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Abstract

Smoothing hard-label assignments have emerged as a popular strategy in training dis-
criminative models. Nevertheless, most existing approaches are typically designed for classi-
fication tasks, ignoring underlying properties of dense prediction problems, such as medical
image segmentation. First, these strategies often ignore the spatial relations between a
given pixel and its neighbours. And second, the image context associated with each label is
overlooked, which can convey important information about potential errors or ambiguities
in the segmentation masks. To address these limitations, we propose in this work geodesic
label smoothing (GeoLS), which integrates image information into the label smoothing
process by leveraging the geodesic distance transform of the images. As the resulting label
assignment is based on the computed geodesic map, class-wise relationships in the soft-
labels are better modeled, as it considers image gradients at the boundary of two or more
categories. Furthermore, spatial pixel-wise relationships are captured in the geodesic dis-
tance transform, integrating richer information than resorting to the Euclidean distance
between pixels. We evaluate our method on two publicly available segmentation bench-
marks and compare them to popular segmentation loss functions that directly modify the
standard hard-label assignments. The proposed geodesic label smoothing improves the
segmentation accuracy over existing soft-labeling strategies, demonstrating the validity of
integrating image information into the label smoothing process. The code to reproduce our
results is available at: https://github.com/adigasu/GeoLS
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1. Introduction

Deep learning is driving progress in solving complex predictive tasks across a wide range
of visual recognition problems, including medical image segmentation (Litjens et al., 2017;
Hesamian et al., 2019). A common strategy to train these models is to optimize a cross-
entropy objective function, which minimizes the differences between the predicted posterior
probabilities and the ground-truth distributions. Nevertheless, while this learning objective
has demonstrated high performance in independent class prediction tasks such as image
classification, its use in dense prediction problems might be suboptimal. Indeed, image seg-
mentation is a massively structured and dense problem, as class predictions at each pixel are
inherently conditioned to the spatial relationship with surrounding regions. Furthermore,
inter-class relation is typically overlooked because the ground-truth objective is modeled
as a one-hot encoding vector. However, capturing this relation is extremely important in
medical image segmentation due to the ambiguity in the boundaries between neighboring
regions, which might lead to imprecise boundary annotation. Thus, novel learning objec-
tives that explicitly model these pixel-wise and class-wise relationships would improve the
training of segmentation models.
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A popular strategy to model inter-class relations consists in modifying the hard-label
assignments so that the ground-truth annotations used in training become a soft version
of the original one-hot labels. For example, label smoothing (LS) (Szegedy et al., 2016)
generates a new soft-label assignment by reducing the weight of the target class, which
is redistributed uniformly over all the other classes. To capture the underlying structure
on class labels, where the distance between categories is important, (Galdran et al., 2020)
proposed a non-uniform LS. They replace the uniform distribution over non-target classes
with a Gaussian distribution centered at the target class. The benefit of LS has been used
for medical image classification (He et al., 2020; Islam et al., 2020). Smoothing of a target
label can also be achieved based on model prediction. For instance, Focal loss (FL) (Lin
et al., 2017) down-weights the target labels for well-predicted samples and up-weights them
for the mis-classified samples. FL has shown potential to improve the performance of inde-
pendent class predictions (Tran et al., 2019; Ahmed et al., 2022) and dense prediction tasks
(Abulnaga and Rubin, 2019). However, FL does not explicitly consider pixel relationships,
which is fundamental in the context of image segmentation.

Soft-labeling can also be based on dilated regions of target masks (Kats et al., 2019),
adding granularity in ambiguous object boundaries. Further structural labeling ambiguity is
modeled using a spatially varying label smoothing (SVLS) (Islam and Glocker, 2021). Their
soft-label probabilities are based on spatial variations of pixels within Gaussian-smoothed
label distributions from target masks. These approaches solely revolve around the provided
target labels, which may be unreliable. For instance, image boundaries between anatomical
regions may be ambiguous and poorly defined due to imaging or existing pathologies, being
prone to label errors (Joskowicz et al., 2019). Explicitly modeling the ambiguity of image
boundaries should therefore be considered when training a segmentation model.

