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Abstract

Colon resection is often the treatment of choice for colorectal cancer (CRC) patients.
However, especially for minimally invasive cancer, such as pT1, simply removing the polyps
may be enough to stop cancer progression. Different histopathological risk factors such as
tumor grade and invasion depth currently found the basis for the need for colon resection
in pT1 CRC patients. Here, we investigate two additional risk factors, tumor budding and
lymphocyte infiltration at the invasive front, which are known to be clinically relevant. We
capture the spatial layout of tumor buds and T-cells and use graph-based deep learning
to investigate them as potential risk predictors. Our pT1 Hotspot Tumor Budding T-cell
Graph (pT1-HBTG) dataset consists of 626 tumor budding hotspots from 575 patients.
We propose and compare three different graph structures, as well as combinations of the
node labels. The best-performing Graph Neural Network architecture is able to increase
specificity by 20% compared to the currently recommended risk stratification based on
histopathological risk factors, without losing any sensitivity. We believe that using a graph-
based analysis can help to assist pathologists in making risk assessments for pT1 CRC
patients, and thus decrease the number of patients undergoing potentially unnecessary
surgery. Both the code and dataset are made publicly available.
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1. Introduction

Thanks to screening programs becoming more common, colorectal cancer (CRC) is getting
diagnosed in earlier, and more easily treatable stages. pT1 is such a form of early CRC, only
invading the submucosa, but not yet the muscle layer. Thus, defining appropriate treat-
ment guidelines is of high importance. Even though these cancers are minimally invasive,
they can still cause lymph node metastasis, which puts patients at risk for distant metas-
tasis (Burt et al., 2010; Argilés et al., 2020). That, however, cannot be assessed just from
the polypectomy, but only after surgical colon resection (also referred to as a colectomy).

Among pT1 CRC patients, less than 15% actually have metastasis present in lymph
nodes at the time of diagnosis (Nivatvongs et al., 1991; Kobayashi et al., 2012; Dykstra
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et al., 2021). Cancer registry data1 in Bern, Switzerland from 2014 show that 55% of all
pT1 CRC patients nonetheless underwent a colectomy. (Zwager et al., 2022) find an even
higher disparity, from the 70%–80% patients considered as high risk, more than 90% are
lymph node negative. This is due to current clinical guidelines (Bosch et al., 2013; Argilés
et al., 2020) commonly recommending that patients should undergo surgery in the presence
of just one unfavorable histological risk factor. Hence, improving this risk assessment has a
high potential to reduce overtreatment and potential clinical complications (Vermeer et al.,
2019; Zwager et al., 2022).

Deep learning has provided solutions to a variety of challenges in pathology in recent
years (Echle et al., 2021; Gurcan et al., 2009), such as tissue segmentation (Abbet et al.,
2022), survival analysis (Bychkov et al., 2018; Abbet et al., 2020), and predicting lymph node
metastasis (Kiehl et al., 2021; Brockmoeller et al., 2022; Khan et al., 2023). Lately, especially
the combination of deep learning with spatial analysis has become of high interest (Jaume
et al., 2021; Ahmedt-Aristizabal et al., 2021; Pati et al., 2022). Graph-based representations
allow us to capture the spatial layout of the tissue and cells of interest and map their
interactions in a very concise way. Thus, they make it possible to focus the deep learning
algorithm on entities with known histopathological and clinical importance.

Two such factors that are known to play an important role in CRC are tumor bud-
ding and CD8+ lymphocytes (also known as cytotoxic T-cells), especially at the inva-
sive front (Lugli et al., 2009). Tumor budding is a well-established prognostic factor in
CRC (Lugli et al., 2017; Studer et al., 2021a). Several studies have also highlighted the
prognostic power of T-cell scoring (Alwers et al., 2022). Most studies actually investigate
the T-cell scoring in relation to tumor budding (Dawson et al., 2020; Nearchou et al., 2021;
Lugli et al., 2009; Nearchou et al., 2019; Studer et al., 2022). However, so far the analysis
has been limited to creating statistical scores, based on the ratio of counts in areas or within
a radius, and other spatial statistics, and are performed on multi-stage cohorts.

To our knowledge, this is the first work exploring the interaction between tumor buds
and T-cells using a graph-based approach. Another contribution is our investigation of
different graph representations and making the dataset publicly available. Additionally, we
aim to address a question of high clinical importance, as risk assessment of polypectomy
specimens will only become more important in the future.

The paper is structured as follows: Section 2 describes the used Graph Neural Networks
(GNNs) methods, Section 3 introduces the dataset, and Section 4 provides details on the
experimental setup and presents the results. Finally, Section 5 summarizes our findings.

2. Graph Neural Networks

With the introduction of GNNs, the field of deep learning has been expanded into the
domain of graph-based analysis. Mathematically, a graph G is defined as a tuple of
(N,E, α, β), where N denotes a finite set of nodes (or vertices), and E a set of edges,
which are inserted according to a specified edge insertion function, and α and β are the
node and edge labeling functions, respectively.

For classification tasks, GNNs architectures can be divided into two phases, a message-
passing (MP) and a read-out phase. During the MP phase, information is exchanged be-

1. https://www.krebsregister.unibe.ch
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tween connected nodes, and then aggregated to update their hidden state:
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where N (i) denotes the neighbouring nodes of node i, xi the feature vector of node i, eij the
edge feature vector between node i and j. In the first round (or layer) of MP, the hidden
node state is the node feature vector of the input graph. By performing k rounds (or layers)
of MP, the aggregation range is extended to the k-hop neighborhood.

Over the years, many different MP functions have been introduced, however, the per-
formance of a GNN model is highly dependent on the graph type and the right choice is
not trivial (Thomas et al., 2022; You et al., 2020). We use and compare three of the most
commonly used ones for graph classification, namely GraphSAGE, GIN, and GATv2. They
are all based on graph convolution, more details are provided in Appendix B.

In order to perform graph classification, the information of all hidden node states is
aggregated and passed to the classification header, which is often a multi-layer perceptron
(MLP). This is referred to as the read-out phase:

vG = READOUT (xK
i |i ∈ G). (3)

where xK
i is the node state after the last MP round. However, it has been shown to be

beneficial to also consider the intermediate representations, i.e. performing a read-out after
each layer. These skip connections were introduced by (Xu et al., 2018b) and termed
Jumping Knowledge (JK). The different read-out vectors can e.g. be concatenated such as
vG = v1 ∥ . . . ∥vK . The first part of Figure 1 gives an overview of the GNN architecture.

3. pT1 Hotspot Tumor Budding T-cell Graph (pT1-HBTG) Dataset

The graph creation workflow is depicted in Figure 1. Figure 2 shows an example image
for each graph representation and class. The pT1-HBTG dataset is available open-source2,
additional details on the dataset and more example images can be found in Appendix C.

