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Abstract

While there have been many studies on using deep learning for medical image analysis,
the lack of manually annotated data remains a challenge in training a deep learning model
for segmentation of medical images. This work shows how the kaleidoscope transform
(KT) can be applied to a 3D convolutional neural network to improve its generalizability
when the training set is extremely small. In this study, the KT was applied to a context
aggregation network (CAN) for semantic segmentation of anatomical structures in knee
MR images. In the proposed model, KAN3D, the input image is rearranged into a batch
of downsampled images (KT) before the convolution operations, and then the voxels are
rearranged back to their original positions (inverse KT) after the convolution operations to
produce the predicted segmentation mask for the input image. Compared to the CAN3D
(without the KT), the KAN3D was able to reduce overfitting without data augmentation
while maintaining a fast training and inference time. The paper discusses the observed
advantages and disadvantages of KAN3D.
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1. Introduction

In medical imaging, image segmentation is often a mandatory step in extracting quantitative
imaging biomarkers such as cartilage thickness. Deep learning methods, such as a convo-
lutional neural network (CNN) like U-Net (Ronneberger et al., 2015), have shown to be
promising in biomedical image segmentation. However, manual annotation of tomographic
images from techniques such as computed tomography (CT) and magnetic resonance (MR)
imaging requires significant expertise, is labor-intensive and is subject to reader variability
(Garwood et al., 2020). Despite deep learning being a rapidly evolving area of research in
medical image analysis, the lack of manually annotated data remains a major challenge in
training a deep learning model.

In addition, full-resolution segmentation of CT or MR images using a fully 3D CNN
usually requires a large amount of memory. Therefore, patch-based approaches have often

© 2023 CC-BY 4.0, B. Woo, M.B. Lorenzana, C. Engstrom, W. Baresic, J. Fripp, S. Crozier & S.S. Chandra.


https://creativecommons.org/licenses/by/4.0/

W00 LORENZANA ENGSTROM BARESIC FRIPP CROZIER CHANDRA

been employed for medical image segmentation. For example, Prasoon et al. (2013) used a
triplanar patch-based approach where three CNNs were trained to classify the central voxel
as cartilage or background. In Ambellan et al. (2019), a combination of 2D CNN, 3D CNN,
and statistical shape models (SSMs) were used for knee MR image segmentation; here, the
2D CNN was used for slice-wise segmentation while the 3D CNN was used for segmentation
of subvolumes localized along the bone contours.

Besides the lower memory requirement, a benefit of patch-based approaches also includes
that data augmentation may be unnecessary if many different patches can be produced from
each 3D image. However, as can be seen from the two examples in the above paragraph
(Prasoon et al., 2013; Ambellan et al., 2019), patch-based approaches often require multi-
ple steps for full segmentation of one 3D image because each patch only provides a local
image context. On the other hand, volume-based approaches (end-to-end volumetric seg-
mentation) preserve the global image context and require only a single inference. In Dai
et al. (2022), for example, a 3D context aggregation network (CAN), which has a relatively
low memory requirement (compared to other fully 3D CNNs), was used for end-to-end
segmentation of prostate and knee MR images.

In this work, we present the kaleidoscope transform (KT) as an alternative to patch-
based approach for 3D segmentation of knee MR images. The “patches” produced by the
KT preserve the global image context, so it was expected that this approach can provide the
benefits of both patch-based approach and volume-based approach. The main contributions
of this work are: (1) extension and application of the kaleidoscope transform (KT, proposed
by White et al. (2021), to 3D MR images, and (2) proposing a segmentation model KAN3D,
a context aggregation network (CAN) with KT.

2. Materials and Methods

2.1. Kaleidoscope transform

The kaleidoscope transform (KT), proposed by White et al. (2021), formalises the concept
of downsampling and concatenating an image with itself. Given a positive integer downsam-
pling factor v and integer smear factor o, the (v, 0)-KT converts an image (or array) of any
dimension into v evenly spaced, downsampled images of itself along each axis, each scaled
by a factor of o. In Lorenzana et al. (2022), a (v,1)-KT with an arbitrary downsampling
factor v was efficiently achieved via element reordering. The current work employed this
simplified version of KT modified for use with a 3D image segmentation model (Figure 1).

