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Abstract

This paper explores training medical vision-language models (VLMs) — where the visual
and language inputs are embedded into a common space — with a particular focus on
scenarios where training data is limited, as is often the case in clinical datasets. We explore
several candidate methods to improve low-data performance, including: (i) adapting generic
pre-trained models to novel image and text domains (i.e. medical imaging and reports)
via unimodal self-supervision; (i) using local (e.g. GLoRIA) & global (e.g. InfoNCE)
contrastive loss functions as well as a combination of the two; (iii) extra supervision during
VLM training, via: (a) image- and text-only self-supervision, and (b) creating additional
positive image-text pairs for training through augmentation and nearest-neighbour search.
Using text-to-image retrieval as a benchmark, we evaluate the performance of these
methods with variable sized training datasets of paired chest X-rays and radiological
reports. Combined, they significantly improve retrieval compared to fine-tuning CLIP,
roughly equivalent to training with 10x the data. A similar pattern is found in the down-
stream task classification of CXR-related conditions with our method outperforming CLIP
and also BioVIL, a strong CXR VLM benchmark, in the zero-shot and linear probing set-
tings. We conclude with a set of recommendations for researchers aiming to train vision-
language models on other medical imaging modalities when training data is scarce. To
facilitate further research, we make our code publicly available’.
Keywords: Vision-Language Modelling, Contrastive Learning, Chest X-ray

1. Introduction

Recently, there has been much progress in the field of vision-language modelling (VLM)
where powerful, aligned, visual and language representations, such as CLIP and ALIGN,
are learnt from image-caption pairs scraped from the internet (Radford et al., 2021; Jia
et al., 2021; Ilharco et al., 2021). This has exciting implications for deep learning in medical
imaging, where annotating large datasets for supervised training has been a long-standing
challenge since it generally requires an expert annotator whose time is expensive and limited.
Fortunately, almost all scans taken in a clinical setting will have a corresponding radiological
report, describing key findings in free-text. VLMs can use these reports as a supervisory
signal to learn representations of images, forgoing the need for manual annotation. However,
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popular general-domain VLM methods use incredibly large datasets of paired images and
text — CLIP, for example, is trained on 400 million image-text pairs. Clearly, this is not
feasible in the medical domain, where dataset size is limited by factors such as scanner
availability, concerns about patient privacy and the cost of obtaining images. For some
types of imaging investigations, researchers can realistically hope for no more than a few
thousand training image-text pairs, even if data is collected from multiple imaging centres.

To alleviate this problem, we investigate a set of methods to improve VLM performance
for dual encoder models when the number of image-text pairs available for training is limited.
We begin by proposing several candidate methods to achieve this (Section 2). We evaluate
these methods by using them to train models on progressively smaller datasets of paired
chest X-rays and reports (Section 3). The aim is to find methods with minimal degradation
in performance when the training set size is shrunk, as measured by retrieval on paired
image-text data unseen during training. We show that with appropriate pretraining and
supervision, a dual-encoder trained on thousands of paired image-text samples can achieve a
performance comparable to one trained on hundreds of thousands of paired samples. Having
identified the best performing training methods for retrieval, we then explore whether the
improved retrieval corresponds to better performance on downstream tasks, namely zero-
shot classification of common conditions associated with chest X-rays. We conclude by
offering a set of recommendations for researchers aiming to train VLMs on novel medical
imaging domains with limited data (Section 4).

1.1. Related Work

In this work, we target dual encoder VLMs, that learn a joint visual-language representation,
rather than generative models that ingest images and output text such as (Alayrac et al.,
2022) for generic images and text or (You et al., 2021; Nooralahzadeh et al., 2021; Yang
et al., 2022; Kayser et al., 2022) for automatic medical image report generation.

Several works have been published relating to learning joint representations of medical
images and reports, mostly in the domain of chest X-rays (CXRs) — This is likely due
to the existence of multiple large-scale, publicly available CXR datasets such as MIMIC-
CXR (Johnson et al., 2019), CheXpert (Irvin et al., 2019) and PadChest (Bustos et al., 2020).
The majority of these works aim to learn representations of images and their associated
reports using a contrastive learning paradigm (i.e. matching associated image-text pairs
together across a randomly sampled batch) (Wang et al., 2018; Huang et al., 2021; Liao
et al., 2021; Miiller et al., 2022; Boecking et al., 2022; Zhang et al., 2022). Several works have
demonstrated that strong performance at this pre-training task correlates with performance
across a wide range of downstream tasks, such as classification, segmentation, and natural
language inference tasks. While many of these works explore performance when data for
downstream tasks is limited, the setting of limited data for VLM training remains relatively
neglected. This is a particularly important problem for medical imaging since few modalities
other than CXR have publicly-available datasets of 100,000s image-text pairs. A few recent
works (Segal et al., 2022; Li et al., 2022; Mu et al., 2021) reduced bimodal training data
for generic image-text pairs. However, these works consider subsets of exceptionally large
datasets (of the order of millions of image-text pairs), rather than 1000s as considered here.
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Figure 1: The unimodal pretraining methods used to domain adapt image and text encoders before
VLM training.

2. Increasing Data Efficiency During Vision-Language Modelling

In this section, we outline possible methods for achieving strong dual encoder VLM perfor-
mance when a limited number of paired image-text data are available for training. However,
as is often the case, a large number of unpaired (unimodal) data may well be available, and
we will take advantage of this to adapt the image and text encoders to the target domains
before paired training begins. Broadly, the methods can be separated into two stages: (i)
choosing an optimal dual encoder initialization by using image and text models trained
to perform related unimodal self-supervised tasks; and (ii) adding more supervision during
paired (bimodal) training by varying the contrastive loss function and also by generating
additional positive image-text pairs. These two stages are described below:

Stage 1: Domain-adapting image and text encoders: In this stage, we start with
strong, generic image and text encoders (e.g. an ImageNet-pretrained image model, and a
BERT style language model pre-trained on large corpora). The encoders are then adapted
to the CXR domain by self-supervised unimodal training as follows:

Image Encoder: To pretrain the image encoder, unimodal domain adaption is achieved using
SimCLR (Chen et al., 2020). In this method, multiple views of each image in the dataset
are created using a range of augmentations. The image encoder is then trained contrastively
such that embedding vectors corresponding to different views of the same original image
should have high cosine similarity. This process is illustrated in Figure 1(a).

