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Abstract

Digital pathology based on whole slide images (WSIs) plays a key role in cancer diagnosis
and clinical practice. Due to the high resolution of the WSI and the unavailability of patch-
level annotations, WSI classification is usually formulated as a weakly supervised problem,
which relies on multiple instance learning (MIL) based on patches of a WSI. In this paper,
we aim to learn an optimal patch-level feature space by integrating prototype learning with
MIL. To this end, we develop a Trainable Prototype enhanced deep MIL (TPMIL) frame-
work for weakly supervised WSI classification. In contrast to the conventional methods
which rely on a certain number of selected patches for feature space refinement, we softly
cluster all the instances by allocating them to their corresponding prototypes. Additionally,
our method is able to reveal the correlations between different tumor subtypes through dis-
tances between corresponding trained prototypes. More importantly, TPMIL also enables
to provide a more accurate interpretability based on the distance of the instances from the
trained prototypes which serves as an alternative to the conventional attention score-based
interpretability. We test our method on two WSI datasets and it achieves a new SOTA.
GitHub repository: https://github.com/LitaoYang-Jet/TPMIL
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1. Introduction

Recent advances in digital pathology have shown the potential in disease diagnosis, medical
education, and pathological research (Dimitriou et al., 2019). In particular, as the gold
standard for cancer diagnosis, digital pathology can process gigapixel whole slide images
(WSIs) scanned by digital slide scanners for assessment, sharing, and analysis (Li et al.,
2021). Deep learning is currently in the ascendant in medical imaging and has even revo-
lutionized this field (Esteva et al., 2019), but deep learning-based WSI analysis has always
faced long-standing and unique challenges (Lu et al., 2021). The main challenge comes from
extremely high resolutions of WSIs - a typical WSI generally has a size of 100K pixels at 40X
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magnification, which makes it computationally challenging to fit even in a high-end com-
putational machine for training deep learning models (Zhang et al., 2022). Consequently,
a WSI is usually first tiled into thousands of small patches (instances), then the patch-
level features are extracted by deep learning models such as a CNN and finally a classifier
will be used to aggregate and make the final prediction (Hou et al., 2016; Coudray et al.,
2018). However, manual annotations by experienced pathologists at the patch level is a
time-consuming and expensive process that is difficult to scale for big datasets and multiple
pathologies. Recent works have addressed this problem by employing weakly supervised
techniques based on the variants of MIL for WSI classification using only the slide-level
annotations (Campanella et al., 2019; Rony et al., 2019; Li et al., 2021).

Conventionally, the standard MIL algorithms were designed for and restricted to weakly
supervised positive/negative binary classification problem which assumes a WSI patches bag
is labelled as positive if it contains at least one positive patch, whereas all of the patches in a
negative bag should be negative (Lu et al., 2021). Such methods often consider handcrafted
aggregators such as mean-pooling and max-pooling (Pinheiro and Collobert, 2015; Feng and
Zhou, 2017), which are predefined and untrainable. The performance of the model will be
highly dependent on the extracted features and their distribution. To address this issue,
recently, some works have been proposed to enhance the patchs feature space distribution.
DSMIL (Li et al., 2021) used self-supervised contrastive learning to train a better feature
extractor. DGMIL (Qu et al., 2022) proposed a feature distribution modeling method that
utilizes the extreme positive and negative instances and their distribution-based pseudo
labels to train a binary classifier for feature space refinement. Another stream of work
has proposed trainable attention-based aggregators. ABMIL (Ilse et al., 2018) proposed a
trainable and interpretable attention-based pooling function that can provide an attention
score to each patch and inform its contribution or importance to the bag label. CLAM
(Lu et al., 2021) extended the attention-based aggregation to the general multi-class weakly
supervisedWSI classification and created a pipeline to generate heatmaps to further enhance
the interpretability of clinical diagnoses by using attention scores. Besides, it included a
technique for learning a rich and separable patch-level feature space by clustering the highest
and lowest attention patches in that bag-level class.