3.1. pT1 Patient Cohort

Our pT1 cohort consists of patients that, after the polypectomy, either (A) underwent
resection, and thus have a known lymph node status, or (B) have at least 36 months of
follow-up information about local/distant recurrence. We categorize the patients as either
high- or low-risk, according to the clinical question of whether, in retrospect, they required
the colectomy. Patients (A) without lymph node metastasis (N0) and patients (B) without
recurrence are considered low-risk. Thus, patients (A) with lymph node metastasis (N+)
and patients (B) with a recurrence are grouped into the high-risk class.

In total, we have 626 whole slide images (WSIs) of polyps from 575 pT1 CRC patients
collected from eight different pathology institutes and selected by expert pathologists. The
WSIs are double-stained for CD8-AE1/AE3 using immunohistochemistry (AE1-AE3 pan-
cytokeratin for the tumor, and CD8 for the cytotoxic T-cells). They are digitized using a

2. https://zenodo.org/record/7867085
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Figure 1: Schematic overview of the framework. To build the graph, tumor buds and T-
cells are automatically detected using CNNs, and the tumor budding hotspot
is selected by a pathologist. All detected objects within it are then used as
nodes to build the graph representation (tumor bud detections are highlighted in
green, and T-cells in pink). The example shown here is the Delaunay-Star edge
configuration. The graph classification GNN consists of a message passing phase,
followed by a readout phase, and a classification MLP. An ensemble of 10 models
is used to make the risk classification, based on the averaged softmax output.

Pannoramic 250 scanner at 0.243µm/pixel. The class distribution is unbalanced, with 541
versus 85 for the low-risk and high-risk groups, respectively.

3.2. Graph Representations

The pT1-HBTGs represent the tumor budding hotspot of a slide according to the IT-
BCC (Lugli et al., 2017) recommendations (area of highest budding at the invasive front,
0.785mm2), selected by an expert pathologist. As introduced in section 2, a graph consists
of nodes and edges, which are inserted according to a specified edge insertion function. Both
nodes and edges can have additional information attached to them, also referred to as labels.
The pipeline for graph creation is available on GitHub3.

3. https://github.com/digitalpathologybern/BT-graph-creation
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Figure 2: Example graph representations for a low- and a high-risk patient. The nodes are
color-coded based on the type node label, tumor buds in green and T-cells in pink.
The blue rectangle on the WSI shows the annotation of the ITBCC hotspot.

3.2.1. Node Detection and Node Labeling

Since our graphs map the interaction of tumor buds with T-cells, they build the nodes
of our graphs. T-cells are single cells, whereas a tumor bud is defined as a cluster of 1-4
tumor cells. The tumor bud detection is performed using a student-teacher CNN (Bokhorst
et al., 2022) model, which is available on Grand Challenge4. The algorithm used for the
T-cells is based on U-Net, with additional post-processing (Gaussian filtering and regional
maxima detection) (Swiderska-Chadaj et al., 2019). Color deconvolution is performed as a
pre-processing step as the algorithm is trained on single-stain immunohistochemistry (IHC).
The quality of the output was manually reviewed by an expert pathologist on a subset, with
a precision of 89.9% and recall of 93.0% (Studer et al., 2020).

We define three different types of node features. First, the type of the node, i.e. tumor
bud or T-cell, which is one-hot encoded. Second, we use the coordinates of the node,
normalized to the center of the hotspot using zero centering: x′ = x − x̄. Third, we
compute the embedding vector of crops (200×200 pixels centered on the node coordinates)
using the ImageNet (Deng et al., 2009) pre-trained DINO model (Caron et al., 2021). Using
the ViT-16 backbone, we get a feature vector of size 384.

3.2.2. Edge Insertion and Edge Labelling

As an edge label, we use the distance between the nodes in µm. We define three differ-
ent edge insertion functions. As a baseline, we use the Delaunay triangulation (Delaunay
and Spherevide, 1934) (without distinguishing between the two node types), which is very
commonly used in histopathology, especially for cell graphs (Sharma et al., 2015). We only
consider two cell (cluster) types as nodes and not all cells, as we are especially interested

4. https://grand-challenge.org/algorithms/colon-budding-in-ihc/
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Table 1: Options for the experimental setups. In total, this results in 144 setups for all
combinations of graph configurations, node labels, message passing functions, and
with/without JK and additional clinical information.

Graph
Options

Edge Configuration Delaunay, Delaunay-Star, Hierarchical

Node Labels
Type (tumor bud or T-cell), coordinates,
ViT-16 embedding

GNN
MP Functions GraphSAGE, GIN, GATv2

Jumping Knowledge (JK) With and without

Additional
Data

Clinical Information
(SGG Criteria)

With and without

in the interaction of the T-cells within close proximity of the tumor buds. Thus, Delaunay
triangulation might not be the best way to capture this spatial relationship, we define two
more edge insertion functions. Firstly, we propose a Hierarchical representation, where all
T-cells nodes are connected to their closest tumor bud node, with a cut-off of 100µm. Then,
all T-cell nodes connected to the same tumor bud are fully-connected. Lastly, the tumor
bud nodes are fully-connected as well. Secondly, we define the Delaunay-Star representa-
tion, the tumor bud nodes are connected using Delaunay triangulation, and the T-cell nodes
are connected to all tumor bud nodes within a radius of 100µm.

4. Experimental Evaluation

In this section, we provide the details of the experimental setups and present the results
of the best-performing ones. A schematic overview of the whole experimental framework
can be found in Figure 1. As a baseline, we use the risk assessment guidelines defined
by the Swiss Society of Gastroentrologists (SGG) (Dieter, 2022), which define the current
treatment recommendations for pT1 polyps for Swiss pathologists. For more details on
the SGG criteria see Appendix A. Because the dataset is unbalanced, we use the following
metrics to assess the performance: Average F1Score (average of per-class score), the True
Negative Rate (TNR), and the True Positive Rate (TPR). The TNR is the recall for the
low-risk class and is also called specificity or selectivity. The TPR is the recall for the
high-risk group, also known as sensitivity.

4.1. Experimental Setup

We use a 5-fold cross-validation (CV) setup. The data is split so that patients do not
overlap, and the distribution between the two classes is roughly the same in each fold (see
Table D5). The evaluation is done per patient. If there are multiple graphs per patient, the
classification is based on max(softmax(zi), ..., softmax(zn)) with z being the output of
the classification MLP, and n the total number of graphs. Each experimental setup is run 5
times with a different seed. An ensemble of these 5 models is used for the risk classification,
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Table 2: Best results for all node label and graph configuration combinations are presented
here (5-model ensemble, average and standard deviation over 5-fold CV). For the
complete result tables see Appendix E. As a baseline, we report the classification
based on the guidelines by the SGG (see Figure 3). True Negative Rate (TNR):
recall for the low-risk group. True Positive Rate (TPR): recall for the high-risk
group). The top three are indicated in bold.