Text Encoder: To train a domain-adapted text encoder, we follow the suggestions of (Boeck-
ing et al., 2022). We begin with CXR-BERT, a BERT model (Devlin et al., 2018) and
tokenizer trained using standard RoBERTa-style masked language modelling (MLM) on
two large corpora of generic clinical text datasets (PubMed Abstracts and MIMIC clinical
notes), with a comparatively small amount of domain-specific data added in (MIMIC-CXR
reports). The resulting model is then ‘specialized’ to chest X-ray reports by an additional
pre-training step, whereby the language model to trained to contrastively match a report’s
‘findings’ section to the ‘impressions’ section (i.e. summary) from the same report. Concep-
tually, this is analogous to SimCLR, except instead of different views of the same image,
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different sections from the same report (which should contain the same information) are
matched together. This step is shown in Figure 1(b).

Note that both these methods allow potentially larger datasets of unpaired images or
reports to be used in training the model, alleviating the problem of limited paired data.

Stage 2a: Local vs. Global Loss Functions: Standard VLM training methods such
as CLIP and ALIGN represent each image and each caption as a single global embedding

vector and attempt to maximise the similarity between vectors from the same pair, usually
via the InfoNCE loss function (Oord et al., 2018):

+lo B
eXp( vi.t;/T) > exp(—v;.ti/7)

LinfoNCE =

B
Z exp —v;.t;/T) exp(—v;.t;/7T) . (1)
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Here, v;, t; € RE represent E-dimensional L2-normalized embedding vectors of the image
and text respectively for the i-th image-text pair in a batch of size B. 7 represents the
softmax temperature.

However, in medical imaging, reports often contain multiple unrelated statements, each
referring to distinct regions within the image (e.g. ‘left lung base atelectasis, mild car-
diomegaly, right lung normal’). Since global embeddings are usually produced by a pooling
operation across the whole image, maintaining this spatial information in the embeddings
is challenging. A possible solution to this problem are local representations, whereby image
patches and text tokens are each represented by their own embedding vector. The model is
trained such that the mean maximum patch-to-token and token-to-patch similarity is high
for matching image-text pairs and low otherwise. In this paper, we consider GLoRIA, the
local loss function proposed in (Huang et al., 2021). Concretely, for a image-text pair with
W word embeddings, t € RW*¥ and local embedding vectors describing M image regions,
v € RM*XE (again both L2-normalized), a similarity matrix S € R">M is calculated, where
si; represents the cosine similarity between the i-th word embedding and j-th image region
embedding. Using, this an attention score is calculated,

P exp(s,-j/rg) . 9
Y Zkle exp(sik/T2) @

This is then used to calculate an attention-weighted representation of the image for word ¢,
c; = Zj]\io a;jVij € RE. The total report-image similarity is given by the matching function

W
Z(v,t) = log(z exp(c;.t;/73)™. (3)

i=1

Z(v,t) then replaces v.t in equation 1, giving the following symmetric loss for a batch:

B
P exp Z(v,1)/7) g P2 t)/1) |
GLoRIA ; S oxp(—Z (o0, 10)/7) & S P exp(—Z(ur, t)/7) (4)

As in the original GLoRIA paper, we also explore a simple combination of global and local
loss functions, i.e. £ = LrytoncE + LGLoRIA-
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Figure 2: The DeCLIP framework used to add additional supervision during VLM training. Note
that the image-text contrastive loss function can be either local or global.

Stage 2b: Additional Supervision During VLM Training: As well as varying the
form of the contrastive loss function, we investigate two further adaptions to VLM training.
These are: (a) adding text-only & image-only self-supervision terms to the total loss; (b) cre-
ating more positive image-text pairs via augmentation and nearest-neighbour search. To do
this, we use the Data efficient CLIP (DeCLIP) framework (Li et al., 2022). The overall pro-
cess is illustrated in Figure 2. For image-only self-supervision, SimCLR is used (as in Stage
1). Text-only self-supervision is provided by masked-language modelling. Additional positive
text-image pairs are generated as follows: Starting with a matching image-text pair, {v;, t;},
random-crop augmentations are used to generate another view of the image, v;. Similarly,
another ‘view’ of the text, t;, is created by EDA (Wei and Zou, 2019) text augmentation,
involving random synonym replacement, word insertion, deletion, and position swapping.
Finally, a nearest neighbour to the text, tfv N'is sampled from the data as follows: text em-
beddings are cached during training in a first-in, first-out (FIFO) queue. Once the queue is
populated, the nearest neighbour for each text embedding is found by cosine similarity and
used as a positive example for both corresponding images. This results in 6 positive pairs
which can be used for contrastive training; {v;, t;},{v}, t;},{vi, t;},{v], t}, {vi, thN} and

{Vg, tNN } This framework is agnostic to the choice of the contrastive loss function, and can

be adapted for both local (e.g. GLoRIA) and global (e.g. InfoNCE) matching functions. For
a more detailed explanation of this method and the hyper-parameters used, see Appendix C.