These limitations motivate our approach, which leverages the geodesic distance trans-
form to model inter-pixel and inter-class relationships. We argue that including geodesic
maps in the segmentation model has the potential to improve accuracy, as they model
distances based on pixel content across objects (Toivanen, 1996; Criminisi et al., 2008).
We, therefore, propose a novel Geodesic Label Smoothing (GeoLS) for the segmentation
of medical images. Specifically, we integrate the geodesic maps obtained for each target
object to (i) capture spatial information between the other objects and (ii) capture image
uncertainty in the form of soft-labels. In contrast to existing soft-labeling approaches, our
GeoLS smooths the label using geodesic maps, which capture spatial relations and image
context needed for medical image segmentation. Our method is extensively validated on
two different medical imagining datasets: the 2019 brain tumour segmentation (BraTS)
challenge dataset (Bakas et al., 2017, 2018) and the 2021 Abdominal organ segmentation
dataset (Ma et al., 2022). The results demonstrate the superiority of our approach over the
state-of-the-art methods on soft-label segmentation.

2. Method

2.1. Preliminaries

Let us denote D = {(xi, yi)}Ni=1 as the training dataset, where xi ∈ RS×H×W represents an
input volume and yi ∈ {0, 1}C×S×H×W its associated segmentation mask, modeled as one-
hot encoding, with C being the number of classes. For a given volume, the segmentation
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Figure 1: Comparison of soft-labeling from One-Hot (OH) with Label Smoothing (LS), Spa-
tially Varying LS (SVLS), and ours (GeoLS) on a brain tumour. Left side: An image, its
ground-truth mask, and an image closeup with ground-truth around a tumour. Right side:
The class probabilities (%) for each method (OH, LS, SVLS, GeoLS) in the same closeup
area. OH/LS ignores inter-class spatial relations, whereas SVLS redistributes probabilities
to neighboring classes but simply blurs OH labels. GeoLS redistributes probabilities based
on image gradients from geodesic maps, thus better capturing ambiguous boundaries (or-
ange arrows).

network is typically trained using the standard cross-entropy loss function as:

LCE = −
C∑
c=1

∑
v

yc,v log(pc,v), (1)

where pc,v is the predicted softmax probability of the segmentation network, and v is a
voxel. For simplicity, we drop i and v notations and use them wherever necessary, and
assume the loss function is normalized by the cardinality of the training set.

The hard-label assignments, yi, do not capture inter-class relations, which fail to provide
the model with annotation ambiguity. To model the inter-class relation, a simple strategy
consists in softening the hard-labels during training. Label smoothing (LS) (Szegedy et al.,
2016) generates a soft-label by reducing the target class probability with a factor α and
redistributes it uniformly to all other classes:

yLSc = (1− α)yc +
α

C
(2)

Training a segmentation network with LS is carried out by replacing the hard-label yi
with the soft-label yLSi .

2.2. Geodesic Distance Transform.

Segmentation is a dense pixel-wise classification problem, which depends not only on the
spatial relation of neighboring pixels but also on the image intensities. For instance, pixels
with varying intensities might have the same class label in the inner region of the target
object than in its boundaries. However, such ambiguity near the object boundaries is not
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captured in the standard labels. In order to integrate these intensity differences in the
training of segmentation networks, we integrate the geodesic distance transform (Toivanen,
1996), which captures the variation in the image gradients as a function of the distance.

Suppose S represents the set of seed voxels belonging to target class regions. The
unsigned geodesic distance map of each voxel v to the set S of each class is defined as:

Dc(v; S, xi) = min
v′∈S

d(v, v′), (3)

with:

d(v, v′) = min
p∈Pv,v′

∫ √
||p′(s)||2 + γ2(∇xi · u(s))2ds, (4)

where Pv,v′ is the set of all paths between voxels v and v′, and p being one of such feasible

paths, parameterized by s ∈ [0, 1]. Furthermore, a unit vector is defined as u(s) = p′(s)
||p′(s)|| ,

which is tangent in the direction of the path. The term γ controls the contribution of the
image gradient (∇xi) versus the spatial distances to the set S. Note that, Eq. 4 reduces
to the Euclidean Distance for γ = 0 and to compute the geodesic distance γ is set to 1
(Criminisi et al., 2008). Finally, we obtain the geodesic map for each target class as

gc = e−Dc , (5)

which are subsequently normalized to range [0, 1].

2.3. Geodesic Label Smoothing (GeoLS)

The geodesic maps capture the image gradient information, which can be useful in smooth-
ing the hard-labels and yet exploit image context. Instead of adding the smoothness uni-
formly as in LS (Szegedy et al., 2016), or smooth with a Gaussian filter such as in SVLS
(Islam and Glocker, 2021), our approach smooth the label availing geodesic maps. This will
integrate image context into the target label assignment. To achieve this, we first normalize
the geodesic map for each class as g̃c = gc∑

c gc
, such that it follows a probability distri-

bution. The geodesic probability distribution is consequently combined with the original
target probability to generate the soft-label, as follows:

yGeoLS
c = (1− α)yc + αg̃c (6)

These generated geodesic soft-label yGeoLS
c , is thereupon plugged in Eq. 1 to train the

segmentation network. Figure 1 demonstrates the comparison of GeoLS over one-hot (OH),
LS, and SVLS labels. The class probabilities in LS were reduced compared to OH without
considering the spatial structure. SVLS considers the spatial context based on the blurring
of OH labels, whereas GeoLS captures both the local spatial variation and the image context.