Node
Label

Edge Config GNN
Clin.
Info

Average
F1Score (%)

TNR (%) TPR (%)

Type
Delaunay GraphSAGE-JK Yes 35.2± 3.3 31.4± 4.7 88.3± 5.1

Delaunay-Star GraphSAGE-JK Yes 39.5± 8.1 40.2± 13.1 79.9± 13.5

Hierarchical GIN-JK No 30.4± 14.4 27.9± 20.7 83.7± 13.5

Type
Coord.

Delaunay GIN-JK No 27.1± 11.2 24.1± 22.1 83.0± 21.4

Delaunay-Star GraphSAGE-JK Yes 37.2± 6.6 35.9± 8.2 80.2± 5.6

Hierarchical GraphSAGE Yes 33.5± 4.9 30.0± 8.4 84.4± 14.3

Type
ViT-16.

Delaunay GATv2 Yes 36.3± 8.7 32.6± 10.8 90.5± 9.6

Delaunay-Stars GIN-JK Yes 40.9± 13.2 41.5± 18.6 84.2± 6.1

Hierarchical GATv2 Yes 41.1± 12.7 40.7± 15.6 84.8± 8.4

Type
Coord.
ViT-16

Delaunay GIN-JK No 35.2± 10.7 32.9± 14.9 83.3± 9.8

Delaunay-Star GraphSAGE-JK Yes 39.7± 4.2 38.4± 4.8 85.7± 9.9

Hierarchical GraphSAGE-JK Yes 41.9± 5.4 42.5± 8.9 84.0± 8.2

SGG Criteria Classification 28.2± 4.4 22.2± 4.3 85.0± 7.6

by taking the average of the softmax output. This lets us take the certainty of each model
into account.

Table 1 shows the different options for the experimental setups (total of 144 experi-
ments). The additional clinical information used as input for the classification header is
based on the SGG criteria: lymphovascular invasion yes/no (one hot encoded), tumor grade
(1-3), log10(number of tumor buds) and log10(invasion depth) in mm. The numerical vari-
ables are log10 transformed to be near normal distributed. The implementation details can
be found in Appendix D and the code is available on GitHub5.

4.2. Results and Discussion

Table 2 shows the best results for each graph structure and node label combination, we
consider the top-3 performing models for each graph structure and node label combination
in terms of average F1Score and average Recall (TNR+TPR

2 ) and select the one with the
highest TPR among them (disregarding models with a TNR below the baseline). The
complete result (with additional metrics) can be found in Appendix E. If the main goal is
to prevent unnecessary surgeries, a high TNR is important. If we choose the model with the

5. https://github.com/digitalpathologybern/pT1-HBTG-MIDL2023
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highest average F1Score, we select a model that shows an increased performance for both
the TNR and TPR compared to the baseline. For both of these metrics, the GraphSAGE-
JK architecture trained on the Hierarchical-Type-Coordinate-ViT16 graphs, and using the
additional clinical information, shows the best performance. If not missing any high-risk
patient is of high importance, and a moderate improvement in the TNR is acceptable,
the GATv2 trained on the Delaunay-Type-ViT16 graphs, and using the additional clinical
information, should be considered. It is notable that the GraphSAGE-JK model trained
on the Delaunay-Type graphs (using the clinical data), the most simple representation, also
performs well, and additionally has the lowest standard deviation. Ockham’s razor would
thus suggest, that this model is preferred due to its simplicity. Since this representation
does not use any image-based features, it also bypasses any bias that could be caused by
the image data, e.g. staining variation.

As observed in (You et al., 2020), the architecture of the GNN depends heavily on
the graph. We can see this here, in that different architectures perform best for different
graph structures and node label combinations. However, using a variation of Delaunay
triangulation to create graphs seems to be a generally good choice to perform spatial analysis
in digital pathology, not only when using cell graphs. Interestingly, GraphSAGE shows good
performance, even though it is the simplest MP function. This is likely because larger, and
more complex models are more prone to overfitting, especially on small datasets. We also
observe that some combinations seem more prone to overfitting, showing a high variance
between the CV-folds, especially the experiments using the GIN MP function. Using JK
seems to be preferred for both GraphSAGE and GIN, but not for GATv2.

5. Conclusion

In this study, we explore the potential of analyzing the interaction between the tumor and
the immune system at the invasive front using graph-based deep learning for risk assessment
of pT1 CRC patients. We introduce our publicly available pT1 Hotspot Tumor Budding
T-cell Graph (pT1-HBTG) dataset and investigate the predictive power of different graph
representations (edge insertion functions and node labels). Using GNN models, especially
when combined with known histopathological risk factors, we are able to outperform the risk
stratification according to current treatment recommendations and decrease the number of
falsely identified high-risk patients by 20%, without a decrease in sensitivity. Creating the
graphs is agnostic to the way lymphocytes and tumor buds are detected and thus can be
adapted to the available image processing methods. For future work, we hope to validate
our proposed methods on an external cohort and extend our findings to other cancer patient
groups of interest, such as stage II CRC.
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Appendix A. Guidelines by the Swiss Society of Gastroentrologists

Figure 3 shows the risk assessment workflow recommended by the SGG for pT1 polyps.
The criteria vary slightly between sessile and pedunculated polyps, as some of the scoring
methods are different. In essence, however, they both cover tumor grade, infiltration depth,
lymphovascular invasion, and tumor budding.

Flat (sessile) 
polyp

Resection endoscopically and histologically complete

Low-grade tumour (G1–2)

Infiltration depth <1000 µm

No lymphovascular invasion

Tumour budding BD1 (0-4 buds)

Polyp with stalk 
(pedunculated)

Resection endoscopically and histologically complete

Low-grade tumour (G1–2)

Haggitt infiltration depth level 1–2 (stalk cancer free)

No lymphovascular invasion

Tumour budding BD1 (0-4 buds)

All criteria 
met?