3. Experiments

Dataset: For the experiments in this paper, we use the MIMIC-CXR~JPG dataset. (John-
son et al., 2019). We include all reports with at least one frontal X-ray (AP or PA) and an
‘Impression’ section in the associated report, leaving 181,112 studies (144,781 /18,679/17,652
in the training, validation, and test sets respectively). Each image is resized to 512x512 pix-
els by bilinear interpolation. For the reports, we used only the ‘Impression’ section as input
to the text encoder during VLM training, however, the ‘Findings’ section is also used when
domain-adapting the text encoder. We leave incorporating the longer ‘Findings’ sections
into VLM training as future work. The details of the training, testing and validation splits
used are given in Appendix A.
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Architecture, Evaluation metrics & Implementation details: In all experiments, we
use a ResNet50 (He et al., 2016) image encoder and a BERT-style text encoder. All configu-
rations are trained using an Adam optimizer with a learning rate of 1072 and 3 = (0.9, 0.99)
with a batch size of 20 and softmax temperature of 0.5. Models are trained for 500 iterations
and then evaluated for 100 iterations on the same subset of the validation set. Training con-
tinues until the validation loss does not improve for 10 successive validation epochs. Further
details on each stage of training, including augmentations used, computational resources and
training times are given in Appendix B. We evaluate models by measuring text-to-image
retrieval on the test set after training has concluded. This involves calculating the similar-
ity between each image and report in the test split and measuring true and false positive
rates at a range of similarity thresholds. We report the area under the resulting ROC curve
(AUROC) for models trained with 1, 5, 10, 20, 50, and 100% of the possible training pairs.

Stage 1: Varying Dual Encoder Initialization: Figures 3(a) and 3(b) show results of
experiments varying the weight initialization for both the image and text encoders, before
training the dual-encoder using an InfoNCE contrastive loss. For the experiments varying
image encoder pretrained weights, a standard uncased BERT base model is used to ini-
tialize the text encoder. We experiment with three image schemes: random initialization,
standard ImageNet pretrained weights, and ImageNet weights with further domain adap-
tion via image-only SimCLR pretraining. For the experiments varying the text encoder
initialization, the SimCLR domain adapted image encoder is used. We compare four BERT
models as text initializations: uncased BERT-base, Clinical BERT, and CXR-BERT with
and without further domain adaption. For both sets of experiments, we also plot the results
of initializing the text and image encoders with ResNet50-CLIP pretrained weights. For
both the images and text, initializing the encoder using weights from models trained via
uni-modal self-supervised domain-adaption shows clear benefits. This is true at all dataset
sizes, however, the effects are particularly pronounced with smaller training dataset sizes (1-
20% of the data). For this reason, the SimCLR-domain adapted ResNet and domain-adapted
CXR-BERT are used for initialization in all subsequent experiments unless otherwise stated.

Stage 2a: Local vs. Global Loss Functions: Here, we explore varying the form of
contrastive loss function used to match images and text. In total, three configurations are
tested: (i) InfoNCE (equation 1); (ii) the local loss function component of GLoRIA (equa-
tion 4); and (iii) a combination of (i) and (ii). Note that for local loss functions, calculating
pairwise similarities requires cross-attention between the image and text embedding vectors
(see equations 2 and 3). This retrieval operation is generally more accurate however much
slower and less suited to large scale datasets (see (Miech et al., 2021) for further discussion
of this issue). In this paper, we report retrieval performance using both this local, cross
attention mechanism (local matching, marked ‘(L) in Figure 4) as well as via global embed-
ding vector cosine similarity (global matching, marked ‘(G)’). For methods that have both
global and local objectives, both matching functions are reported.

Figure 4(a) shows a comparison of the three configurations. As before, we plot the per-
formance of CLIP initialization with an InfoNCE objective for comparison purposes. Our
results show local matching results in better retrieval performance than global matching
at all except very small training dataset sizes (1%). Crucially, we find that the extra su-
pervision provided by both a local and global component to the contrastive loss function
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model as the initial image encoder. InfoNCE contrastive loss is used to train the VLM, as in CLIP.
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Figure 4: Varying the contrastive loss function used during VLM training. (a) Evaluates vari-
ous local and global loss functions (b) DeCLIP evaluated against the standard InfoNCE approach.
Methods performing retrieval using a local matching function (L) are shown as dashed lines while
retrieval using a global matching function (G) are shown as solid lines. In all cases, the simCLR
domain-adapted ResNet50 and domain-adapted CXR-BERT from stage 1 are used for initialization.

(GLoRIA local + InfoNCE), improves retrieval at both global and local matching, compared
to respective methods which use a local (GLoRIA local) or global (InfoNCE) loss alone.

Stage 2b: Additional Supervision via DeCLIP: Here, we investigate the effect of
adding more supervision via the DeCLIP framework, shown in Figure 2. This is done
using two forms of contrastive loss function: (a) InfoNCE alone; (b) InfoNCE and the local
component of GLoRIA. The trained models are compared to those trained by equivalent
methods, but without the extra supervision given by DeCLIP. The results of this experiment
are shown in Figure 4(b). Encouragingly, DeCLIP improves retrieval performance in all
settings at almost all dataset sizes. This is also additive with the improvement found by using
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Figure 5: Zero-shot classification and linear probing of common conditions using CheXpert labels
on the test split. For comparison, BioVIL achieves balanced accuracy scores of 67.3% and 72.9% in
the zero-shot and linear probe settings respectively.

a global and local loss function shown in Figure 4(a). An ablation study of each component
of DeCLIP is shown in Appendix C, along with example nearest-neighbour reports.

Overall, with the benefits of self-supervised pretraining (Stage 1) and the combination of
global and local loss functions with additional DeCLIP supervision (Stage 2), the retrieval
curve rises quickly in the low-data regime, approaching a horizontal asymptote. For example,
for 10% of the training data, the performance achieves over 95% of the final value (using
100% of the data). Also, the combination of methods far exceeds the fine-tuned CLIP
baseline. Example retrieval results for this model are shown in Appendix B.