For 3D images, a (v,1)-KT decomposes an image into v x v x v = v downsampled
images. In our segmentation model, the downsampled images would then be arranged
as a batch instead of concatenating along each axis. In other words, a 3D image with
dimensions 1 x h x w x d (1 being the batch dimension) would be “rearranged” into a batch
of downsampled images with dimensions v x (h/v) x (w/v) x (d/v). For example, (4,1)-
KT for a 3D image produces 64 voxel-shifted low-resolution copies of the original image
(Figure 1(b)).

An efficient (v,1)-KT for 3D images was achieved using the Rearrange operation in the
Einops package developed by Rogozhnikov (2022).
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Figure 1: (a) (2,1)-KT for a small 2D image. (b) (4,1)-KT for a 3D image. A 3D input
image is decomposed into an array of 64 downsampled images.

2.2. KAN3D: Segmentation model

Figure 2 shows our segmentation model KAN3D. The model was based on the 3D version of
context aggregation network (CAN) by Dai et al. (2022). The main modification here was
the addition of KT before the convolution operations and inverse KT after the convolution
operations. This study used (4,1)-KT as shown in Figure 1, to produce a batch of 64 down-
sampled images. The output from the final convolution layer would then be the predicted
segmentation maps for the downsampled images. The inverse KT, which is rearranging all
the voxels back to their original positions, would produce the final output—the predicted

segmentation mask for the original, full-resolution image.
———
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Figure 2: The KAN3D network architecture. KT denotes kaleidoscope transform and KT~}
denotes inverse kaleidoscope transform. The bottom-most layers in the figure
represents the CAN module. BN: Batch Normalization

Ideally, CAN would have no downsampling, but it was difficult to use a reasonable num-
ber of filters without any downsampling due to the memory limitation of the graphics card,
so two downsampling (and upsampling) blocks were added as a trade-off, along with skip
connections (Figure 2). The CAN module is applied after the two downsamplings. To help
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stabilize convergence, the network was modified with deep supervision (see Appendix A)
by producing secondary segmentation maps at deeper levels of the network and combining
them with the final segmentation map via upsampling and element-wise summation.

The multiclass Dice loss function was used for training the network. This loss is often
used in medical image segmentation because it intrinsically addresses the class imbalance
problem commonly seen with medical images (Milletari et al., 2016; Isensee et al., 2017).
See Appendix A for the definition of the loss function and implementation details.

2.3. Dataset and experiments

The KAN3D was trained and tested on a small set of knee MR images from the publicly
available Osteoarthritis Initiative (OAI) database (Peterfy et al., 2008). Manual segmenta-
tions were carried out for a total of 38 MR images consisting of examinations of 25 patients
(2 timepoints for some patients). The images are 160 sagittal slices x 384 x 384 voxels,
and they are all images of the right knee. The MR imaging sequence is 3D DESS (double-
echo steady state) with water excitation. Ethics approval for collection of human data was
obtained by the OAI and the participating clinical sites (Peterfy et al., 2008).

Segmentation labels consist of the background (0), femoral bone (1), femoral cartilage
(2), tibial bone (3), tibial cartilage (4), patellar bone (5), patellar cartilage (6), medial
meniscus (7), lateral meniscus (8), posterior cruciate ligament (9), and anterior cruciate
ligament (10). The segmentations were carried out manually using ITK-SNAP (Yushkevich
et al., 2006) by an analyst (WB) with supervision from another analyst (CE) with expertise
in segmentation of the human musculoskeletal system.

The dataset was randomly and evenly split into 5-fold cross-validation sets on a patient
basis, meaning there were 30 or 31 images consisting of examinations of 20 patients in each
training set and 7 or 8 images consisting of examinations of 5 patients in each test set. T'wo
MR images of the same patient acquired at different timepoints were in the same set.

The KAN3D model was compared to CAN3D, which was the same as the model de-
scribed in Section 2.2 except that it was without the KT. In addition, the two models,
KAN3D and CAN3D, were compared to each other with and without dropouts. In the
models with dropouts, dropouts with rate 0.2 were added between convolution blocks during
training in an attempt to reduce overfitting. The batch size was 1 for all models although
an image was “rearranged” into a batch of 64 downsampled images within the KAN3D
through the KT. All models were trained for 100 epochs without any data augmentation.