Low-risk

High-risk

Yes

No

Figure 3: Prognostic classification criteria set forth by the SGG for risk assessment of pT1
polyp biopsies (Dieter, 2022). High-risk patients usually undergo colon resection,
and low-risk patients follow a watch-and-wait strategy.
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Appendix B. Message-passing Functions

This section provides the mathematical details of the used MP functions.
GraphSAGE (Hamilton et al., 2017) is one of the early proposed MP functions. The

hidden node state is updated as follows, using the mean aggregator scheme:

xk+1
i = Wk

1x
k
i +Wk

2 ·meanj∈N (i)x
k
j , (4)

with N (i) here being a fixed number of uniformly drawn neighboring nodes.
GIN (graph isomorphism network) (Xu et al., 2018a) is designed to achieve maximum

discriminative power. The hidden state is updated using an MLP, ϵ is either a learnable
parameter or fixed between [0, 1]:

xk+1
i = MLP

(1 + ϵ) · xk
i +

∑
j∈N (i)

xk
j

 (5)

vh GATv2 (Brody et al., 2021) incorporates an attention mechanism into the convolution,
and is able to learn neighbor-specific weights, which can not only consider node but also
edge features. The attention coefficients αi,j is defined as

αij = softmaxj(a
⊤LeakyReLU(W · [xi ∥xj ∥ ei,j ]), (6)

where ∥ denotes vector concatenation, and a ∈ R2d′ and W ∈ Rd′×d are learned. The
hidden representation of node i is thus updated as follows (σ is a non-linearity):

xk+1
i = σ(

∑
j∈N (i)

αk
ij ·Wkxk

j ). (7)

Appendix C. Additional Details on the HBTG Dataset

Figure 4 provides more example images of the different graph types. See Table 4 for key
statistics on the graphs in the different graph configuration datasets, and Table 3 for the
clinical information within the high- and low-risk groups. A previous version of a subset of
this dataset is described in (Eloy and Campelos, 2020). The code used to create the graph
representations is available on GitHub6. The graph visualisation are created using a python
tool that is also available on GitHub7

Appendix D. Additional Details on the Experimental Setup

The implementations are all done in PyTorch (Paszke et al., 2019), specifically, PyTorch
Lightning, using the PyTorch Geometric (PyG) (Fey and Lenssen, 2019) library. Table 5
shows data distribution between the CV-folds, and Table 6 shows the number of parameters
for each model.

We use a setup with four MP layers with 196 neurons each, and a three-layer MLP
classification header, and between each layer, we add a dropout layer (p = 0.3). We also

6. https://github.com/digitalpathologybern/BT-graph-creation
7. https://github.com/DIVA-DIA/graph_visualisation
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Table 3: Statistics on the pT1 patient cohort per group of interest in regards to the clinical
information.

Average Invasion
Depth (mm)

Lymphovascular Invasion Tumor Grade

Yes No 1 2 3

Low-risk 5.00 79 434 140 333 40
High-risk 6.02 18 44 10 44 8

Total 5.11 97 478 150 377 48

Table 4: Graph configuration overview: median of graph feature in the pT1-HBTG. The
low-risk group has a median number of 171 nodes (7 for tumor buds, 157 for T-
cells), and the high-risk group 193 (16 tumor buds, 180 T-cells).

Delaunay Delaunay-Star Hierarchical

Low-risk High-risk Low-risk High-risk Low-risk High-risk

Edges 496 561 63 192 224 622
Connected Nodes 171 193 65 100 65 100
Isolated Nodes 0 0 106 93 106 93

employ the GraphNorm (Cai et al., 2021) normalization implemented in PyG between each
MP layer to stabilize training. GraphNorm normalizes the node representations across all
nodes per graph using a learnable shift α, which determines how much information to keep
in the mean. We use the default α = 0.00001

After the read-out phase (global add-pooling), the graph embedding vector has a size of
196 or 784 neurons, as the output of all 4 MP layers are concatenated when using JK. The
second MLP layer has double as many neurons, the last one again either 196 or 784. For
the configuration, where additional patient data is used as input (concatenated with the
read-out vector), an additional 5 neurons are added to the first layer. LeakyReLU (Maas
et al., 2013) is used as an activation function (with default α = 0.01).

For the MP functions, we use the implementations provided by PyG, with the following
configurations:

• GraphSAGE: SAGEConv, no additional parameters need to be specified.

• GIN: GINConv, with a two-layer MLP (169 neurons, ϵ = 0) using the LeakyReLU
activation function and dropout (p = 0.3). Using an MLP and an ϵ = 0 is suggested
by (Xu et al., 2018a).

• GATv2: GATv2Conv, with a single attention header (default configuration).

The models are trained for 100 epochs (until convergence), with a batch size of 256,
a learning rate and weight decay of 0.0001, and the StepLR learning rate scheduler (step-
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(a) Low-risk (b) High-risk

Figure 4: More examples from the pT1-HBTG datasets. The nodes are color-coded based
on the type node label, tumor buds in green and T-cells in pink. The edges
are in purple according to the edge insertion function described in Section 3.2.2:
Delaunay (top), Delaunay-Star (middle), Hierarchical (bottom).

size of 10). We use the Adam optimizer and the cross-entropy loss function with label
smoothing (Szegedy et al., 2016) of 0.2. As data augmentation, we employ node dropping
(p = 0.1), where nodes are dropped randomly from the adjacency matrix with probability
p using samples from a Bernoulli distribution. For the experimental setups, where the
coordinates are used as node labels, we additionally add random shearing (shearing factor
range [−1.05, 1.05]), scaling (±5%), and random rotation (0−360◦) of the coordinates, before
zero centering. For the coordinate augmentation, we use the transform implementations
provided by the PyG library.

The design choices are made based on previous empirical experience (Studer et al.,
2021b), the original publications of the MP functions, and suggestions provided by(You
et al., 2020), and validated on a preliminary dataset. GraphNorm and a low learning rate
increase the training stability and show a more stable loss convergence on the validation
sets. Data augmentation, dropout, loss smoothing, and weight decay help with overfit-
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ting, as the dataset is small and unbalanced. The number of neurons is optimized between
[128, 196, 256]. (You et al., 2020) suggest using the Adam optimizer, 4 MP layers, concate-
nation for JK, and sum aggregation for read-out (global-add pooling) work best.

Table 5: Overview of the 5-fold cross-validation split. Overall, there are 626 graphs from
575 patients, as multiple slides are available for some patients. For each slide, one
hotspot is annotated from which a graph is extracted.

CV fold
# patients # graphs

low-risk high-risk low-risk high-risk

0 104 10 109 12
1 103 12 107 14
2 102 13 109 18
3 103 13 109 19
4 101 14 107 22

total 513 62 541 85

Table 6: Overview of the number of parameters in the different GNN configurations. The
number depends on the message-passing (MP) function, the number of node/edge
features, and whether or not Jumping Knowledge (JK) is used. The number of
neurons and number of layers is kept fixed otherwise. Using the additional clinical
data adds another 1,920 parameters to the respective model.

Node Features

Type
Type
Coord.

Type
ViT-16

Type
Coord.
ViT-16

# Node Features 2 2+2 2+384 2+2+384

GATv2
- 375,938 376,706 523,394 524,162
JK 2,590,466 2,591,234 2,737,922 2,738,690

GIN
- 411,650 412,034 485,378 485,762
JK 2,626,946 2,627,330 2,700,674 2,701,058

GraphSAGE
- 372,866 373,634 520,322 521,090
JK 2,588,162 2,588,930 2,735,618 2,736,386
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Appendix E. Full Experimental Results

In this section, we present the full results for all experimental set-ups, with the per-class
F1Score and precision in addition to the per-class recall. The results considered best and
presented in Table 2 are highlighted in bold.

