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Abstract

Cell detection in histopathology images facilitates clinical diagnosis, and deep learning
methods have been applied to the detection problem with substantially improved perfor-
mance. However, cell detection methods based on deep learning usually require a large
number of annotated training samples, which are costly and time-consuming to obtain,
and it is desirable to develop methods where detection networks can be adequately trained
with only a few annotated training samples. Since unlabeled data is much less expensive to
obtain, it is possible to address this problem with semi-supervised learning, where abundant
unlabeled data is combined with the limited annotated training samples for network train-
ing. In this work, we propose a semi-supervised object detection method for cell detection
in histopathology images, which is based on and improves the mean teacher framework. In
standard mean teacher, the detection results on unlabeled data given by the teacher model
can be noisy, which may negatively impact the learning of the student model. To address
this problem, we propose to suppress the noise in the detection results of the teacher model
by mixing the unlabeled training images with labeled training images of which the ground
truth detection results are available. In addition, we propose to further incorporate a loss
term that is robust to noise when the the student model learns from the teacher model. To
evaluate the proposed method, experiments were performed on a publicly available dataset
for multi-class cell detection, and the experimental results show that our method improves
the performance of cell detection in histopathology images in the semi-supervised setting.
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1. Introduction

Automated cell detection in histopathology images allows quantitative, efficient, and re-
producible cell analysis, and it can benefit diagnostics and disease grading in clinical prac-
tice (van der Laak et al., 2021). Methods based on deep learning have been developed for
the cell detection task and achieved promising results. For example, earlier works have
used customized deep networks to identify the locations of cell nuclei (Xu et al., 2016; Sir-
inukunwattana et al., 2016), and more recent works have used or adapted modern object
detectors, such as Faster R-CNN (Ren et al., 2017), for cell detection (Cai et al., 2019; Sun
et al., 2021), where bounding boxes are generated to localize the cells of interest.

The training of these cell detection models based on deep learning usually requires a
large amount of labeled training data, where the cells of interest need to be annotated on a
sufficient number of training images. However, because the cell morphology in histopathol-
ogy images can be diverse and the annotation should be performed by well-trained experts,
the collection of a large-scale annotated dataset for training can be challenging, and often
only a limited amount of labeled training data is available. Therefore, it is desirable to
develop cell detection approaches that perform well given scarce labeled training data.
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One common strategy to address the problem of scarce labeled training data is to exploit
semi-supervised learning (SSL) (Cheplygina et al., 2019), where unlabeled data that is easy
to obtain and thus in general abundant is used together with the scarce labeled training
data during network training. The SSL strategy can be applied to object detection problems
as well. For example, in (Sohn et al., 2020) and (Liu et al., 2020), the teacher-student
framework is adapted to object detection, where the student model learns from not only
labeled training data but also unlabeled training data with predictions given by the teacher
model. The teacher model can be fixed (Sohn et al., 2020) or gradually updated during
network training (Liu et al., 2020). These SSL-based object detection methods can be
readily applied to cell detection. However, due to the limited amount of labeled training
data, the predictions given by the teacher model for unlabeled training images can be noisy
and prone to errors, which negatively affects the training of the student model and the
final detection performance, and the development of SSL-based methods for cell detection
in histopathology images is still an open problem.

To further explore the problem of semi-supervised cell detection in histopathology im-
ages, we seek to improve the teacher-student interaction by better handling the noisy teacher
predictions. Like (Ying et al., 2021), we develop a semi-supervised cell detection method
based on the mean teacher (MT) framework (Tarvainen and Valpola, 2017). Unlike (Ying
et al., 2021), instead of directly using the unlabeled training data and the corresponding
noisy teacher predictions to train the student model, we propose to mix the unlabeled im-
ages with the labeled images to produce synthetic unlabeled images for network training.
Specifically, each region detected in the unlabeled images by the teacher model is mixed with
a region from the labeled images belonging to the same cell type of the detected region, and
the classification of the mixed region is unchanged. Because the information in the labeled
images without label noise is included in the synthetic unlabeled images, compared with
the teacher predictions for the original unlabeled images, the label noise in the synthetic
unlabeled images is suppressed. These synthetic unlabeled images and their synthetic la-
bels then replace the original unlabeled images and their teacher predictions for training the
student model. In addition, to better deal with the noise in the synthetic labels, we propose
to incorporate a loss term that is more robust to label noise when the student model learns
from the teacher model. Like in the standard MT framework, in our method the teacher
model is also updated during network training based on the learned student model with
exponential moving average (EMA) (Tarvainen and Valpola, 2017), and the final teacher
model is used to perform cell detection. To evaluate the proposed method, we performed
experiments on a publicly available dataset for cell detection in histopathology images.
The experimental results indicate that the proposed method improves the performance of
semi-supervised cell detection in histopathology images.