Segmentation performance was evaluated using Dice similarity coefficient (DSC), aver-
age surface distance (ASD), and Hausdorff distance (HD) values. See Appendix B for the
definitions of these evaluation metrics.

3. Results

Figure 3 shows example outputs from KAN3D and CAN3D trained with or without dropouts.
The naive CAN3D without dropouts produced poor segmentation masks for the bone vol-
umes. The CAN3D with dropouts was better but still erroneous (see Figure 3(c)). The
KAN3D with or without dropouts had some errors as well, but their bone segmentation
masks were more plausible than CAN3D. Segmentation masks for smaller structures (car-
tilages, menisci, cruciate ligaments) looked plausible in all models.
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Figure 3: Example outputs from KAN3D and CAN3D trained with or without dropouts,
segmenting the anatomical structures in knee MR images from the OAI. In ad-
dition to the segmentation of the bones (purple) and cartilages (yellow) of the
femur, tibia, and patella, the slices show the segmentation of (a) anterior and
posterior cruciate ligaments (green), (b) medial meniscus (blue), and (c) lateral
meniscus (blue).

Table 1 shows the quantitative results. Tukey’s honestly significant difference (HSD)
test was used to compare all possible pairs of means for each metric. On average, the DSC
values were higher with the KAN3D models than with the CAN3D models for the bone
volumes, but the converse was true for the smaller structures. Note that because the bone
volumes are large, it is relatively easy to reach 90% DSC for the bone labels. The ASD
values were lower with the KAN3D models than with the CAN3D models for the bone
volumes, but the ASD results were mixed for the other structures. The HD values had a
clearer pattern: KAN3D with dropouts produced significantly lower HD values than the
other models for all labels.

Dropouts had a relatively small effect in CAN3D. The CAN3D with dropouts even failed
to converge for the lateral meniscus label in one of the five cross-validation sets. On the
other hand, dropouts significantly reduced average HD values when added to KAN3D.

4. Discussion and Conclusion

This study applied the kaleidoscope transform (KT) to a 3D convolutional neural network
(CNN) for MR image segmentation. The KT increases the effective receptive field of the

909



W00 LORENZANA ENGSTROM BARESIC FRIPP CROZIER CHANDRA

Table 1: Mean DSC, ASD, and HD values for segmentations of the bone, cartilage, menis-
cus, and cruciate ligament volumes from KAN3D and CAN3D trained with or
without dropouts, evaluated using 5-fold cross-validation on 38 MR images (25
patients) from the OAIL Bold represents the best value within each metric.

Class Metric CAN3D CAN3D KAN3D KAN3D
(no dropouts) | (with dropouts) | (no dropouts) | (with dropouts)
DSC (%) 92.2+11.12 91.9+13.17 95.4+1.37 95.4+1.45
FB | ASD (mm) | 2.18+3.32¢ 1.9942.68 0.9440.51 0.87+0.78
HD (mm) | 47.43+17.08} 44.11416.44% 44.46420.40F | 14.12+13.77°
DSC (%) 83.0+4.35 84.2+4.867 82.1+3.49 81.6+4.08
FC | ASD (mm) | 0.3940.15 0.36+0.12 0.3840.08 0.3740.07
HD (mm) | 24.28+13.25% 23.49+14.11% 23.12411.04} 10.24+5.08f
DSC (%) 94.4+7.87 94.4+9.05 96.0+1.64 95.94+2.16
TB | ASD (mm) | 2.2944.31 1.8144.12 0.88+0.95 0.7440.84
HD (mm) | 60.27+16.16% 44.53426.261 48.84420.15¢ | 20.73+15.617
DSC (%) 83.1+3.81 84.1+4.63 82.0+3.41 82.9+3.38
TC | ASD (mm) | 0.3940.18 0.3240.12 0.35+0.07 0.34+0.08
HD (mm) | 26.36+20.98} 20.624-21.97% 26.00422.761 7.94+9.661
DSC (%) 89.4+14.15 91.8+6.34 92.6+3.26 93.3+2.88
PB | ASD (mm) 1.1341.29 2.3043.52f1 0.8140.77 0.60-0.39
HD (mm) | 57.114£29.59% 46.27+32.454 53.32+38.56! | 17.09+27.217
DSC (%) 78.1+£12.28 79.6+10.02 73.54+10.36 77.1+8.54
PC | ASD (mm) | 0.8441.10 0.6040.54 0.5640.30 0.47+0.22
HD (mm) | 47.58+29.73% 26.06+27.354 34.88+32.04} 7.19+11.23f
DSC (%) | 77.8+411.27 77.7+13.10 73.0+12.61 73.9411.62
MM | ASD (mm) | 0.89+1.13 1.0841.95 0.9141.29 0.82+1.17
HD (mm) | 30.23422.40 20.85419.42% 25.544+16.88¢ | 10.10+10.317
DSC (%) | 80.7+3.817 64.8+34.06* 77.3+4.06 78.643.67
LM | ASD (mm) | 0.64+0.33 N/A* 0.5640.12 0.53+0.12
HD (mm) | 34.73422.321 N/A* 24.66+17.981 6.29+5.08"
DSC (%) 78.74+4.621 78.9+5.661% 73.545.19 74.746.90
PCL | ASD (mm) | 0.7540.27 1.1742.25 0.76£0.17 0.76+0.23
HD (mm) | 24.15420.15% | 26.214:22.96'* 14.14+14.81 5.16+4.64
DSC (%) 73.048.66 74.0+£9.78 68.8£10.50 71.1+9.07
ACL | ASD (mm) | 0.9140.54 0.70+0.36 0.74+0.30 0.71+0.27
HD (mm) | 34.974+19.31™ | 17.39419.33¢ 16.774+17.57 6.25+7.60"