Evaluation on Downstream Tasks: The experiments above suggest that several meth-
ods can be employed to improve global text-to-image retrieval on the test dataset. Here, we
explore how these improvements correlate to downstream classification tasks. Specifically,
classifying 12 common CXR-related conditions using labels from the CheXpert labeller (Irvin
et al., 2019). The full details of this experimental set-up, as well as class-level results, are
given in Appendix D. The results are shown in Figure 5. We evaluate our best retrieval model
(DeCLIP - InfoNCE + GloRIA local) at zero-shot image classification and also under lin-
ear probing, with the results shown in Figure 5. For comparison, we report the performance
of the CLIP-initialized models trained using InfoNCE alone and also BioVIL (Boecking et al.,
2022), a strong, publicly-available VLM for CXRs which is also trained on MIMIC-CXR?2.
From Figure 5, one can see that the improvements in retrieval carry over to the downstream
evaluation, with our method achieving better performance than CLIP models trained on
5-10x the data in the linear probing setting (e.g. ours trained with 1% achieves 70.1%
accuracy compared to 69.9% for CLIP trained on 10%) The zero-shot results are noisier,
however again our method improves on CLIP and BioVIL at all dataset sizes.

4. Conclusion

This paper has explored several methods of improving VLM-models when image-text pairs
are limited, a particularly relevant problem to medical imaging. Based on these results, we

2. The original paper does not report a train-test split, thus BioVIL may be trained on some image-text
pairs which appear in our test set.
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make the following recommendations: (a) unimodal, self-supervised ‘domain-adaption’ of
generic image and text models before VLM training vastly improves retrieval performance
at all dataset sizes; (b) a combination of global and local contrastive loss functions is also ben-
eficial; (c¢) adding more supervision during VLM training, via uni-modal self-supervision and
generated additional positive image-text pairs, is another method to increase performance.
Combining these ideas, we achieve state-of-the-art performance at zero-shot classification
on MIMIC-CXR~JPG when trained on the whole dataset, and maintain strong performance
even with limited training data. We hope these results will be useful to researchers aiming
to train VLMs on medical imaging domains, especially when training data is scarce. To aid
further research in this area, our code and models will be made publicly available.

Acknowledgments

We are grateful to our funders: Rhydian Windsor is supported by Cancer Research UK
via the EPSRC AIMS CDT (EP/S024050/1). Amir Jamaludin and Andrew Zisserman are
supported by EPSRC Programme Grant Visual AI (EP/T025872/1).

61



WINDSOR JAMALUDIN KADIR ZISSERMAN

References

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Has-
son, Karel Lenc, Arthur Mensch, Katie Millican, Malcolm Reynolds, Roman Ring, Eliza
Rutherford, Serkan Cabi, Tengda Han, Zhitao Gong, Sina Samangooei, Marianne Mon-
teiro, Jacob Menick, Sebastian Borgeaud, Andrew Brock, Aida Nematzadeh, Sahand
Sharifzadeh, Mikolaj Binkowski, Ricardo Barreira, Oriol Vinyals, Andrew Zisserman, and

Karen Simonyan. Flamingo: a visual language model for few-shot learning. In NeurIPS,
2022.

Benedikt Boecking, Naoto Usuyama, Shruthi Bannur, Daniel C. Castro, Anton
Schwaighofer, Stephanie Hyland, Maria Wetscherek, Tristan Naumann, Aditya Nori,
Javier Alvarez-Valle, Hoifung Poon, and Ozan Oktay. Making the most of text semantics
to improve biomedical vision-language processing. In Proc. ECCYV, 2022.

Aurelia Bustos, Antonio Pertusa, Jose-Maria Salinas, and Maria de la Iglesia-Vaya. PadCh-
est: A large chest x-ray image dataset with multi-label annotated reports. Medical Image
Analysis, 66:101797, 2020.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple frame-
work for contrastive learning of visual representations. In Proc. ICML, 2020.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training
of deep bidirectional transformers for language understanding. CoRR, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proc. CVPR, 2016.

Shih-Cheng Huang, Liyue Shen, Matthew P Lungren, and Serena Yeung. Gloria: A mul-
timodal global-local representation learning framework for label-efficient medical image
recognition. In Proc. ICCV, 2021.

Gabriel Ilharco, Mitchell Wortsman, Ross Wightman, Cade Gordon, Nicholas Carlini, Ro-
han Taori, Achal Dave, Vaishaal Shankar, Hongseok Namkoong, John Miller, Hannaneh
Hajishirzi, Ali Farhadi, and Ludwig Schmidt. Openclip, 2021.

Jeremy Irvin, Pranav Rajpurkar, Michael Ko, Yifan Yu, Silviana Ciurea-Ilcus, Chris Chute,
Henrik Marklund, Behzad Haghgoo, Robyn Ball, Katie Shpanskaya, Jayne Seekins,
David A. Mong, Safwan S. Halabi, Jesse K. Sandberg, Ricky Jones, David B. Larson,
Curtis P. Langlotz, Bhavik N. Patel, Matthew P. Lungren, and Andrew Y. Ng. CheX-
pert: A large chest radiograph dataset with uncertainty labels and expert comparison. In
Proc. AAAIL 2019.

Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-
Hsuan Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language represen-
tation learning with noisy text supervision. In Proc. ICML, 2021.

A .E.W. Johnson, T.J. Pollard, S.J. Berkowitz, et al. MIMIC-CXR, a de-identified publicly
available database of chest radiographs with free-text reports. Scientific Data, 6(1):317,
Dec 2019.

62



LIMITED DATA MEDICAL VISION-LANGUAGE MODELLING

Maxime Kayser, Cornelius Emde, Oana Camburu, Guy Parsons, Bartlomiej Papiez, and
Thomas Lukasiewicz. Explaining chest x-ray pathologies in natural language. In Proc.
MICCAI 2022.