2. Methods

2.1. Problem Formulation

The aim of this work to improve cell detection in histopathology images in the semi-
supervised setting, where only a limited number of labeled training images and a large
number of unlabeled training images are available. We focus on the use of modern object
detectors, where the detection result is represented by a bounding box that indicates the
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location of the detected cell and the probability of the cell belonging to certain types (Ren
et al., 2017). For the labeled training images, the annotation gives the ground truth location
and type of the cells of interest, whereas for the unlabeled training images the ground truth
is unknown.

In the typical fully supervised setting, only the network prediction and ground truth
information in the labeled images are used for network training. For convenience, we denote
the localization and classification results of the m-th detected cell in the labeled images by
xam and cam, respectively, and the total number of detected cells in the labeled images is de-
noted by Na. Then, the following loss function that takes the localization and classification
error into consideration is minimized to learn the weights of the detection network:

Lsup =
1

Na

Na∑
m=1

J(xam, yam) +H(cam, dam), (1)

where J(xam, yam) measures the difference between xam and the corresponding ground truth
location yam, and H(cam, dam) measures the disagreement between cam and the corresponding
ground truth cell type dam. Note that dam also includes the background class, where no
ground truth bounding box is available for the (false positive) detected cell, and in this case
J(xam, yam) is not computed and set to zero.

Since the amount of labeled training data is scarce, the network model trained in the
fully supervised setting may not learn adequate knowledge for the detection, and it is pos-
sible to improve the network training by incorporating the abundant unlabeled training
images. Therefore, we seek to develop a semi-supervised approach that exploits the unla-
beled training data to improve the detection performance. An overview of the proposed
framework is shown in Fig. 1, and the detailed design of our approach is presented below.

2.2. Semi-supervised Cell Detection with Robust Mean Teacher

Motivated by the success of MT (Tarvainen and Valpola, 2017) in SSL, including SSL-based
object detection (Liu et al., 2020), we propose to adapt and improve the MT framework for
semi-supervised cell detection. Following the MT framework, we construct a teacher model
and a student model, which share the same network structure but with different network
weights. For convenience, we denote the network weights of the student model and the
teacher model by θ and θ′, respectively.

In the standard MT, the teacher model makes predictions on the unlabeled images,
which are considered pseudo-labels for these images, and the student model learns from not
only the annotations on the labeled training data but also the pseudo-labels on the unlabeled
training data. Both the teacher and student models are updated iteratively during network
training. The standard MT is adapted to object detection in (Liu et al., 2020). Specifically,
suppose the classification result of the n-th detected cell in the unlabeled training images
given by the student is cun, the corresponding pseudo-label given by the teacher model in
the t-th iteration is dun,t, and the total number of the cells detected by the student model
in the unlabeled images is Nu.

1 Then, in (Liu et al., 2020) an additional unsupervised loss

1. Note that weak or strong image perturbation is applied before the teacher or student prediction (Liu
et al., 2020), respectively.
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Figure 1: An overview of the proposed framework for semi-supervised cell detection.

term LMT
unsup based on the unlabeled training data is used together with the loss function in

Eq. (1) for training the student model at the t-th iteration, where

LMT
unsup =

Nu∑
n=1

H(cun, d
u
n,t). (2)

Note that the localization loss is not included as it is observed in (Liu et al., 2020) that the
use of the classification loss alone for the unlabeled training images is sufficient.

In the standard MT procedure, as well as its adaptation to object detection in (Liu
et al., 2020), the teacher model is initialized with the scarce labeled training data, and
thus its predictions on the unlabeled training data can be noisy and inaccurate. This could
negatively affect the learning of the student model. Although a high confidence threshold is
used in (Liu et al., 2020) to filter out uncertain teacher predictions, it may only preserve a
subset of the cells of interest. Therefore, we propose to further improve the MT framework
for cell detection so that it is more robust to the label noise in the teacher predictions.

First, we seek to suppress the noise in the teacher prediction. To this end, instead of
directly using cun and dun,t to compute the unsupervised loss, we propose to mix the unlabeled
images with the labeled images to obtain synthetic unlabeled images for network training.
For convenience, we denote the image patch corresponding to a cell of interest detected
by the teacher model at the t-th iteration in the unlabeled images by Iut , and the image
patch corresponding to a randomly selected cell of the same class in the labeled images is
represented by Ia. Then, for each image patch Iut , we mix it with the randomly selected Ia

as

Ĩut = Iut · put + P (Ia) · (1− put ) , (3)

where put is the confidence of the teacher prediction for the image patch Iut and P (·) rep-
resents the resizing operation with bilinear interpolation to match the patch size of Ia to
that of Iut . The pseudo-label for the synthetic patch Ĩut is still the hard label of the teacher
prediction. Since there is no label noise in the labeled images, the mixing of labeled patches
with unlabeled patches leads to reduced label noise in the synthetic unlabeled patches, and
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when the teacher prediction on the unlabeled image is less confident, the contribution of
the label image is greater in the mixing to suppress the possibly greater label noise.