Table 7, 10, 13, and 16 show the results for the Delaunay graph representation with
type, type + coordinates, type + ViT-16, and type + coordinates + ViT-16, respectively.

Table 8, 11, 14, and 17 show the results for the Delaunay-Star graph representation with
type, type + coordinates, type + ViT-16, and type + coordinates + ViT-16, respectively.

Table 9, 12, 15, and 18 show the results for the Hierarchical graph representation with
type, type + coordinates, type + ViT-16, and type + coordinates + ViT-16, respectively.

Table 7: Full results and additional metrics of experiments on the Delaunay graph repre-
sentations using just the node type as a node label.

GNN
Clin.
Info

F1Score
Low-risk

F1Score
High-risk

Precision
Low-risk

Precision
High-risk

Recall
Low-risk
(TNR)

Recall
High-risk
(TPR)

GATv2
No 23.8± 27.7 22.0± 4.4 58.3± 47.6 12.6± 3.0 16.9± 20.1 94.2± 8.4

Yes 14.2± 17.5 19.9± 2.8 56.1± 46.0 11.2± 1.9 8.9± 11.4 94.1± 7.3

GATv2-JK
No 55.1± 10.7 23.5± 2.8 94.3± 2.5 13.9± 2.0 39.8± 10.9 79.6± 11.8

Yes 54.9± 10.1 23.1± 1.7 94.9± 4.0 13.6± 0.9 39.6± 9.6 79.6± 15.3

GIN
No 48.6± 10.3 23.0± 3.0 94.9± 1.9 13.4± 2.1 33.4± 9.4 84.4± 9.1

Yes 39.3± 16.8 21.9± 3.7 94.2± 3.6 12.6± 2.5 26.4± 13.8 86.0± 10.8

GIN-JK
No 57.4± 5.9 24.6± 3.2 95.1± 1.3 14.5± 2.2 41.3± 6.1 81.9± 7.3

Yes 53.6± 3.0 22.7± 2.8 93.7± 1.1 13.3± 1.8 37.6± 2.9 78.7± 5.2

GraphSAGE
No 41.3± 8.1 22.7± 3.6 96.2± 3.2 13.1± 2.4 26.8± 7.1 90.1± 8.3

Yes 32.9± 22.2 22.2± 2.9 77.8± 39.0 12.7± 2.1 22.2± 16.8 91.7± 10.2

GraphSAGE-JK
No 43.5± 4.5 22.7± 3.2 95.4± 1.4 13.0± 2.0 28.3± 3.8 88.4± 4.9

Yes 47.1± 5.6 23.4± 3.0 95.7± 1.9 13.5± 1.9 31.4± 4.7 88.3± 5.1
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Table 8: Full results and additional metrics of experiments on the Delaunay-Star graph
representations using just the node type as a node label.

GNN
Clin.
Info

F1Score
Low-risk

F1Score
High-risk

Precision
Low-risk

Precision
High-risk

Recall
Low-risk
(TNR)

Recall
High-risk
(TPR)

GATv2
No 43.7± 24.1 19.4± 1.8 87.2± 8.3 11.5± 1.6 32.6± 21.8 71.3± 20.6

Yes 23.8± 5.4 18.7± 2.1 86.6± 8.6 10.5± 1.2 13.8± 3.5 84.3± 7.3

GATv2-JK
No 60.4± 10.8 21.5± 5.5 91.9± 4.1 12.9± 3.4 46.0± 11.5 65.8± 17.9

Yes 43.6± 25.8 20.4± 3.3 91.1± 5.3 12.3± 2.9 33.2± 24.4 72.2± 18.4

GIN
No 19.0± 22.5 19.4± 1.7 86.5± 18.7 11.0± 1.3 13.0± 17.6 87.9± 14.2

Yes 28.6± 20.7 21.8± 3.6 95.6± 6.5 12.5± 2.5 19.0± 16.8 92.5± 9.6

GIN-JK
No 68.5± 9.1 24.2± 6.0 92.3± 2.7 15.2± 4.2 55.2± 11.2 63.0± 11.5

Yes 59.2± 15.9 22.5± 7.2 91.6± 4.2 13.6± 4.7 45.4± 15.0 68.1± 17.7

GraphSAGE
No 32.6± 18.7 19.9± 3.4 95.4± 5.8 11.4± 1.9 21.7± 14.5 84.0± 20.6

Yes 50.7± 12.3 21.3± 2.0 93.9± 4.0 12.5± 1.1 36.1± 11.5 76.1± 16.9

GraphSAGE-JK
No 56.3± 11.9 22.9± 3.4 92.5± 1.9 13.6± 2.4 41.4± 12.1 73.9± 3.7

Yes 55.0± 14.3 24.0± 4.8 95.1± 3.2 14.2± 3.2 40.2± 13.1 79.9± 13.5

Table 9: Full results and additional metrics of experiments on the Hierarchical graph rep-
resentations using just the node type as a node label.

GNN
Clin.
Info

F1 Score (%) Precision (%) Recall (%)

Low-risk High-risk Low-risk High-risk
Low-risk
(TNR)

High-risk
(TPR)

GATv2
No 54.2± 22.3 20.9± 3.2 92.6± 4.0 12.9± 2.4 42.7± 23.3 68.5± 23.9

Yes 37.0± 26.9 18.8± 6.9 70.6± 35.6 11.0± 4.4 27.5± 22.4 72.4± 26.8

GATv2-JK
No 34.4± 18.3 18.5± 3.6 89.0± 10.0 10.6± 2.2 23.0± 13.8 75.7± 18.4

Yes 37.7± 6.9 17.1± 3.1 86.7± 6.2 9.8± 1.8 24.4± 5.6 68.9± 15.0

GIN
No 2.3± 2.2 19.0± 1.4 50.0± 44.7 10.6± 0.8 1.2± 1.1 97.1± 5.7

Yes 1.8± 3.7 19.6± 1.6 20.0± 40.0 10.9± 1.0 1.0± 1.9 100.0± 0.0

GIN-JK
No 38.8± 25.6 22.1± 4.7 91.4± 11.1 12.9± 3.4 27.9± 20.7 83.7± 13.5

Yes 48.4± 20.5 21.2± 4.7 88.9± 8.3 12.6± 3.1 35.4± 17.4 73.6± 15.3

GraphSAGE
No 36.0± 20.7 21.1± 3.3 94.2± 3.3 12.2± 2.2 24.8± 17.7 84.7± 16.1

Yes 46.0± 22.3 22.5± 5.2 91.9± 3.3 13.3± 3.8 33.6± 19.6 78.9± 10.7

GraphSAGE-JK
No 51.2± 16.1 21.6± 4.0 92.9± 4.4 12.8± 2.6 37.2± 15.3 74.3± 16.0

Yes 63.7± 4.7 23.7± 4.0 93.6± 3.2 14.3± 2.6 48.6± 6.1 71.5± 14.8
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Table 10: Full results and additional metrics of experiments on the Delaunay graph repre-
sentations using the node type and the coordinates as a node label.