FB: femoral bone; FC: femoral cartilage; TB: tibial bone; TC: tibial cartilage; PB: patellar
bone; PC: patellar cartilage; MM: medial meniscus; LM: lateral meniscus; PCL: posterior
cruciate ligament; ACL: anterior cruciate ligament

T and ¥ represent significant difference (p-value < 0.05) compared to KAN3D (no dropouts) and

KAN3D (with dropouts), respectively, with Tukey’s HSD test.

* CAN3D (with dropouts) failed to converge in one of the cross-validation sets, so it was excluded
from Tukey’s HSD test (for the LM label only).
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model and simplifies the overall segmentation problem. As the convolutions are performed
on low-resolution volumes, the “distance” between structures decreases and therefore im-
proves volume-awareness of the model. Also, as the number of segmented voxels decreases
for each sub-volume, the actual segmentation problem has a reduced dimensionality. In
other words, the high-resolution segmentation task is reduced into multiple low-resolution
approximations, which are then stitched back together.

Compared to the CAN3D, the KAN3D qualitatively improved the segmentation for
the bone volumes (Figure 3), but not for the smaller structures. The reason the KAN3D
improved the segmentation of the larger structures is probably that the batch of “down-
sampled” images made by rearranging the voxels provides a global context of an image.
However, the downside is that the image resolution is decreased, making it more difficult
to accurately segment the smaller structures.

The most notable observation was the decrease in HD values with KAN3D with dropouts
(Table 1). The very high HD values in the results were mostly caused by random “holes”
and “stray voxels” (false negatives/positives) in the segmentation masks. These errors are
frequently seen with CNN-based segmentations due to the localized nature of the convolu-
tion operations. The KAN3D without dropouts improved the DSC and ASD values for the
bone volumes, but not the HD values, compared to the CAN3D. However, the addition of
dropouts to KAN3D significantly decreased the HD values for all labels compared to the
other models, suggesting that the global attention provided by the KT combined with the
regularizing effect provided by the dropouts helps to reduce the large errors.

Figure 4 shows the loss curves for KAN3D and CAN3D trained with or without dropouts.
Due to the small size of the training set, the models without dropouts quickly overfitted
to the training data. Adding dropouts to CAN3D reduced the degree of overfitting, but
a greater amount of reduction in overfitting was observed by adding dropouts to KAN3D.
Another notable observation was that the test loss converged in a more stable manner in
KAN3D compared to CAN3D in which the test loss tended to fluctuate more. The dropouts
seem to have a synergistic effect when used with KAN3D in regularizing the model. This
could be because the KT also induces a small amount of regularizing effect similar to data
augmentation by producing 64 different (voxel-shifted) low-resolution copies of the original
image.