3. Experiments

3.1. Datasets and Evaluation Metrics

To validate our GeoLS, we use two publicly available benchmarks: a) the Brain Tumour
Segmentation dataset from the BraTS 2019 challenge (Bakas et al., 2017, 2018) and b) the
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abdomen multi-organ segmentation dataset from the FLARE challenge (Ma et al., 2022).
The description of these datasets and how they are used in our experimental setting is
detailed below.

BraTS 2019. It includes 335 multimodal brain MRI scans and corresponding glioma
tumour masks. Each scan has MR sequences of FLAIR, T1, T1ce, and T2, which are pre-
processed with skull-stripping, co-registred to a fixed template and resampled to an isotropic
resolution of 1 mm3. The annotation consists of the necrotic and non-enhancing core,
edema, and enhancing tumour regions, which are mapped to Whole Tumour (WT), Tumour
Core (TC), and Enhancing Tumour (ET) during evaluation. For all our experiments, a fixed
dataset split of 235 for training, 32 for validation, and the remaining 68 for testing.

FLARE 2021. The dataset comprises 361 abdominal CT scans with corresponding seg-
mentation masks of four organs: liver, kidney, spleen, and pancreas. These scans have
varying resolutions, which are first resampled to a uniform resolution of 2 × 2 × 2.5 mm3

and then normalized by clipping the intensity values outside the [0.5, 0.95] percentile range.
We use a fixed dataset split of 260 for training, 26 for validation, and the remaining 75 for
testing for all our experiments.

Evaluation Metrics. We employ commonly used segmentation metrics, namely Dice
Score Coefficient (DSC), Surface Dice (SD) (Nikolov et al., 2018), and 95% Hausdorff Dis-
tance (HD) to evaluate the discriminative performance. All experiments are run three times
with a fixed set of seeds on the same machine, and their average results are reported.

3.2. Training and implementation details.

To assess the contribution of our GeoLS, a 3D U-net (Çiçek et al., 2016) architecture is used
as the segmentation model in all our experiments. The model is trained using an Adam
optimizer (Kingma and Ba, 2015) with a learning rate of 1e-4 and weight decay of 1e-4.
The input of the segmentation network is center-cropped to 128× 192× 192 in BraTS and
112×160×208 in FLARE. We employ online data augmentation, including random flipping
and rotation of input images, as in (Islam and Glocker, 2021). The network is trained for
200 epochs with a batch size of 4, and the best validation model is used for testing. Our
evaluation includes experiments with cross-entropy (CE), LS (Szegedy et al., 2016), FL (Lin
et al., 2017), and SVLS (Islam and Glocker, 2021) losses as training objectives. For both LS
and our model, the smoothing factor α is set to 0.1 (Müller et al., 2019). An open-source
library (GeodisTK) is used to generate the geodesic maps with target label skeleton as seed
points S. All experiments were run on an NVIDIA RTX A6000 GPU with PyTorch 1.8.0.

4. Results

The performance of the proposed geodesic label smoothing approach is compared with exist-
ing soft-label approaches and report their discriminative results in Tables 1 and 2. We first
validate our GeoLS on the multiclass brain tumour segmentation and report both individual
tumour and average results in Table 1. From the results, we can observe that employing
soft-labels improves the performance across all models and metrics. Among soft-label meth-
ods, our method outperforms LS and SVLS in terms of DSC and SD scores, respectively,
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Table 1: Segmentation results on the BraTS test set. The best and second-best
results are highlighted in bold and underlined for each tumour structure (ET, TC, WT).

Methods ET TC WT Average

CE 72.05 ± 2.14 82.38 ± 0.91 90.09 ± 0.39 81.51 ± 1.03
LS 73.28 ± 0.85 82.65 ± 0.30 90.46 ± 0.08 82.13 ± 0.35
FL 72.86 ± 0.68 82.74 ± 0.13 89.95 ± 0.73 81.85 ± 0.36
SVLS 73.15 ± 2.82 82.67 ± 1.96 90.43 ± 0.78 82.08 ± 1.81