GNN
Clin.
Info

F1 Score (%) Precision (%) Recall (%)

Low-risk High-risk Low-risk High-risk
Low-risk
(TNR)

High-risk
(TPR)

GATv2
No 13.7± 7.3 19.5± 2.4 91.0± 7.6 10.9± 1.4 7.6± 4.4 93.5± 5.9

Yes 22.7± 13.7 20.1± 2.8 73.0± 36.7 11.3± 1.8 13.7± 8.7 90.4± 5.7

GATv2-JK
No 29.8± 21.8 17.4± 3.7 86.6± 11.7 9.9± 2.0 20.5± 16.7 75.9± 25.7

Yes 26.0± 16.4 19.9± 1.4 93.9± 5.3 11.3± 1.0 16.4± 11.9 88.1± 13.2

GIN
No 18.2± 12.0 19.8± 1.5 95.0± 6.1 11.1± 1.0 10.8± 8.5 92.7± 11.1

Yes 16.2± 6.2 20.4± 2.7 97.1± 5.7 11.4± 1.7 9.0± 3.7 96.7± 6.7

GIN-JK
No 34.0± 22.4 20.3± 1.9 95.2± 4.3 11.8± 1.6 24.1± 21.1 83.0± 21.4

Yes 27.9± 18.5 19.2± 3.1 89.3± 6.9 11.0± 2.0 18.2± 13.8 82.2± 13.4

GraphSAGE
No 19.1± 12.8 19.3± 2.2 89.4± 6.7 10.9± 1.4 11.3± 8.4 89.1± 7.2

Yes 16.5± 7.9 18.9± 2.5 90.7± 7.8 10.6± 1.5 9.4± 4.9 88.6± 9.5

GraphSAGE-JK
No 21.2± 13.8 20.5± 2.8 95.8± 3.6 11.6± 1.8 12.7± 9.3 93.6± 5.6

Yes 25.1± 12.8 17.3± 3.4 87.9± 8.5 9.8± 1.8 15.6± 9.7 78.5± 22.5

Table 11: Full results and additional metrics of experiments on the Delaunay-Star graph
representations using the node type and the coordinates as a node label.

GNN
Clin.
Info

F1 Score (%) Precision (%) Recall (%)

Low-risk High-risk Low-risk High-risk
Low-risk
(TNR)

High-risk
(TPR)

GATv2
No 19.5± 9.2 18.9± 2.2 88.3± 6.0 10.6± 1.3 11.3± 6.2 87.2± 10.2

Yes 17.7± 6.6 19.1± 3.2 86.4± 16.8 10.7± 1.9 9.9± 4.0 89.3± 13.1

GATv2-JK
No 49.4± 7.8 21.6± 2.9 94.1± 4.2 12.6± 1.7 34.1± 7.5 79.2± 15.8

Yes 38.0± 5.6 21.4± 2.0 93.8± 1.9 12.2± 1.3 24.0± 4.6 87.3± 2.9

GIN
No 21.7± 26.6 20.5± 3.3 56.6± 46.3 11.7± 2.4 15.5± 19.7 89.7± 12.8

Yes 14.8± 23.5 18.8± 1.4 52.8± 43.8 10.6± 0.9 10.7± 18.1 87.9± 17.9

GIN-JK
No 35.7± 25.0 20.6± 2.6 94.9± 4.5 12.0± 1.9 25.5± 19.2 82.2± 16.9

Yes 45.8± 31.7 23.2± 6.2 92.4± 5.7 14.2± 4.7 36.7± 27.6 77.1± 18.4

GraphSAGE
No 45.1± 9.3 21.8± 3.7 93.2± 3.1 12.6± 2.4 30.2± 8.0 82.4± 8.7

Yes 42.1± 8.6 19.9± 3.7 91.4± 3.8 11.5± 2.2 27.9± 7.5 76.9± 12.9

GraphSAGE-JK
No 54.6± 7.1 22.9± 4.9 93.1± 2.8 13.5± 3.1 38.8± 6.7 77.0± 6.7

Yes 51.4± 9.1 22.9± 4.4 93.5± 2.3 13.4± 2.9 35.9± 8.2 80.2± 5.6
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Table 12: Full results and additional metrics of experiments on the Hierarchical graph rep-
resentations using the node type and the coordinates as a node label.

GNN
Clin.
Info

F1 Score (%) Precision (%) Recall (%)

Low-risk High-risk Low-risk High-risk
Low-risk
(TNR)

High-risk
(TPR)

GATv2
No 26.7± 12.1 20.5± 2.0 95.4± 4.4 11.6± 1.3 16.3± 8.4 91.2± 10.5

Yes 22.8± 7.4 19.2± 1.7 92.2± 7.3 10.8± 1.0 13.3± 5.0 88.0± 11.8

GATv2-JK
No 40.4± 3.3 20.3± 3.2 91.9± 3.6 11.6± 2.0 26.0± 2.8 80.5± 9.7

Yes 39.3± 17.8 21.7± 3.4 95.7± 4.7 12.5± 2.2 26.5± 13.9 86.0± 14.9

GIN
No 0.4± 0.8 19.2± 1.9 20.0± 40.0 10.6± 1.1 0.2± 0.4 98.5± 3.1

Yes 0.8± 1.0 19.5± 1.9 40.0± 49.0 10.8± 1.2 0.4± 0.5 100.0± 0.0

GIN-JK
No 19.2± 23.8 20.2± 4.0 80.9± 15.5 11.5± 2.8 13.4± 19.1 88.9± 7.8

Yes 23.0± 17.1 19.7± 2.5 71.6± 36.0 11.1± 1.5 14.4± 11.5 88.1± 10.1

GraphSAGE
No 48.3± 16.9 22.1± 4.1 92.8± 1.2 13.0± 2.9 34.6± 15.8 77.8± 10.5

Yes 44.9± 9.2 22.2± 4.1 95.0± 3.4 12.8± 2.5 30.0± 8.4 84.4± 14.3

GraphSAGE-JK
No 53.2± 9.6 23.0± 3.5 93.9± 2.0 13.6± 2.4 37.9± 9.6 79.3± 8.4

Yes 57.0± 7.4 23.5± 3.2 94.0± 2.6 13.9± 2.1 41.4± 7.8 78.1± 11.6

Table 13: Full results and additional metrics of experiments on the Delaunay graph repre-
sentations using the node type and the ViT-16 embedding as a node label.