Yangguang Li, Feng Liang, Lichen Zhao, Yufeng Cui, Wanli Ouyang, Jing Shao, Fengwei
Yu, and Junjie Yan. Supervision exists everywhere: A data efficient contrastive language-
image pre-training paradigm. In Proc. ICLR, 2022.

Ruizhi Liao, Daniel Moyer, Miriam Cha, Keegan Quigley, Seth Berkowitz, Steven Horng,
Polina Golland, and William M. Wells. Multimodal representation learning via maximiza-
tion of local mutual information. In Proc. MICCAI 2021.

Antoine Miech, Jean-Baptiste Alayrac, Ivan Laptev, Josef Sivic, and Andrew Zisserman.
Thinking fast and slow: Efficient text-to-visual retrieval with transformers. In Proc.

CVPR, 2021.

Norman Mu, Alexander Kirillov, David Wagner, and Saining Xie. Slip: Self-supervision
meets language-image pre-training. arXiv preprint arXiw:2112.12750, 2021.

Philip Miiller, Georgios Kaissis, Congyu Zou, and Daniel Rueckert. Joint learning of localized
representations from medical images and reports. In Proc. ECCV, 2022.

Farhad Nooralahzadeh, Nicolas Perez Gonzalez, Thomas Frauenfelder, Koji Fujimoto, and
Michael Krauthammer. Progressive transformer-based generation of radiology reports. In
Proc. EMNLP, 2021.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive
predictive coding. In arxiv preprint, arXiw:1807.03748, 2018.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini
Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger,

and Ilya Sutskever. Learning transferable visual models from natural language supervision.
In Proc. ICML, 2021.

Elad Segal, Ben Bogin, and Jonathan Berant. Training vision-language models with less
bimodal supervision. In 4th Conference on Automated Knowledge Base Construction,
2022.

Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu, and Ronald M Summers. Tienet: Text-
image embedding network for common thorax disease classification and reporting in chest
x-rays. In Proc. CVPR, 2018.

Jason Wei and Kai Zou. EDA: Easy data augmentation techniques for boosting performance
on text classification tasks. In Proc. EMNLP-IJCNLP, 2019.

Shuxin Yang, Xian Wu, Shen Ge, S. Kevin Zhou, and Li Xiao. Knowledge matters: Chest
radiology report generation with general and specific knowledge. Medical Image Analysis,
80:102510, 2022.

63



WINDSOR JAMALUDIN KADIR ZISSERMAN

Di You, Fenglin Liu, Shen Ge, Xiaoxia Xie, Jing Zhang, and Xian Wu. Aligntransformer:
Hierarchical alignment of visual regions and disease tags for medical report generation.
In Proc. MICCAI 2021.

Yuhao Zhang, Hang Jiang, Yasuhide Miura, Christopher D. Manning, and Curtis P. Lan-
glotz. Contrastive learning of medical visual representations from paired images and text.
In Proc. MLHC, 2022.

Appendix A. Dataset Details

In this paper, we used the MIMIC-CXR-JPG dataset for training and testing. This is a
large dataset of chest X-rays and associated radiological reports. DICOMs from the original
MIMIC-CXR dataset are converted into JPG files® and the CheXpert labeller (Irvin et al.,
2019) is used to extract labels from the reports. The dataset is split into training, validation
and testing splits on the patient-level, as shown in Table 1.

Dataset Split # Unique Subjects # Report-Scan Pairs  Folders

Total 65,398 180,650 pl0-p19

Train 52,428 144,319 pl2-p19
Validation 6,572 18,679 pll

Test 6,398 17,652 pl0

Table 1: The splits used for MIMIC-CXR-JPG in the experiments in this paper.

Appendix B. Additional Training Details

B.1. Augmentation Hyperparameters

Table 2 reports augmentation hyperparameters for all training stages used in this paper.
We report the augmentations for both the image domain-adaption stage using simCLR and
for full VLM training. Note that the DeCLIP framework introduces an additional image
augmentations by producing an augmented version of the original image for a simCLR-
like unimodal supervision objective. In this case we simply use a 50% random crop of the
already-augmented original image, maintaining the same aspect ratio.

B.2. Training Time & Computational Resources

Most models are trained with a batch size of 20 using 2x 24GB NVIDIA Tesla P40 GPUs.
VLM training using the DeCLIP framework requires an additional GPU of the same de-
scription to maintain the same batch size. Approximate training times for each stage are
given in Table 3.

3. Further explanation of the MIMIC-CXR-JPG dataset is given at https://physionet.org/content/
mimic-cxr-jpg/2.0.0/
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VLM Training SimCLR Image Pretraining

Translation +5px +20
Rotation —10 to 10° —180 to 180°
Brightness +20% +20%
Shear (z-axis) - 40°
Scaling +10% +10%
Horizontal Flip - p=20.5
Gaussian Noise £5%, p=0.5 +5%, p=0.5
Gaussian Blur - oc=(1,3,5),p=0.5

Table 2: Image augmentation parameters used during VLM training and while domain adapting
the image encoder using simCLR.

Training Stage Additional Information # Samples Training Time (hours)

Image Encoder Domain Adaption - 144,319 12
Text Encoder Domain Adaption - 144,319 4
VLM Training (100%) CLIP framework, InfoNCE loss 144,319 9
VLM Training (100%) CLIP framework, Combined loss 144,319 10
VLM Training (100%) DeCLIP, InfoNCE loss 144,319 20
VLM Training (1%) DeCLIP, Combined loss 1,443 2.5

VLM Training (10%) DeCLIP, Combined loss 14,432 9

VLM Training (100%) DeCLIP, Combined loss 144,319 36

Table 3: Approximate training times for each stage of our training pipeline. Note that for the
image and text encoder domain adaption stages, the models are initialized using weights from generic
pretraining (ImageNet & CXR-Bert respectively).