However, only using a few extreme score patches to update the feature extractor or pro-
jector to encourage the learning of class-specific features might lead to sub-optimal patch
features for weakly supervised WSI classification (Lu et al., 2019). Moreover, there is a
considerable variation in image sizes and the proportion of disease-positive areas between
different WSIs datasets and even within the same dataset. For instance, the proportion or
number of extreme patches is usually small (e.g., 10% in DGMIL (Qu et al., 2022), eight
patches in CLAM (Lu et al., 2021)). These small proportions of patches are then used to
refine and separate the feature space, which can easily suffer from the overfitting or bias
problem and do not optimize the feature space in an ideal way. To address these limitations,
we develop a Trainable Prototype enhanced deep MIL (TPMIL) framework for weakly su-
pervised WSI classification. Prototype learning is derived from Nearest Mean Classifiers
(Guerriero et al., 2018). It aims to provide a concise representation or prototype for the
entire class of instances (Sun et al., 2017; Csurka et al., 2004; Csurka and Perronnin, 2011).
Some recent works on WSI such as PMIL (Yu et al., 2023), ProtoMIL (Yu et al., 2023), and
(Hemati et al., 2022) have shown the potential of using representation or prototype for clas-
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sification. The prototypes and image representations can be learned separately (Yu et al.,
2023) or together (Yu et al., 2023) or concisely to binary and sparse (Hemati et al., 2022).
These methods limit the selection of the prototypes only based on certain representative
instances or patches which can lead to a wrong choice of prototypical embeddings. More-
over, these works also later use those prototypical embeddings for bag-level classification.
In our work, we do not use prototypes to make the bag-level prediction but to refine the
instance-level feature space, instead of training a separate instance-level classifier with ex-
treme score patches, TPMIL integrates prototype learning with MIL by considering all the
instance embeddings to learn their specific instance prototypes. By utilizing the attention-
score guided prototype learning, during training, all the instances are clustered softly to
their corresponding prototypes in the feature space which enables an accurate distribution
of instances based on their features and not on the high-level WSI label. This enables our
proposed framework to learn a more optimal patch-level feature space.

To validate our proposed approach, we evaluate TPMIL on two public WSI datasets
including TCGA brain tumor dataset for multi-class classification and TCGA lung cancer
dataset for binary classification. Our extensive experimental results show that TPMIL
outperforms the existing MIL approaches. TPMIL makes the following contributions to
the task of WSI classification - 1) Learns a more optimal patch-level feature space than
existing methods which enables it to achieve a SOTA performance on two WSI datasets.
2) Provides a more accurate WSI interpretability alternative compared to the conventional
approach of attention score-basedWSI interpretability. 3) Enables to interpret the similarity
and differences between different tumour subtypes based on the distances between the
corresponding trained prototypes of the tumour subtypes.

Figure 1: Overview of TPMIL. The key novelty of our proposed framework is the integration
of Prototype Learning Module for learning an optimal distribution of instances.
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2. Method

2.1. MIL for WSI classification

Consider a WSI dataset W = {Wi}Ni=1 which consists of N WSIs. In the MIL approach,

each WSI Wi is considered as a bag which contains M small patches Wi = {Wi,j}Mj=1 tiled
from Wi, where M can vary for each Wi and each patch is also referred to as an instance
of the Wi. In the case of multi-class subtyping problem with K classes, where a Wi is
annotated as one of the categories in Y ∈ {Y1, Y2, . . . , YK}, it is assumed that the bag
consists of type Y tumor patches and normal tissue patches. However, there is no access
to instance labels and there are only bag-level labels Y available in the weakly supervised
WSI classification task. To predict the labels of WSIs, MIL further uses an encoder F (·)
to extract patch features and a transformation G (·) to aggregate the bag feature. Finally,
a bag classifier C (·) will be used to predict the WSI Ŷ , given by Equation (1).

Ŷ = C (G (F (Wi,1) , F (Wi,2) , . . . , F (Wi,M ))) (1)

2.2. Framework Overview

Figure 1 shows the overall framework of TPMIL. First, we use a pre-trained feature extractor
F (·) to compute the feature representations fi,j for all the patches Wi,j tiled from each slide.
Then the attention based bag-level classification module will uitilize the instances features
to get the attention scores and predict the WSI label where the cross-entropy (CE) loss is
used for model training. Meanwhile, the attention scores and WSI label are combined as
soft pseudo labels which are passed into the prototype learning module for feature space
refinement by employing Kullback–Leibler divergence (KLD) loss. A detailed description of
the attention based bag-level classification module and the prototype learning module are
presented in section 2.3 and 2.4.