Each mixed patch Ĩut then replaces the corresponding original image patch Iut in the
unlabeled images, and the resulting synthetic unlabeled images are used to compute the
unsupervised loss. Formally, suppose the classification result of the n-th detected cell in
the synthetic unlabeled training images given by the student model is c̃un, the corresponding
pseudo-label at the t-th iteration is d̃un,t, and the total number of the cells detected by

the student model in the synthetic unlabeled images is Ñu. Then, we have the following
unsupervised loss term at the t-th iteration:

Lunsup =
1

Ñu

Ñu∑
n=1

H(c̃un, d̃
u
n,t). (4)

This loss term can be used in conjunction with Lsup to train the student model.
In addition to the unsupervised loss term designed above, since there is still noise in the

pseudo-labels of the synthetic unlabeled images, we propose to further incorporate a loss
term that allows the network training to be more robust to the label noise. In particular,
it is theoretically proved in (Zhou et al., 2021) that a loss function can be made robust to
noisy labels by restricting the network output to the set of permutations over a fixed vector,
and this can be conveniently approximated with the addition of sparse regularization of the
output using ℓp-norm (0 < p ≤ 1). Specifically, this additional term Lreg is computed for
the student predictions on the synthetic unlabeled images as

Lreg =
1

Ñu

Ñu∑
n=1

∥c̃un∥
p
p . (5)

The complete loss function L for training the student model at the t-th iteration becomes

L = Lsup + λuLunsup + λrLreg, (6)

where λu and λr are weights for the loss terms Lunsup and Lreg, respectively.
After the student model is trained at the t-th iteration, like in the standard MT frame-

work, the network weights of the teacher model are also updated based on the student
model and the current teacher model with EMA:

θ′ ← θ′ · σ + θ · (1− σ), (7)

where σ is the EMA decay rate to be specified. The iterative update of the teacher and
student models is performed until convergence, and the teacher model is used for the final
detection.

Note that our method is different from the previous mixing method MixUp (Zhang
et al., 2017) and its adaptation in semi-supervised classification (Berthelot et al., 2019).
The previous mixing-based methods are mainly applied in image classification and they
stochastically linearly combine two annotated images and the corresponding annotations.
However, when MixUp is directly applied to cell detection, the random mixing of two images
may lead to undesired interaction between different types of cells or between cells and
background. These methods do not help to solve the noise in the teacher model prediction.
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2.3. Implementation details

We use the Faster R-CNN (Ren et al., 2017) with FPN (Lin et al., 2017) and ResNet50 (He
et al., 2016) implemented in Detectron22 as the backbone detection network, which is a
popular choice for semi-supervised object detection (Sohn et al., 2020; Liu et al., 2020).
The weights for feature extraction have been pretrained on ImageNet (Deng et al., 2009)
for a better initialization.

Like (Liu et al., 2020), during network training, weak image perturbation is applied to
the unlabeled images before the teacher prediction, where random horizontal flipping is used;
strong perturbation, including color jittering, Gaussian blur, and random erasing (Zhong
et al., 2020; DeVries and Taylor, 2017), is applied to the unlabeled images before the student
prediction. Non-maximum suppression (NMS) (Neubeck and Van Gool, 2006) is applied for
both teacher and student models to remove duplicate predictions. We choose the smooth L1
loss and focal loss to measure the localization error and classification error, respectively (Liu
et al., 2020). We set the loss weights λu = 4 and λr = 1 according to (Liu et al., 2020) and
(Zhou et al., 2021), respectively; we set p = 0.5 for Lreg (Zhou et al., 2021) and the EMA
decay rate σ = 0.996 like in (Liu et al., 2020). The other training configurations, such as
the optimizer, learning rate, etc., are set to the default specification in (Liu et al., 2020).

For evaluation, prediction boxes on test images with a confidence score greater than 0.5
are kept and NMS is performed to merge duplicate bounding boxes.

