body motion and assume a quasi-static motion
model where the 2D object moves between shots but remains stationary during the acqui-
sition of each individual shot. Under this model,

Ai(m) =
∑
s

UsFCiMs(m), (3)

where Us encodes the undersampling pattern for shot s and Ms(m) is a motion matrix
encoding in-plane rigid translation and rotation for shot s. This forward model differs from
Eq. 2 in two ways: (1) it varies across acquired images, which are characterized by different
motion parameters, and (2) it is in general unknown because m is unknown.

Training. We use the forward model in Eqns. 1 and 3 to simulate data to train a net-
work f(y,m; θ) that takes corrupted k-space data and motion parameters as input. The
parameters θ are trained using simulated, motion corrupted data:

θ∗ = argmin
θ

E
x,m

L(f(A(m)x+ ϵ,m; θ), x), (4)
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where L is the image reconstruction loss. In this paper, we use the negative structural
similarity index measure (SSIM) (Wang et al., 2004) loss, but our method accepts any
differentiable reconstruction loss function.

Test-time optimization. Assuming Gaussian noise in Eq. 1, Bayes’ rule yields

log p(x,m|y) = log p(y|x,m) + log p(x) + log p(m) + c

= − 1

2σ2
||y −A(m)x||2 + log p(x) + log p(m) + c,

(5)

where we have assumed the underlying image x and motion parametersm to be independent.
All constants have been consolidated into c and σ is the standard deviation of the additive
Gaussian noise. Maximizing the posterior probability p(x,m|y) involves minimizing the
data consistency loss ||y − A(m)x||2 and maximizing priors over the underlying image and
motion parameters. The data consistency loss measures disagreement between the acquired
measurements y and predicted signals A(m)x, while the priors are often expressed as hand-
crafted regularizers (Rudin et al., 1992) or explicitly or implicitly modeled by a neural
network (Goodfellow et al., 2020; Kingma and Welling, 2013; Song et al., 2020).

At test-time, we freeze the weights of the reconstruction network and optimize motion
parameters with a data consistency loss for acquired (corrupted) measurements y:

m̂(y) = argmin
m

||y −A(m)f(y,m; θ∗)||2. (6)

The final image reconstruction is then simply x̂(y, m̂) = f(y, m̂; θ∗). Monitoring the loss in
Eq. 6 provides information about how well the motion correction procedure is performing.
When this loss is high relative to the total spectral energy of the acquired k-space data even
after optimization, we discard the reconstruction and/or decide to reacquire the image.

3. Network Architecture

Unlike standard supervised deep learning methods which do not incorporate information
about the motion parameters into the structure of the neural network (Pawar et al., 2018;
Duffy et al., 2021; Levac et al., 2022b; Singh et al., 2022; Küstner et al., 2019; Johnson and
Drangova, 2019), our method uses a motion-dependent neural network. In this paper, we
instantiate the reconstruction network f(y,m; θ) with a hypernetwork h(·; θh) (Ha et al.,
2016; Hoopes et al., 2021) operating on motion parameters m to generate weights θg of a
reconstruction subnetwork g:

f(y,m; θ) = g(y; θg(m)) where θg(m) = h(m; θh). (7)

The weights θg of the reconstruction subnetwork are never trained directly. The only train-
able parameters in f are θh, the weights of the network h that produces θg. This hypernet-
work architecture enables flexible prediction of a reconstruction subnetwork g(·;h(m; θh))
specific to the motion parameters, just as A(m) is a function of the motion parameters.

The inputs to our hypernetwork h are the motion parameters m comprising 18 scalars
representing x- and y- translations and a rotation for each of 6 k-space shots. h consists of 6
fully connected layers with 256 units followed by convolutions to produce the reconstruction
subnetwork weights θg; h contains 2.7M trainable parameters.
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The input to the reconstruction subnetwork is the Autocalibrating Reconstruction for
Cartesian imaging (ARC) reconstruction (Brau et al., 2008) of the acquired signals, ex-
pressed as 88-channel real and imaginary components of k-space data from 44 receive coils
(4 neck channels were discarded). This input is processed via 6 convolution layers in both
image and frequency space (Singh et al., 2022), where each 3×3 convolution outputs 32
channel features. The reconstruction subnetwork g outputs 88 k-space channels. We re-
construct the final image via the inverse Fourier transform and root-sum-of-squares coil
combination.

We note that several other architectures are possible for f(y,m; θ), e.g., an architec-
ture that takes motion parameters as additional network inputs. Identifying the optimal
architecture for motion-parameterized neural networks is an important avenue for future re-
search. Here, we use hypernetworks as one example formulation of f(y,m; θ) to demonstrate
our general approach of test-time motion parameter estimation to produce a reconstructed
image consistent with the acquired data.