See Table 2 for mean training and inference time per image volume. Despite having
additional operations (KT and inverse KT), KAN3D had shorter training and inference
time than CAN3D. By decomposing a large 3D image into a batch of smaller images, the
KT may have reduced the time required for convolution operations, decreasing the overall
time. See also Appendix C for some further discussion.

Table 2: Mean training and inference time per step.

CAN3D CAN3D KAN3D KAN3D
(no dropouts) | (with dropouts) | (no dropouts) | (with dropouts)
Training speed (s/volume) 4.3 4.3 4.2 3.9
Inference speed (s/volume) 2.4 2.4 2.1 1.5
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Figure 4: Loss curves showing training loss (dotted lines) and test loss (solid lines) over
epochs for KAN3D and CAN3D trained with or without dropouts. Note that
the loss curves shown are for the first of the five cross-validation sets; other sets
showed similar pattern.

As described above, the main drawback of KAN3D is the limitation in the segmentation
of small structures. Future work could investigate using a hybrid model, e.g. combining the
KAN3D with parts of the CAN3D (without the KT), to utilize both local and global context
for more accurate segmentation of structures of all sizes. The very small size of the dataset
was also a limiting factor in this study. Future study could examine whether KAN3D has
any benefits when the size of the training set is larger. Another limitation of the current
study is that it applies the KT to CAN3D only. As the KT is a general method that can
be applied to any model, one could also look into combining it with another segmentation
method such as anomaly-aware segementation (Woo et al., 2022) or nnU-Net (Isensee et al.,
2021) to enhance its generalizability. The KT could also be combined with other methods
that deal with the problem of small annotated datasets such as semi-supervised learning,
data augmentation and self-supervised learning.

In summary, this work demonstrated the benefits and limitations of applying the kalei-
doscope transform (KT) to a 3D segmentation model. The proposed KAN3D model has
benefits of both patch-based approach and volume-based approach. The study showed that
KAN3D with dropouts generalizes well without the need for data augmentation when the
training set is extremely small (an advantage of patch-based approach). Yet, since the
patches are put back together at the end, it preserves the overall 3D structure and only
requires a single inference, having a fast inference time (an advantage of volume-based
approach). However, the current study also demonstrated that the model still has its limi-
tations, including limited accuracy in the segmentation of small structures. Future studies
are expected to include adding further improvements to the model and minimizing its weak-
nesses.
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Appendix A. Implementation Details

All models (CAN3D and KAN3D) were based on the 3D version of context aggregation net-
work (CAN) by Dai et al. (2022). The original CAN (2D version) was proposed by Yu and
Koltun (2016) as an alternative to autoencoder-based CNNs such as U-Net (Ronneberger
et al., 2015). In U-Net, the progressive downsampling achieves the effect of integrating
contextual information at multi-scale, and the lost resolution is recovered through upsam-
pling. However, since semantic segmentation task requires full-resolution output, there is
the question of whether such downsampling and upsampling are truly necessary, which is
why Yu and Koltun (2016) proposed using dilated convolutions rather than downsampling
for multi-scale context aggregation.

Figure 2 shows our segmentation model KAN3D. Ideally, CAN would have no downsam-
pling, but it was difficult to use a reasonable number of filters without any downsampling
due to the memory limitation of the graphics card, so two downsampling (and upsampling)
blocks were added as a trade-off, along with skip connections. The CAN module is applied
after the two downsamplings. The CAN module consits of convolution blocks with progres-
sively increasing dilation rates and then a non-dilated convolution block as the final block
of the CAN module. While non-dilated convolution layers were initialized using the Glorot
uniform initializer (Glorot and Bengio, 2010), dilated convolutions were initialized with the
identity initializer which was found to be more effective for context aggregation (Yu and
Koltun, 2016).

Several previous works on volumetric segmentation using 3D CNNs (typically U-Net-
like) have employed a technique referred to as “deep supervision” (Kayalibay et al., 2017;
Isensee et al., 2017; Raj et al., 2018), providing integrated direct supervision to the hidden
layers, rather than providing supervision only at the output layer (Lee et al., 2015). Deep
supervision helps stabilize and speed up convergence by encouraging deeper layers to pro-
duce improved segmentation results (Kayalibay et al., 2017). Here, the networks (CAN3D
and KAN3D) were modified with deep supervision by producing secondary segmentation
maps at deeper levels of the network and combining them with the final segmentation map
via upsampling and element-wise summation (Figure 2).