GNN
Clin.
Info

F1 Score (%) Precision (%) Recall (%)

Low-risk High-risk Low-risk High-risk
Low-risk
(TNR)

High-risk
(TPR)

GATv2
No 51.2± 7.6 24.7± 6.1 95.8± 4.0 14.4± 3.8 35.1± 6.5 87.6± 11.4

Yes 47.9± 11.6 24.7± 5.9 96.4± 3.9 14.4± 4.0 32.6± 10.8 90.5± 9.6

GATv2-JK
No 60.1± 8.1 24.1± 5.8 93.7± 2.3 14.5± 3.9 44.7± 8.7 75.3± 10.3

Yes 57.7± 8.7 24.3± 5.7 94.2± 2.4 14.5± 3.8 42.2± 8.8 78.3± 9.6

GIN
No 53.1± 9.1 22.8± 5.4 93.6± 2.7 13.4± 3.4 37.7± 8.8 78.1± 12.3

Yes 51.7± 2.7 24.2± 2.6 95.8± 1.2 14.1± 1.7 35.5± 2.6 87.2± 3.4

GIN-JK
No 68.1± 4.7 25.6± 5.4 93.9± 1.5 15.7± 3.7 53.6± 5.8 70.5± 10.7

Yes 67.1± 6.1 25.0± 3.6 93.6± 1.4 15.4± 2.7 52.7± 7.4 69.9± 7.3

GraphSAGE
No 63.5± 7.8 25.1± 4.7 93.9± 0.6 15.2± 3.4 48.5± 9.2 73.9± 3.7

Yes 58.7± 10.1 22.4± 6.0 91.7± 2.5 13.5± 4.0 43.7± 10.1 68.7± 6.0

GraphSAGE-JK
No 64.0± 12.8 27.7± 8.0 94.8± 1.7 17.1± 5.8 49.6± 14.2 78.5± 5.9

Yes 65.1± 5.6 25.0± 6.3 93.7± 1.8 15.3± 4.4 50.1± 6.3 72.0± 9.1
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Table 14: Full results and additional metrics of experiments on the Delaunay-Star graph
representations using the node type and the ViT-16 embedding as a node label.

GNN
Clin.
Info

F1 Score (%) Precision (%) Recall (%)

Low-risk High-risk Low-risk High-risk
Low-risk
(TNR)

High-risk
(TPR)

GATv2
No 42.9± 8.1 20.8± 5.2 92.1± 4.2 12.0± 3.1 28.3± 6.3 79.3± 13.5

Yes 51.4± 9.0 21.6± 4.6 92.2± 2.6 12.7± 3.0 36.1± 8.4 75.2± 8.2

GATv2-JK
No 61.6± 6.6 23.8± 7.2 93.0± 3.0 14.4± 4.8 46.2± 6.8 71.6± 11.7

Yes 63.9± 12.3 27.6± 8.9 94.4± 3.2 17.0± 6.2 49.2± 13.1 78.3± 8.2

GIN
No 37.1± 27.0 23.4± 7.6 91.4± 3.6 14.0± 5.6 27.3± 23.9 85.9± 6.7

Yes 45.8± 27.6 24.0± 5.7 95.1± 2.6 14.3± 4.1 34.7± 23.0 82.9± 10.8

GIN-JK
No 59.0± 21.6 26.4± 9.3 92.5± 3.9 16.4± 6.9 46.3± 20.9 75.2± 9.3

Yes 55.3± 19.4 26.5± 7.0 95.0± 2.0 16.0± 5.0 41.5± 18.6 84.2± 6.1

GraphSAGE
No 58.1± 9.6 25.6± 7.8 94.6± 3.6 15.3± 5.3 42.4± 9.8 81.3± 11.0

Yes 59.4± 9.6 24.8± 8.2 94.0± 4.1 14.9± 5.5 44.1± 10.6 76.6± 16.5

GraphSAGE-JK
No 63.4± 7.6 25.5± 6.8 94.0± 2.6 15.5± 4.6 48.2± 8.1 75.1± 9.5

Yes 66.7± 6.5 27.1± 6.1 94.9± 1.6 16.6± 4.1 51.7± 7.2 76.8± 7.6

Table 15: Full results and additional metrics of experiments on the Hierarchical graph rep-
resentations using the node type and the ViT-16 embedding as a node label.

GNN
Clin.
Info

F1 Score (%) Precision (%) Recall (%)

Low-risk High-risk Low-risk High-risk
Low-risk
(TNR)

High-risk
(TPR)

GATv2
No 44.4± 11.2 22.7± 6.1 93.9± 4.5 13.2± 4.0 29.7± 10.2 85.0± 9.8

Yes 55.5± 15.7 26.8± 10.0 94.7± 3.6 16.2± 6.9 40.7± 15.6 84.8± 8.4

GATv2-JK
No 57.1± 7.0 23.6± 5.5 93.6± 2.2 14.0± 3.6 41.4± 7.1 76.8± 7.6

Yes 58.4± 8.6 23.0± 6.7 92.6± 3.8 13.8± 4.4 43.2± 8.8 72.4± 12.4

GIN
No 5.5± 6.0 19.3± 1.3 56.0± 46.3 10.7± 0.8 2.9± 3.3 97.1± 5.7

Yes 5.4± 7.1 19.7± 2.2 80.0± 40.0 10.9± 1.3 2.9± 3.9 98.5± 3.1

GIN-JK
No 59.3± 3.5 22.2± 5.0 92.6± 2.1 13.2± 3.2 43.7± 3.7 70.0± 10.3

Yes 57.2± 13.7 23.3± 5.4 92.8± 4.6 14.0± 3.6 42.6± 14.2 73.5± 13.3

GraphSAGE
No 63.6± 6.9 25.0± 7.1 93.8± 3.2 15.1± 4.6 48.4± 7.2 73.6± 13.3

Yes 58.8± 9.1 25.2± 6.5 94.4± 2.6 15.0± 4.3 43.1± 8.8 79.9± 8.0

GraphSAGE-JK
No 61.9± 11.7 25.1± 7.1 93.3± 2.7 15.3± 4.8 47.3± 12.2 73.7± 6.9

Yes 61.0± 9.8 25.8± 7.1 94.4± 2.3 15.5± 4.8 45.7± 10.3 78.3± 7.7
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Table 16: Full results and additional metrics of experiments on the Delaunay graph repre-
sentations using the node type, the coordinates and the ViT-16 embedding as a
node label.