Appendix C. DeCLIP Method, Nearest Neighbours & Ablation Study

Data Efficient CLIP (DeCLIP) (Li et al., 2022) is a method for training CLIP-like models
aimed at maintaining strong performance with less image-text pairs. The main idea behind
this method is to add several additional forms of supervision during VLM training, alongside
the standard image-text matching contrastive InfoNCE loss. This additional supervision can
be broadly seperated into three classes; uni-modal self-supervision, multi-view supervision
and nearest-neighbour supervision. These additional loss terms can be seen in Figure 2 and
are described individually below:

Uni-Modal Self-Supervision: One can add in any form of image-only or text-only self-
supervision in addition to the contrastive image-text matching function. We opt for two
common image and text objectives, namely SImCLR (Chen et al., 2020) using random crop
augmentations and masked language modelling, normally used to train BERT-like language
models from scratch. This also acts as a form of text augmentation during VLM training
since each token is randomly masked out or replaced with another random tokens with some
small probability, p.

Multi-View Supervision: This component of the framework aims to add additional
supervision by creating additional ‘views’ of the data; augmentations of the images, I,
and text, 7", with different appearance but identical semantic meaning. These can then
be used to create three new image-text pairs for VLM training: (I,7”), (I’,T) and (I',T").
I’ is generated using the same random-crop augmentation used for simCLR image self-
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Chest X-Ray
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Original Impression

Nearest Neighbour

1. No acute focal consolidation.
2. 7-mm rounded opacity in
the left upper lung new since 2
days prior and may be focus of
infection; attention to this
region on follow up imaging

Subtle bilateral parenchymal
opacities on prior chest x-ray
are not clearly identified. No
new region of consolidation!

Stable mild
mild pulmonary vascular
engorgement.

Viode and mild
pulmonary vascular congestion.

No definite acute cardiopulmo-
nary process. Right basilar opaci-

Low lung volumes with patchy
bibasilar opacities, likely atelectasis.

Chest X-Ray

Original Impression

Nearest Neighbour

Mild left lower lobe airspace
opacity, which could represent
pneumonia or atelectasis.

Small left lower lobe consolidation
may represent pneumonia versus
atelectasis

1. Dual chamber pacemaker with
leads in the right atrium and right

In comparison with the study of
__ there s little interval change.

Please note that infection however
is not completely excluded.

Continued enlargement of the
cardiac silhouette with minimal
elevation of pulmonary venous
pressure. Pacer leads are
unchanged and there is no evi-
dence of pneumothorax.

ventricle.
2. Low lung volumes and cardio-
megaly.

tyis potentially atelectasis due to
lower lung volumes noting that
infection is not excluded.

Figure 6: Example report nearest-neighbours found via the DeCLIP method using the model
trained on 100% of the data. The text encoder finds nearest neighbour reports with the same
semantic information as the original impressions, said in different words.

supervision described above. T” is generated using the EDA method proposed by (Wei and
Zou, 2019). This is a sentence-level simple text augmentation method which randomly: (a)
selects ngy, words from the text and replaces them with synonyms; (b) selects n;,s words
and inserts synonyms of them at random positions; (c) randomly swaps the positions of
Nswap Word pairs (d) randomly deletes words with pge;. For a sentence of W words, we use
Nsyns Nins, Nswap = 0.1 X W and pge; = 0.1. This is done using the official implementation
of the method?.

Nearest-Neighbour Text Supervision: Augmentation provides one method of gener-
ating new semantically-similar alternatives to the text and images. Another approach is to
sample other images or reports from the training dataset which are projected into similar
points in latent space by the dual encoder. We do this for text reports from the dataset.
Practically, this is done by storing the last N text embeddings produced by the text en-
coder in a first-in, first-out (FIFO) queue. Then for each report embedded, the nearest
neighbour, tyy, can be found by measuring the maximum similarity between the report’s
global embedding vector and all elements in the queue. This can then be used to create two
new positive pairs for VLM training, using the original and random-cropped images. Some
examples of nearest neighbours found via this method are shown in Figure 6.

Combined Loss Function: The result is three additional components to the overall VLM
loss function - the losses from text and image self-supervision, Lrgg, L15g, the mean loss
from the three additional image-text pairs introduced using multi-view supervision, Lysvs
and from the two additional pairs generated by nearest neighbour supervision, £xyn. These

4. https://github.com/jasonwei20/eda_nlp
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Figure 7: Ablation study for each individual component of the DeCLIP framework. In each case,
depending on which component is being studied, two of («, 5,7) from Equation 5 are set to 0, while
the other equals 0.5.

are combined as follows:
«o
L=(1—a—PB~7)Lorig. + E(ETSS + Lrss) + BLuvs +YLNN- (5)

Here, Loi4. is the contrastive loss function for the original image-text pair. This can be
either InfoNCE, the local component of GLoRIA, or a combination of the two. In the
experiments in this paper we use (a, 3,7) = 0.2.

Ablation Study: Figure 7 shows an ablation study where each of these components are
studied in isolation, by setting two of «, 5 and ~ to zero and the other to 0.5, corresponding
to the component being tested.

C.1. Qualitative Retrieval Results

Figure 7 shows text-to-image retrieval examples for the best performing model, using the
DeCLIP framework with a combined global and local loss. Each report is embedded and
the global similarity with all images in the test dataset is calculated. Along with the query
report and its associated image, we show the the retrievals at £k = 1,2, as well as the least
similar image. From these results one can see that the trained model performs recall based
on key conditions mentioned in the report, with almost all of the matching images having
the same conditions present as those mentioned in the query.
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Most Dissimilar Image
and Associated Report

2nd Most Similar Image
and Associated Report

Most Similar Image
and Associated Report

Query Report and
Associated Image

Subtle left base, possibly lingular
opacity may relate to atelectasis,
although infection is not exclud-

ed in the appropriate clinical
setting

Subtle patchy left base retrocar- Unchanged chest radiograph

diac opacity, which may be due
to atelectasis but subtle infec-
tious process is not excluded

Mild left basal atelectasis. 1.2..
Otherwise unremarkable. No
definite displaced rib fracture
though if there is continued
concern dedicated rib series may
be performed to further assess

REPORT

Similarity: 0.82 Similarity: 0.93 Similarity: 0.93 Similarity: -0.80

Rank: 115/17652

(a) Example query report demonstrating atelectasis. Note that first and second most similar
images also exhibit atelectasis in the left lung base (as mentioned in the corresponding

reports).