The multiclass Dice loss function was used for training the network. This loss is often
used in medical image segmentation because it intrinsically addresses the class imbalance
problem commonly seen with medical images (Milletari et al., 2016; Isensee et al., 2017).
The loss function is defined as:

2 > Wi kUi ke
(K| 5t D ik + 225 vik
Here, u is the softmax output of the network and v is the one-hot encoded ground truth

segmentation map; K is the number of classes, and u;; and v; j, denote the softmax output
and ground truth label, respectively, for class k at voxel i.

Lpsc =1.0

(1)
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The models were implemented using Tensorflow (Abadi et al., 2015) version 2.4 with
Keras API (http://tensorflow.org/guide/keras) and were trained on a high-performance
computer with NVIDIA Tesla V100-SXM2-32GB. The “mixed precision” policy in Keras
API was used to overcome memory limitation when training 3D CNNs with a large number
of feature maps. Mixed precision refers the use of 16-bit floating-point type in parts of the
model during training to make it use less memory.

Appendix B. Evaluation Metrics

Segmentation performance was evaluated using Dice similarity coefficient (DSC), average
surface distance (ASD) and Hausdorff distance (HD) (also called maximum surface dis-
tance). These are defined as:

2|BNA|
DSC = ———, 9
|B| + |4 (2)

1
ASD = b - , ,
‘a(A)|+‘8(B)| Z bé%ln Ha HQ‘FbBZ(B mln H aH2 ( )
HD-max(max min Ha—bﬂg, max min Hb—a|]2> (4)
a€d(A) bed(B) beA(B) acd(A)

Here, A and B denote the set of positive voxels in the ground truth segmentation map
and the predicted segmentation map, respectively, and 9(-) denotes the boundary of the
segmentation set.

Appendix C. Further Discussion

The kaleidoscope transform (KT) preserves the global structure within all KT sub-volumes,
just at a lower resolution. Therefore, the important distinction between patch and KT is
that for KT, continuity between low-frequency objects (i.e. large structures like bone) are
still meaningfully represented within all KT sub-volumes. On the other hand, patch-based
approaches can still meaningfully represent high-frequency small structures, at the cost
of larger image features. This effect can be seen in the KAN3D scores (Table 1), where
segmentation of smaller structures does not improve compared to CAN3D.

In addition, in KAN3D, the patches are put back together after the convolutional layers
so that the loss function (Dice loss) during training would be calculated based on the original
whole image rather than based on individual patches. In other words, the “true volume”
and “predicted volume” used for calculation of DSC would be from the segmentation masks
on the original image volume rather than individual patch-based masks. This is one of the
major differences between KAN3D and traditional patch-based approaches, and this may
also help the model to preserve the overall 3D structure.

Another point worth reiterating is that the KT is basically a rearrangement of voxels, so
the number of voxels in each batch was the same in both models—i.e. in CAN3D, the input
image volume dimension was 1 x 160 x 384 x 384 (b x h X w x d) while in KAN3D, it was 64
x 40 x 96 x 96, so the absolute amount of information in each batch was the same in both
models. Note that total training and inference time for KAN3D was actually shorter than
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CAN3D in the current experiment (Table 2). However, increasing the batch dimension in
either model would cause the hardware to run out of memory (because the total number of
voxels in each batch is quite high).

One can conceive that the KT can be utilized a bit differently to reduce memory usage
instead of time. For example, instead of passing in the “downsampled” images (or “global
patches”) created by KT all at once as a single batch, one could just pass in a different
“version” of the image at each epoch (sort of like data augmentation) since each patch
is slightly different at a voxel level. This will serve the purpose of reducing the memory
requirement while still preserving all the available information.

917



	Introduction
	Materials and Methods
	Kaleidoscope transform
	KAN3D: Segmentation model
	Dataset and experiments

	Results
	Discussion and Conclusion
	Implementation Details
	Evaluation Metrics
	Further Discussion