4. Experiments

Data. We demonstrate our approach on 2D T2 FLAIR FSE brain MRI k-space data (3T
GE Signa Premier, 48-channel head coil, 6-shot acquisition, TR=10s, TE=118ms, TI=2.6s,
FOV=260×260mm2, slice thickness=5mm, slice spacing=1mm, acceleration factor R=3)
under an approved IRB protocol. The shots are designed such that the second shot contains
the central k-space line and the highest spectral energy. The first, third, and fourth shots
contain comparable spectral energy, while the fifth and sixth shots largely contain data from
the periphery of k-space and have on the order of one-thousandth the spectral energy in
the second shot. We split the dataset into 553/197/100 training/validation/test 2D slices
from 31/11/9 subjects respectively, with no subject overlap. We treat the acquired data
as motion-free ground truth and simulate motion artifacts during training and testing. We
also generate a realistic test example by mixing acquired k-space measurements yi,1 and yi,2
from two scans of the same subject in different head positions: yi = Upreyi,1 + Upostyi,2.

Motion simulation. We simulate motion-corrupted data from a collection of acquired
motion-free k-space data. We apply ARC reconstruction (Brau et al., 2008) to the data
followed by the inverse Fourier transform and root-sum-of-squares coil combination, yielding
motion-free image x. We estimate coil sensitivity profiles Si using ESPIRiT (Uecker et al.,
2014; Iyer et al., 2020) and extend the profiles to the image edge via B-spline interpolation.
We synthesize motion-corrupted measurements using Eqns. 1 and 3. We define motion
matrix M by selecting a random shot affected by motion and sampling 2D translation
parameters (∆h,∆v) ∼ U(−10mm2, 10mm2) and rotation parameter θ ∼ U(−10◦, 10◦). We
apply the sampled motion parameters to the shots including and following the randomly
selected motion-affected shot. We add complex-valued Gaussian noise (σ = 10, 000) to the
simulated k-space as in Eq. 1 such that the noise comprises on average 5% of each coil’s
spectral energy. The motion simulation is detailed in Appendix A, Fig. 5.

Implementation details. We normalize input/output k-space by the maximum intensity
in the corrupted image. Networks are trained to reconstruct the image (x or M(m)x)
corresponding to the central k-space line. All models are trained with the SSIM loss function
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using the Adam optimizer (learning rate 10−3) and batch size 6. The test-time optimization
uses 4 trials of gradient descent. In experiments with simulated data, we use a cyclical
exponential decay schedule from 10−6 to 10−7, while on the realistic test example we fix
the learning rate at 10−9. We tune hyperparameters and perform model selection on the
validation set and hold out the test set for final evaluation. Each network is trained for
250,000 iterations. Optimizing the motion parameters takes ∼5 minutes per 2D slice to run
the 4 trials sequentially and is trivially parallelizable. After reconstruction, we automatically
reject poor reconstructions indicated by a data consistency loss greater than 5% of the total
spectral energy of the input k-space measurements.

Baselines. We analyze two versions of our method: HN (Hypernetwork), which includes
all results of our test-time optimization, and HN-R, which rejects examples where the data
consistency loss is high relative to the spectral energy. We compare against four baselines.

ARC (Brau et al., 2008) is a classical autocalibrating parallel imaging reconstruction
that interpolates undersampled k-space regions based on a fully-sampled central calibration
region. This method performs no motion correction and is commonly used clinically.

Conv (Singh et al., 2022) uses g(·; θg) with θg trained directly. The network has no
dependence on motion parameters and requires no test-time optimization. The kernel size
and number of features are varied to match the number of trainable parameters in HN. This
baseline characterizes a state-of-the-art deep learning alternative to ARC and is an ablation
that isolates the difference between a standard network and our hypernetwork.

Model-Based-GT (Gallichan et al., 2016) assumes known motion parameters and applies
analytical corrections. Translations and rotations are corrected via k-space phase shifts and
rotations and the result is reconstructed via an inverse Non-Uniform Fast Fourier Transform
(NUFFT) (Fessler and Sutton, 2003; Muckley et al., 2020). This method is an upper bound
on joint estimation performance because it uses ground truth motion parameters.

HN-GT computes the output of our hypernetwork when ground truth motion parameters
are provided as input. This characterizes a motion-informed deep learning method and,
similar to Model-Based-GT, represents the best-informed scenario for reconstruction.

5. Results

Fig. 2 shows reconstructions on a simulated example. Our method HN produces sharper,
more accurate reconstructions than ‘motion-naive’ ARC and Conv that do not incorporate
motion information. It also provides reconstructions of similar quality to ‘motion-aware’
Model-Based-GT and HN-GT that have access to ground truth motion parameters.