D
S
C

(%
)
↑

GeoLS (ours) 72.98 ± 1.27 83.36 ± 0.97 90.46 ± 0.25 82.27 ± 0.77

CE 81.35 ± 2.91 80.92 ± 1.34 90.09 ± 2.07 84.12 ± 1.77
LS 82.04 ± 2.58 80.86 ± 1.55 93.08 ± 0.54 85.33 ± 1.55
FL 82.55 ± 1.51 80.79 ± 0.97 92.52 ± 0.26 85.29 ± 0.86
SVLS 83.71 ± 2.83 80.70 ± 2.39 92.47 ± 1.37 85.63 ± 2.02

S
D

(%
)
↑

GeoLS (ours) 84.26 ± 2.77 82.86 ± 0.29 93.37 ± 0.71 86.83 ± 1.15

CE 14.55 ± 1.61 7.64 ± 1.15 6.28 ± 0.86 9.49 ± 1.20
LS 13.52 ± 0.35 7.23 ± 0.16 5.95 ± 0.16 8.90 ± 0.21
FL 13.53 ± 1.29 6.90 ± 1.26 6.08 ± 0.88 8.83 ± 1.10
SVLS 12.83 ± 2.70 6.93 ± 1.37 5.72 ± 1.10 8.50 ± 1.70

H
D

(m
m
)
↓

GeoLS (ours) 13.71 ± 1.54 6.72 ± 1.64 5.90 ± 0.76 8.78 ± 1.28

Table 2: Segmentation results on the FLARE test set. The best and second-best
results are highlighted in bold and underlined.

Methods Liver Kidney Spleen Pancreas Average

CE 94.88 ± 0.31 94.70 ± 0.33 95.46 ± 0.85 72.52 ± 0.61 89.39 ± 0.14
LS 95.96 ± 1.11 94.89 ± 0.35 95.61 ± 0.63 73.07 ± 1.35 89.88 ± 0.38
FL 94.78 ± 0.68 94.13 ± 0.44 93.84 ± 1.01 67.22 ± 1.31 87.49 ± 0.32
SVLS 95.12 ± 1.46 94.30 ± 0.28 95.12 ± 0.31 70.49 ± 2.52 88.76 ± 1.00

D
S
C

(%
)
↑

GeoLS (ours) 95.60 ± 0.87 94.80 ± 0.37 96.52 ± 0.30 73.72 ± 1.02 90.16 ± 0.44

CE 90.96 ± 0.53 94.08 ± 0.40 93.62 ± 0.55 69.00 ± 0.96 86.91 ± 0.11
LS 91.49 ± 0.45 95.00 ± 0.13 94.57 ± 0.66 70.67 ± 1.01 87.94 ± 0.08
FL 89.28 ± 0.30 92.66 ± 1.39 93.50 ± 0.50 61.65 ± 1.19 84.27 ± 0.61
SVLS 90.88 ± 0.72 95.55 ± 0.30 92.82 ± 1.80 66.94 ± 1.76 86.55 ± 1.08

S
D

(%
)
↑

GeoLS (ours) 91.07 ± 0.61 94.33 ± 1.20 94.47 ± 0.82 69.69 ± 1.22 87.39 ± 0.25

CE 4.15 ± 1.10 2.94 ± 0.11 2.98 ± 1.06 6.72 ± 1.18 4.20 ± 0.19
LS 2.87 ± 1.14 2.93 ± 0.37 2.60 ± 0.24 6.37 ± 1.03 3.69 ± 0.26
FL 3.76 ± 1.19 3.36 ± 0.90 3.55 ± 1.30 7.84 ± 1.31 4.63 ± 0.65
SVLS 4.31 ± 1.39 3.09 ± 0.41 3.51 ± 0.69 8.15 ± 1.81 4.77 ± 1.00

H
D

(m
m
)
↓

GeoLS (ours) 3.01 ± 1.05 2.40 ± 0.5 1.49 ± 0.55 5.59 ± 0.20 3.12 ± 0.21

and is competitive with SVLS in HD metric. Notably, our method yields improvements in
the SD score (1.2%), highlighting the improvement in the boundary regions.

Furthermore, the results of multi-organ abdomen segmentation on the FLARE dataset
are reported in Table 2. We can see a similar trend in LS and GeoLS results. In contrast,
a noticeable performance gap is observed in FL and SVLS compared to CE results, pos-
sibly due to the over-suppression of one-hot labels in the boundaries. Moreover, existing
methods are ranked differently across metrics and datasets, indicating that these methods
are sensitive to datasets. Our method invariably outperforms the existing approach in most

473



Adiga Vasudeva Dolz Lombaert

OH LS SVLS GeoLS (ours)FLImage & GT

B
ra

TS
FL

A
R

E

Figure 2: Qualitative comparison on BraTS (top) and FLARE (bottom) datasets.
Coloring indicates different tumour structures on top and organs on bottom. GeoLS shows
improvements in ambiguous boundaries, such as the pancreas (yellow).

cases. From these results, our method is consistent across different datasets, emphasizing
the robustness of geodesic soft-labels.