3. Results

3.1. Dataset Description

To evaluate the proposed method, we performed experiments on the publicly available Nu-
CLS dataset (Amgad et al., 2021), which aims to detect multiple types of cells in breast
cancer. We used the corrected single-rater subset, which contained 1744 images with an-
notated cells. The annotation of each cell comprised a bounding box indicating the cell
location and the class of the cell. In the original NuCLS dataset, seven types of cells were
annotated, and in this work we only selected the three types for which a large number of
cells were annotated for evaluation, including the tumor, stromal, and lymphocyte classes.

The images were randomly split into a training, validation, and test set with a ratio of
about 7:1:2. The training set was further divided into a labeled training set and unlabeled
training set, where the annotation was available and inaccessible during network training,
respectively. Specifically, we considered several cases of the labeled training set, where 2%,
5%, 10%, and 20% of the training set was used as the labeled training set and the other
training images were used as the unlabeled training set.

3.2. Evaluation Results

We compared the proposed method with three competing methods, which, for fair compar-
ison, all used the same backbone Faster R-CNN detection network as the proposed method.
The first competing method is the Faster R-CNN model trained with the labeled training
set only, where the unlabeled training images were not used. For convenience, this method

2. https://github.com/facebookresearch/detectron2
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Figure 2: Examples of detection results on test images (achieved with 2% labeled training
images) shown together with the annotation. The tumor, stromal, lymphocyte
classes are represented by red, green, and blue boxes, respectively. The numbers
of true positive (TP) and false positive (FP) detection results are indicated in the
figure for each case. The numbers of annotated cells are also shown for reference.

is referred to as the baseline method. The second competing method is the semi-supervised
object detection approach STAC (Sohn et al., 2020) integrated with the baseline Faster
R-CNN, where a student model learns from both the labeled and unlabeled training data
with a fixed teacher model. The third competing method is the unbiased teacher (UBT)
method (Liu et al., 2020) developed for semi-supervised object detection based on the mean
teacher framework, and it is integrated with Faster R-CNN like the proposed method.

We first qualitatively evaluated the proposed method. Examples of the detection results
of each method on test images (achieved with 2% labeled training images) are shown in
Fig. 2, together with the annotation for reference. In these cases, our method compares
favorably with the competing methods by producing more true positive boxes than the
competing methods without increasing the number of false positive boxes.

Next, we quantitatively compared the proposed method with the competing methods.
For each case of the training set, we computed the F1-score of the detection results on the
test set for each cell type, and the results are shown in Table 1. In all cases, the proposed
method has a higher F1-score than the competing methods. In addition, we computed
the mean average precision (mAP) for the detection results, and the results are shown in
Fig. 3. Consistent with Table 1, the proposed method has higher mAP than the competing
methods. These results together indicate that the proposed method has better detection
accuracy than the competing methods.

Finally, we performed an ablation study to verify the individual benefit of the pro-
posed mixing strategy and the additional sparse regularization. Specifically, we applied our
method without the regularization Lreg in Eq. (5). The mAP for these cases are summa-
rized in Fig. 3 as well. We can see the corresponding mAP is better than the results of
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Table 1: The F1-score (%) achieved with different amounts of labeled training data (2%,
5%, 10%, and 20%) for each cell type. The tumor, stromal, lymphocyte classes are
represented by Tum, Str, and Lym, respectively. The best results are highlighted
in bold.

Method
2% 5% 10% 20%

Tum Str Lym Tum Str Lym Tum Str Lym Tum Str Lym

Baseline 53.0 27.9 43.1 59.8 27.7 59.0 60.6 37.1 56.7 64.0 40.9 60.2
STAC 48.4 18.4 21.1 55.0 20.9 39.8 61.0 36.3 50.8 52.7 33.8 56.9
UBT 55.1 29.0 38.6 59.5 25.9 56.6 60.0 35.6 53.3 62.9 40.8 49.5

Proposed 56.7 31.0 53.1 60.5 35.9 61.6 62.9 41.6 61.8 65.5 43.1 62.3

Figure 3: The mAP (%) computed for the detection results for each amount of the labeled
training data (2%, 5%, 10%, and 20%). The best results are highlighted in bold.
The ‘Proposed*’ denotes our proposed method without sparse regularization. Our
proposed model can efficiently leverage the unlabeled data and perform favorably
against the existing semi-supervised object detection works, including STAC and
Unbiased Teacher.

the competing methods but worse than the result of the complete proposed method. This
result indicates that both of the mixing and sparse regularization in the proposed method
are beneficial.

4. Conclusion

We have proposed a semi-supervised approach to cell detection in histopathology images.
Based on the mean teacher framework, we have a developed a training procedure that is
more robust to the noise in the teacher prediction. The experimental results on a publicly
available dataset show that our method can improve the performance of semi-supervised
cell detection.
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