GNN
Clin.
Info

F1 Score (%) Precision (%) Recall (%)

Low-risk High-risk Low-risk High-risk
Low-risk
(TNR)

High-risk
(TPR)

GATv2
No 24.5± 11.3 19.8± 2.2 89.7± 8.2 11.2± 1.4 14.7± 7.5 88.8± 7.4

Yes 33.1± 13.4 20.4± 3.4 90.6± 3.4 11.7± 2.3 21.1± 11.1 84.2± 3.6

GATv2-JK
No 49.2± 15.7 22.2± 6.2 91.5± 4.0 13.1± 4.2 34.9± 14.0 76.8± 7.6

Yes 46.9± 16.1 22.9± 6.0 92.7± 3.0 13.4± 4.1 32.8± 14.5 81.7± 5.9

GIN
No 36.6± 4.5 21.5± 2.6 94.3± 1.8 12.2± 1.6 22.8± 3.4 88.7± 3.6

Yes 30.6± 10.0 20.7± 3.1 92.1± 5.1 11.8± 2.0 18.8± 7.4 88.7± 3.6

GIN-JK
No 47.0± 15.5 23.4± 6.4 93.9± 4.1 13.8± 4.4 32.9± 14.9 83.3± 9.8

Yes 45.0± 11.1 21.5± 4.1 92.5± 1.3 12.5± 2.7 30.5± 10.0 80.2± 5.6

GraphSAGE
No 38.1± 5.6 21.4± 3.6 93.6± 2.6 12.2± 2.3 24.0± 4.3 86.6± 5.1

Yes 51.6± 14.4 24.3± 9.6 92.9± 4.5 14.6± 6.7 37.0± 14.8 80.2± 11.0

GraphSAGE-JK
No 47.1± 15.1 21.7± 6.7 90.5± 4.3 12.8± 4.6 33.1± 14.4 75.4± 6.4

Yes 47.9± 14.7 22.8± 5.7 92.6± 3.3 13.5± 4.1 33.6± 14.2 80.6± 3.7

Table 17: Full results and additional metrics of experiments on the Delaunay-Star graph
representations using the node type, the coordinates and the ViT-16 embedding
as a node label.

GNN
Clin.
Info

F1 Score (%) Precision (%) Recall (%)

Low-risk High-risk Low-risk High-risk
Low-risk
(TNR)

High-risk
(TPR)

GATv2
No 33.3± 16.7 21.2± 2.6 95.2± 3.9 12.1± 1.9 21.8± 13.4 88.1± 10.8

Yes 31.7± 6.5 20.7± 3.0 93.3± 1.9 11.8± 1.9 19.3± 4.6 88.3± 5.1

GATv2-JK
No 49.5± 12.2 23.4± 5.8 93.8± 2.5 13.8± 4.0 34.6± 12.0 82.5± 5.6

Yes 50.1± 12.3 22.9± 3.6 94.3± 3.4 13.4± 2.5 35.2± 11.3 81.6± 10.3

GIN
No 18.7± 23.7 20.9± 3.5 57.3± 46.9 11.8± 2.4 12.7± 16.9 93.8± 7.5

Yes 4.5± 2.5 19.8± 1.8 80.0± 40.0 11.0± 1.1 2.3± 1.3 100.0± 0.0

GIN-JK
No 51.6± 24.2 21.8± 5.0 88.1± 8.4 13.2± 3.8 39.7± 21.4 70.1± 10.7

Yes 47.4± 20.6 23.9± 4.9 95.3± 3.1 14.2± 3.5 34.4± 18.8 84.5± 10.4

GraphSAGE
No 43.5± 9.5 22.5± 4.1 94.7± 4.1 13.0± 2.5 28.7± 7.8 86.9± 10.9

Yes 44.0± 5.4 22.8± 4.0 95.2± 2.2 13.1± 2.5 28.7± 4.3 88.2± 5.4

GraphSAGE-JK
No 53.5± 9.1 23.6± 5.7 93.8± 2.0 13.9± 3.8 37.9± 8.9 80.1± 5.9

Yes 54.7± 5.0 24.7± 3.7 95.7± 2.9 14.5± 2.3 38.4± 4.8 85.7± 9.9

257



Studer Bokhorst Nagtegaal Zlobec Dawson Fischer

Table 18: Full results and additional metrics of experiments on the Hierarchical graph rep-
resentations using the node type, the coordinates and the ViT-16 embedding as
a node label.

GNN
Clin.
Info

F1 Score (%) Precision (%) Recall (%)

Low-risk High-risk Low-risk High-risk
Low-risk
(TNR)

High-risk
(TPR)

GATv2
No 25.9± 8.1 21.0± 3.3 94.7± 7.2 11.8± 2.0 15.3± 5.5 93.6± 7.9

Yes 27.2± 12.9 21.3± 2.7 96.2± 5.2 12.0± 1.7 16.6± 9.3 93.8± 7.5

GATv2-JK
No 45.5± 14.3 22.0± 4.4 91.8± 3.6 12.8± 2.8 31.2± 11.7 80.7± 2.9

Yes 48.6± 16.2 22.5± 4.4 92.3± 3.6 13.2± 3.0 34.4± 14.0 79.4± 6.7

GIN
No 1.2± 0.9 19.5± 1.9 60.0± 49.0 10.8± 1.1 0.6± 0.5 100.0± 0.0

Yes 0.4± 0.8 19.5± 1.8 20.0± 40.0 10.8± 1.1 0.2± 0.4 100.0± 0.0

GIN-JK
No 34.1± 22.2 21.4± 4.1 93.8± 4.0 12.4± 2.8 23.4± 17.9 85.5± 10.5

Yes 43.2± 21.1 22.3± 4.8 92.2± 3.4 13.2± 3.5 30.9± 19.2 81.3± 9.4

GraphSAGE
No 38.0± 15.2 21.9± 5.0 91.3± 7.2 12.6± 3.2 24.8± 11.1 86.6± 5.1

Yes 48.3± 17.2 23.3± 3.7 95.7± 2.7 13.6± 2.6 34.2± 14.3 84.0± 10.9

GraphSAGE-JK
No 57.6± 16.7 26.3± 7.1 94.2± 5.0 15.9± 4.8 43.2± 15.9 81.9± 11.4

Yes 58.3± 8.3 25.6± 3.3 95.8± 1.5 15.2± 2.3 42.5± 8.9 84.0± 8.2

258



Tumor Budding T-cell Graphs in pT1 CRC

259


	Introduction
	Graph Neural Networks
	pT1 Hotspot Tumor Budding T-cell Graph (pT1-HBTG) Dataset
	pT1 Patient Cohort
	Graph Representations
	Node Detection and Node Labeling
	Edge Insertion and Edge Labelling


	Experimental Evaluation
	Experimental Setup
	Results and Discussion

	Conclusion
	Guidelines by the Swiss Society of Gastroentrologists
	Message-passing Functions
	Additional Details on the HBTG Dataset
	Additional Details on the Experimental Setup
	Full Experimental Results