2.3. Attention Based Bag-level Classification Module

In this module, we use the attention-based aggregation method (Ilse et al., 2018; Lu et al.,
2021) for bag prediction. After getting the instances features fi,j , a projector H (·) (a
fully connected layer) is used to project fi,j into vectors hi,j , which are then passed to an
attention module to generates the attention score ai,j for each instance Wi,j . The gated
attention mechanism from ABMIL (Ilse et al., 2018) is employed in the attention module.
It consists of three fully connected layers - U, V and w, which combine gating mechanism
(Dauphin et al., 2017) and the hyperbolic tangent tanh (·) element-wise non-linearity, given
by Equation (2),

ai,j =
exp

{
w⊤

(
tanh

(
V h⊤i,j

)
⊙ sigm

(
Uh⊤i,j

))}
∑M

m=1 exp
{
w⊤

(
tanh

(
V h⊤i,m

)
⊙ sigm

(
Uh⊤i,m

))} (2)

where ⊙ is an element-wise multiplication and sigm (·) is the sigmoid non-linearity. The nor-
malized (by Softmax) attention scores ai,j multiplied by the vectors hi,j are then aggregated

into the bag feature bi,j and passed to the classifier C (·) to make the prediction
{
Ŷ1, . . . , ŶK

}
for the WSI slide.
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2.4. Prototype Learning Module

To enhance and optimize the feature space by considering all the instances and their feature
distributions instead of extreme samples that may lead to bias, we propose and employ
Prototype Learning Module which could provide a better learning strategy for the instances.
For tumor WSIs, we consider that all classes are mutually exclusive and only two types of
instances will be included in a single WSI - either the tumor subtype (positive) instance
or the normal tissue (negative) instance and all negative instances share a similar feature
distribution. So there will be K + 1 (K tumor subtypes and one normal tissue) classes of
instances in WSI dataset containing K subtypes of tumor. Thus, in TPMIL, we train K+1
prototypes {p1, p2, . . . , pK , pn} which includeK tumor subtypes instance prototypes and one
negative instance (normal tissue) prototype. Except for these K + 1 trainable prototypes,
there are no other trainable parameters in the prototype learning module. The prototypes
have the same vector size as a single instance vector hi,j and will be randomly initialized
before training. We first calculate the euclidean distance between each instance and each
prototype separately. Each instance will have K + 1 distances which indicate its similarity
to those prototypes (the smaller the distance, the more similar). We then convert these
distances to K + 1 logits {z1, . . . , zK , zn} by applying the softmax layer. As we don’t have
the instance labels, instead of labelling each instance corresponding to the WSI label, we
utilize the attention score ai,j of the instance to generate its soft pseudo label by multiplying
the normalized attention score (ranging from 0 to 1) of the instance with the WSI label.
For example, in Figure 1, considering a WSI image having a label YK , the WSI image
will only have two instances - either YK or negative (normal). Thus, the attention (ai,j)
score of the instance is multiplied with the WSI label, whereas the leftover of the attention
score (1 - ai,j) is multiplied with the normal tissue category to generate its soft pseudo
labels {y1, . . . , yK , yn}. We employ the Kullback–Leibler divergence loss between the soft
pseudo label and the logits of the instances for training the prototype learning module.
This way we develop the strategy to consider all the instances and their weightage in the
training by employing attention-guided prototype learning.

As the prototype learning module is trained together with the whole model, the instance
feature space is refined optimally by the prototype learning. During the training, the
prototypes will be updated to find a concise representation of the different categories. With
our employed soft pseudo label strategy, for a WSI image with tumor subtype YK , the
instances with high attention scores will be forced to be closer to the corresponding class
prototype pK , while those with the low attention scores instances will be forced to be closer
to the negative prototype pn. Our strategy will also ensure that all the instances in that
bag of YK will be far away from prototypes of the remaining categories. Thus, our proposed
framework will softly cluster all the instances and optimally refine the feature space.

3. Experiment and Results

3.1. Dataset

3.1.1. TCGA Brain Tumor dataset

A brain tumor WSI dataset was acquired from The Cancer Genome Atlas (TCGA) (Clark
et al., 2013), which is a publicly available repository of H&E stained WSIs and multi-omics
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data. This brain tumor WSI dataset includes three subtypes of gliomas, namely Astro-
cytoma, Oligodendroglioma and Glioblastoma. The Formalin-Fixed Paraffin-Embedded
(FFPE) slides were acquired for the patients for analysis, as FFPE slides are the current
gold standard for brain tumor diagnostics and more suitable for computational analysis
compared to frozen slides (Jose et al., 2022). The number of samples amongst different
categories is distributed as - 183 Astrocytoma slides, 335 Oligodendroglioma slides and 630
Oligodendroglioma slides, with slide-level labels available.