Qualitative Results. Visual segmentation results of brain tumour from BraTS and ab-
dominal organs from FLARE by different methods are depicted in Fig. 2. In the top row
of the figure, the predictions of existing methods are predominantly over-segmenting in en-
hancing tumour (red) (OH, FL, SVLS) and necrotic and non-enhancing core (blue) (OH, LS,
FL, SVLS). In contrast, our method minimizes misclassification errors and produces a supe-
rior segmentation. In multi-organ segmentation (bottom), the challenging pancreas region
(yellow) is predominantly under-segmented by all existing methods. Our method produces
a better segmentation in the pancreas region than existing methods, which is supported
by the quantitative results provided in previous sections. We argue that this improvement
may be due to the inclusion of image gradient information from geodesic maps.

Smoothing Factor α. Figure 3 shows the sensitivity of the smoothing factor α (in Eq.6)
versus segmentation performance. Specifically, we assess the segmentation performance us-
ing DSC and HD scores by varying the α values on both BraTS and FLARE datasets.
Note that α = 0 is equivalent to CE loss, which does not leverage geodesic maps. Re-
sults demonstrate that increasing alpha values show a gradual segmentation performance
improvement in both DSC and HD scores for FLARE, and the best result is obtained for
α = 0.1. In BraTS, segmentation accuracy is almost flat for the DSC score for initial values
of α, whereas the HD score improves slightly. The best scores are obtained for α = 0.05.
Beyond α = 0.1, the performance generally decreases for both datasets. We choose α = 0.1
for all experiments since it is more consistent in both scores and datasets.

Choice of seed set S. The geodesic map varies with the choice of seed set S, as the dis-
tance transform is calculated for each pixel in the image to the seed points in S. Therefore,
we evaluate the segmentation accuracy with varying choices of seed-set strategies. To gen-
erate different geodesic maps, seed sets are generated using a random selection of 3, 5, and
7 pixels inside each target class as seed points. In addition to random generation, seed sets
are generated using remainings of skeletonization and an erosion operation of each target
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Figure 3: Sensitivity of smoothing factor α - Each point in the line indicates the DSC
(left) and HD (right) scores on BraTS and FLARE datasets. The segmentation performance
on both scores and datasets is consistent for α = 0.1.

Table 3: Performance under different seed sets S - Average DSC and HD scores on
BraTS and FLARE are reported. The best and second-best results are highlighted in bold
and underlined.

Datasets BraTS FLARE

choice of S DSC (%) ↑ HD (mm) ↓ DSC (%) ↑ HD (mm) ↓
random-3 82.98 ± 0.68 8.10 ± 0.09 87.83 ± 1.02 4.79 ± 0.16
random-5 82.51 ± 0.80 9.00 ± 0.70 89.46 ± 1.00 4.20 ± 0.97
random-7 82.36 ± 0.48 8.89 ± 0.81 89.23 ± 0.21 4.41 ± 0.49
skeleton 82.27 ± 0.77 8.78 ± 1.28 90.16 ± 0.44 3.12 ± 0.21
erosion 81.93 ± 0.93 9.17 ± 0.68 89.56 ± 0.08 3.63 ± 0.27

class. Table 3 reports all comparable segmentation performances, indicating the robustness
of our geodesic maps to varying choices of seed points. The results may also indicate that
the skeleton-based seed points could be further explored as a viable seeding strategy.

5. Discussion and Conclusion

Existing hard and soft-labeling approach for image segmentation ignores the spatial relation
and image context embedded in the task. Therefore, explicitly modeling of such information
would improve the training of segmentation networks. This work proposes a Geodesic label
smoothing (GeoLS) for the segmentation of medical images. It yields soft-labels by includ-
ing the image content in the label smoothing process via the geodesic distance transform.
Leveraging geodesic soft-labels in model training improves the segmentation performance.
Results demonstrate that the proposed method achieves consistent performance compared
to the existing soft-label approach on multiclass brain tumour and abdomen segmentation
from 3D MR and CT volumes, respectively. The proposed Geodesic label smoothing is
orthogonal to other types of segmentation losses, such as Dice loss. It can be combined to
form a compound loss, such as a combination of CE and Dice. However, this work aims to
provide an alternative to hard and soft-labeling losses. Furthermore, our geodesic soft-label
can be adapted to a broader range of applications where supplementing image content is
beneficial.
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