IMAGE

REPORT

Query Report and
Associated Image

’

Most Similar Image
and Associated Report

2nd Most Similar Image
and Associated Report

Most Dissimilar Image
and Associated Report

Unchanged, mild to moderate

cardiomegaly without a superim-

posed acute intrathoracic pro-
cess

Right hilar prominence is
unchanged. Stable mild cardio-
megaly.

Slight increase in interstitial
markings could be due to mini-
mal interstitial edema versus
atypical infection. No lobar con-
solidation. Mild enlargement of
the cardiac silhouette

Left lower lobe consolidation,
probably atelectasis, improved
but did not clear following inser-
tion of the left drainage tube.
Mild pulmonary edema has
improved

Similarity: 0.84
Rank: 128/17652

Similarity: 0.91

Similarity: 0.90

Similarity: -0.73

(b) Example report with mild cardiomegaly (enlarged heart). Again, the retrieved examples
also exhibit mild cardiomegaly.

Figure 7: Example text-to-image retrieval results for the final model. All images in the test dataset
are ranked based on similarity to the query report. Based on this criteria, the first, second and least
most similar image-text pairs are shown, along with the original report and it’s associated image.
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Query Report and
Associated Image

Most Similar Image
and Associated Report

2nd Most Similar Image
and Associated Report

Most Dissimilar Image
and Associated Report

IMAGE
Extensive right lower lobe infil- A pre-existing minimal right Severe multifocal pneumonia. A subtle opacity at the periph-
trate likely due to aspiration. pleural effusion has mildly ___ with Dr. 2. Persistent moder- ery of the left lung base is likely
There is likely also a small left increased. In the visible parts of ate right pleural effusion.. ___on due to a combination of small
perihilar infiltrate. Followup the left lung, no abnormalities the telephoneon ___ at 405 PM, left pleural effusion and adjacent
REPORT advised noted. Also increased are areas 5 minutes after discovery of the atelectasis. Ascomparedto___
of perihilar right-sided opacity. findings. 1. NOTIFICATION The radiograph, pulmonary vascular
As compared to the previous findings were discussed by Dr congestion has resolved.. Lungs
radiograph, the perihilar consoli- are otherwise clear
dation has increased in size
Similarity: 0.81 Similarity: 0.94 Similarity: 0.94 Similarity: -0.75
Rank: 147/17652
(¢) Example query report with infiltration of the right lung.
Query Report and Most Similar Image 2nd Most Similar Image Most Dissimilar Image
Associated Image and Associated Report and Associated Report and Associated Report
IMAGE
No acute cardiopulmonary pro- No radiopaque foreign body Otherwise, no acute cardiopul- Interval improvement
cess. identified. No acute cardiopul- monary abnormality. Probable
monary abnormality small residual pneumomediasti-
num noted anterior to the
REPORT trachea on the lateral view

Similarity: 0.90
Rank: 2959/17652

Similarity: 0.94

Similarity: 0.94

Similarity: -0.85

(d) An example query reporting no findings. Since this is true of a large subset of the

dataset, the retrieval rank is fairly low here (2,959 out of 17,652 candidate images),
despite high similarity.

Figure 7: (continued) Example text-to-image retrieval results for the final model. All images in
the test dataset are ranked based on similarity to the query report. Based on this criteria, the first,
second and least most similar image-text pairs are shown, along with the original report and it’s
associated image.

69



IMAGE

REPORT
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Query Report and
Associated Image

Most Similar Image
and Associated Report

2nd Most Similar Image
and Associated Report

Most Dissimilar Image
and Associated Report

Stable position of the left PICC
line. No complications, notably
no pneumothorax. The tip of the
line projects over the cavoatrial
junction. Comparisonto ___.

. Left PIC line ends in the upper
SVC. Interval progression of
elevation of the left hemidia-
phragm reflects progressive

atelectasis in the left lower lobe.

Mild pulmonary edema is new.
Cardiac silhouette is partially
obscured but appears larger.

. In comparison with the study
of ___, there appears to be some
increasing opacification at the
bases consistent with bilateral
effusions and compressive ate-
lectasis, worse on the left, with
elevated pulmonary venous
pressure

No acute cardiopulmonary
process. No significant change
from one day prior

Moderate bilateral pleural effu-
sions persist

Similarity:-0.15 Similarity: 0.965 Similarity: -0.85

Rank: 8060/17652

Similarity: 0.97

(e) Example failure case. The original image has a very low similarity, perhaps because the
PICC line is very challenging to see in this case.

Figure 7: (continued) Example text-to-image retrieval results for the final model. All images in
the test dataset are ranked based on similarity to the query report. Based on this criteria, the first,
second and least most similar image-text pairs are shown, along with the original report and it’s
associated image.