Fig. 3a shows that our method outperforms motion-naive methods across the test set
and is on par with the motion-aware methods. This result holds when other image quality
metrics are used (Appendix B, Fig. 6). Fig. 3b shows that our method yields better recon-
structions than motion-naive baselines for the vast majority of subjects. Fig. 3c demon-
strates that our method recovers accurate motion parameters for the first four high-energy
shots, with most inaccurate cases automatically rejected.

Our method does not reliably recover motion parameters for the last two shots. These
low-energy shots play a relatively small role in the data consistency optimization but also
have low impact on the resulting reconstruction. Of fifteen automatically rejected cases,
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Fig. 2: Simulated test example. HN outperforms motion-naive baselines (ARC and Conv) and
performs similarly to motion-aware methods (Model-Based-GT and HN-GT) without access
to any motion parameters. Yellow arrows highlight local reconstruction errors.

Fig. 3: Simulation results. (a) Reconstruction SSIM across methods. (b) SSIM improve-
ment over motion-naive methods. We improve on the baselines for bars right of the dashed
line. (c) Motion estimate errors from our method in the four high-energy and two low-energy
shots. Our method outperforms motion-naive methods and is on par with motion-aware
ones. Our automated rejection strategy effectively identifies optimization failures.
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Fig. 4: Realistic test example. For this example, we do not have access to the true
motion parameters, and our method (HN) outperforms the baselines which do not require
this information. HN removes the artifact in ARC and is sharper than Conv (see arrows).
Despite being trained on simulated data, our method generalizes to this test example based
on acquired k-space data and produces a high-quality reconstruction.

motion occurred between the second and third shots in nine examples. This splits the first
four high-energy shots between two positions and causes hard-to-correct artifacts.

Finally, Fig. 4 visually illustrates reconstruction for the realistic test example that com-
bines acquired k-space data from the same subject in two different positions. HN provides
the best reconstruction among methods that do not require access to the true motion pa-
rameters, demonstrating that it successfully handles real motion-corrupted signals despite
using only simulated data during training.

6. Discussion and Conclusions

This work develops a general deep rigid motion correction approach for multi-shot MRI that
we evaluate on 2D FSE T2 FLAIR data. The proposed framework first learns a mapping
between corrupted k-space data, true motion parameters, and high-quality reconstructions.
At test-time, only the motion parameter estimates are optimized, yielding data-consistent
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reconstructions, thus alleviating the complexity of a joint search over images and motion
parameters. The approach includes a strategy for automatically rejecting samples where the
optimization fails. Our method reliably produces high-quality reconstructions in simulation
and generalizes to a proof-of-concept realistic acquired k-space example.

While we demonstrate that our approach generalizes to acquired k-space data, our
evaluation focuses on simulated data. We do not model through-plane motion, a known
source of significant artifact. Less well-studied effects including intra-shot motion, spin
history, and signal decay during the FSE echo train may also affect our method.

Future work will thus investigate, model, and correct these additional motion effects
while retaining data-consistent reconstructions in larger scale, clinical k-space datasets. Be-
yond MRI, our strategy for learning physically consistent reconstructions given a partially-
unknown forward model could be applied to other semi-blind inverse problems, e.g. in
seismic imaging or computational photography.
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Appendix A. Motion Simulation

Fig. 5: Motion simulation schematic. We apply ARC reconstruction (Brau et al., 2008)
to motion-free data followed by the inverse Fourier transform and root-sum-of-squares coil
combination, yielding the initial motion-free image x. We also estimate coil sensitivity pro-
files Si from the acquired data using ESPIRiT (Uecker et al., 2014) with learned parameter
estimation (Iyer et al., 2020) and extend the profiles to the image edge via B-spline inter-
polation. Next, we simulate an image under a sampled random motion M(m) by applying
rotations and translations to the image and use the sensitivity maps and a Fourier transform
to simulate k-space data corresponding to the moved position. Based on the shot pattern
for the acquisition, we combine k-space data from the appropriate lines corresponding to
the position pre- (blue) and post-motion (red) to form simulated, motion-corrupted k-space
measurements y. This simulates the k-space data that would have been acquired had the
subject moved from the blue position to the red position over the course of the acquisition.
The input to our networks is the ARC reconstruction of this simulated y. In practice, we
sample two versions of M(m)x and treat one of the two as x, to avoid discrepancies between
simulated and acquired data when mixing the k-space.
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Appendix B. Additional Metrics

Fig. 6: Reconstruction quality of all methods as measured by mean square error (MSE)
and peak signal-to-noise ratio (PSNR). As with SSIM (Fig. 3a), our method outperforms
motion-naive baselines and performs comparably to motion-aware ones according to these
metrics.
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