Appendix D. Downstream Task Evaluation Details

D.1. Zero-shot Classification and Linear Probing

We evaluate our models at zero-shot classification on our test-split of MIMIC-CXR. Specif-
ically we attempt to classify 12 conditions labelled by the CheXpert labeller (Irvin et al.,
2019): Cardiomegaly, Atelectasis, Lung Opacity, Pleural Effusion, Edema, Pneumonia,
Pneumothorax, Consolidation, Fracture, Enlarged Cardiomediastinum, Support Devices,
Lung Lesion. We leave out the ‘Pleural Other’ and ‘No Finding’ classes, since these are dif-
ficult to write an all-encompassing prompt for - ‘No Finding’ since it indicates the absence of
all conditions, rather than the presence of a specific one and ‘Pleural Other’ since it is very
rare and can refer to a wide range of pleural disorders. Note that we treat all ‘uncertain’
cases, i.e. where the condition is not mentioned in the report, as assumed negatives.

Zero-shot Classification Method: For each class X, we embed two phrases using the
trained text encoder; “X remains visible" and “There is no evidence of X", giving prompt
embedding vectors p} and py. Then for a given report-image pair, the cosine similar-
ity between the (normalized) prompt embeddings and image global embedding vectors is
measured, {vi.p},vi.p)}}. The zero-shot prediction for each class is then measured by
softmax(vi.p}, ViPy)-

Linear Probing Method: As an additional method to measure the quality of the image
encoder’s features, we perform linear probing on the test dataset. This is done by 5-fold
cross validation, performing class-weighted logistic regression (since the dataset is very im-
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balanced) on 80% of the test data and testing on the remaining 20% of data. We report the
mean balanced accuracy across all classes, averaged over all 5 folds.
The classification of both these methods is shown at the label-level in Table 4.
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Training Pairs (%) Model Name

Balanced Accuracy (Zero-shot/Linear Probe, %)

Cardiomegaly  Atelectasis Lung Opacity  Pleural Effusion Edema Pneumonia  Pneumothorax  Consolidation ‘
1 CLIP 45.1/68.7 61.5/68.2 58.6,/70.2 75.8/78.3 56.0/61.1 56.7/54.0 54.4/61.4 56.2/65.1
Ours 68.0/70.6 67.9/69.2 70.9/71.9 76.5/80.7 61.7/61.3 51.0/55.1 55.3/60.6 65.4/66.4
5 CLIP 65.9/69.7 65.3/68.5 70.2/72.1 74.2/79.7 59.6/63.3 54.1/59.2 55.7/64.0 62.1/66.1
Ours 70.1/72.9 69.4/71.9 71.8/74.2 76.7/81.8 62.5/63.1 51.5/57.3 56.9/64.3 66.2/67.4
10 CLIP 67.8/70.5 66.7/70.5 66.7/72.3 77.1/80.0 56.6/62.9 53.4/58.6 57.5/63.5 60.9/66.2
Ours 69.2/72.8 69.1/73.3 72.0/74.9 76.6/81.7 62.4/62.9 52.8/57.4 59.5/66.0 66.7/68.6
20 CLIP 68.1/72.2 68.4/70.4 70.5/72.8 73.7/80.7 62.4/65.5 53.2/59.2 58.7/63.1 66.1/66.7
Ours 70.2/73.6 68.7/73.3 72.9/75.7 76.4/82.2 63.8/65.4 54.4/59.0 60.8/66.8 66.6,/68.8
50 CLIP 69.3/72.9 65.0/72.7 70.8/75.1 71.6/81.3 59.6/65.6 50.5/59.9 58.6,/64.9 66.6,/68.0
Ours 70.1/74.1 69.6/74.3 73.6/76.3 76.8/82.5 63.8/64.4 57.0/61.8 63.8/66.7 67.5/69.4
CLIP 69.9/73.7 68.2/73.4 71.8/75.5 74.7/81.3 63.9/65.2 54.6/60.5 49.8/67.6 66.7/68.1
100 BioVIL 70.2/73.8 69.6/73.2 74.4/74.7 72.5/80.4 63.0/65.2 52.1/60.9 60.1/65.2 66.2/68.7
Ours 70.1/74.7 69.5/74.6 74.1/76.5 75.0/83.0 63.3/66.1 57.3/60.7 63.7/69.2 67.2/70.0
. . Balanced Accuracy (Zero-shot/Linear Probe, %
Training Pairs (%) Model Name Fracture  Enlarged Cardiomediastinurr(l Suppoit Devices Lun?g Lesion Mean ‘

1 CLIP 75.1/76.4 54.1/59.7 61.3/68.0 T4.7)77.7 60.8/ 67.4

Ours 76.7/79.8 59.9/63.5 64.3/69.8 70.5/77.8 65.7/ 68.9

5 CLIP 77.5/79.3 57.5/61.5 62.3/71.5 68.0/79.3 64.4/ 69.5

Ours 79.1/81.4 60.5/65.0 62.7/74.3 67.1/80.3 66.2/ 71.2

10 CLIP 78.1/80.3 58.9/61.5 62.2/72.1 69.6/79.9 64.6/ 69.9

Ours 79.2/82.1 61.6/66.1 61.9/75.4 66.4/81.6 66.5/ 71.9

20 CLIP 80.4/81.1 60.4/63.3 68.4/74.2 70.4/80.8 66.7/ 70.8

Ours 79.0/82.6 62.1/66.5 57.7/76.8 68.2/82.8 66.7/ 72.8

50 CLIP 79.4/81.7 61.4/63.4 63.3/76.4 72.4/81.5 65.7/ 71.9

Ours 80.8/83.2 62.4/67.0 68.0/79.4 70.7/84.4 68.7/ 73.6

CLIP 78.4/82.1 62.2/64.5 64.4/76.9 58.7/82.7 65.3/ 72.6

100 BioVIL 79.4/82.4 62.0/66.1 70.1/78.7 68.6/83.9 67.3/ 72.9

Ours 79.9/83.7 62.9/68.3 68.8/81.0 70.0/85.6 68.5/ 74.5

Table 4: Full class level results for the zero-shot and linear probe classification experiments using CheXpert labels on the test set. Balanced
accuracy scores are reported as ‘Zero-shot accuracy/Linear Probe accuracy’ for each task.
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