3.1.2. TCGA Lung Cancer dataset

The TCGA Lung Cancer dataset includes two sub-types of lung cancer, namely Lung Ade-
nocarcinoma (LUAD) and Lung Squamous Cell Carcinoma (LUSC). The dataset contains
534 LUAD slides and 512 LUSC slides with only slide-level labels available, which is a public
dataset and can be downloaded from National Cancer Institute Data Portal.

3.2. Implementation Details

For the experiments on the TCGA Brain Tumor dataset, we use a ResNet50 (He et al.,
2016) deep learning model pre-trained on ImageNet (Russakovsky et al., 2015) as the feature
extractor and convert each patch into a 1024-dimensional vector. We perform five-fold cross-
validation to evaluate our framework on this dataset and report the average performance
of the test set for the five experiments. Since the patient IDs are available, our data
splits are based on the patient level to avoid bias. Specifically, we first randomly split the
entire dataset into five folds. In each experiment, we select one fold as the test set and the
remaining data will be split into 80% training set and 20% validation set. We use the Adam
optimizer with a fixed learning rate of 0.0002 and weight decay of 0.00001 to optimize the
model parameters with 200 epochs. Meanwhile, we employ the weighted sampling strategy
during training for this dataset. For the experiments on the TCGA Lung Cancer dataset,
we use the pre-trained feature extractor provided by DSMIL (Li et al., 2021) and convert
each patch into a 512-dimensional vector. For the TCGA Lung Cancer dataset, we use
the same settings of data split as DSMIL (Li et al., 2021) and DGMIL (Qu et al., 2022) to
make a fair comparison. The other experimental settings of learning rate, weight decay, and
number of epochs are the same as above. We don’t employ any other tricks for performance
improvement and all our experiments are performed on an NVIDIA RTX A5000.

3.3. Quantitative Results

Table 1 shows the benchmarking of different methods on the TCGA Brain Tumor dataset
and TCGA Lung Cancer dataset. We employ the test metrics of AUC and ACC for compar-
ison purposes. To fairly compare the performance improvement achieved by our prototype
learning module, we also implement TPMIL without it and it is termed as the baseline
method in Table 1. From Table 1, we can note that CLAM (Lu et al., 2021) shows marginal
performance improvements compared with baseline - 0.01% higher AUC and 0.26% higher
ACC in TCGA Brain Tumor dataset and the similar trend in TCGA Lung Cancer dataset.
This performance improvement indicates the limited effects achieved on the feature space
refinement by only clustering the extreme score instances. In contrast, TPMIL considers
all the instance embeddings by prototype learning to enhance the feature space. Compared
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Table 1: Comparison of performances on both datasets

Dataset Method AUC ACC

Baseline 0.9393 0.8162
CLAM 0.9394 0.8188TCGA Brain Tumor dataset
TPMIL(Ours) 0.9417 0.8316

Baseline 0.9783 0.9381
DSMIL 0.9633 0.9190
DGMIL 0.9702 0.9200
CLAM 0.9788 0.9286

TCGA Lung Cancer dataset

TPMIL(Ours) 0.9799 0.9427

with CLAM, our method achieves 0.24% higher AUC and 1.54% higher ACC in the TCGA
Brain Tumor dataset and 0.11% higher AUC and 1.41% higher ACC as well as SOTA
performance in TCGA Lung Cancer dataset. This proves to a large extent the superiority
of our approach and its specific advantages of refining the feature space.

Figure 2: The distance matrix of TCGA Brain Tumor prototypes after training

3.4. Visualization Results

3.4.1. Inter Prototype-Distance matrix

Figure 2 shows the distances between different prototype centres (ACM = Astrocytoma;
ODG = Oligodendroglioma; GBM = Glioblastoma; NEG = Negative) where darker colour
indicates higher distance and lower correlation. The distance between ACM and ODG
is markedly lower than their distance to GBM, as both ACM and ODG are lower grade
gliomas (LGG) whereas GBM is higher grade glioma (HGG), which may have distinct
morphological features, such as necrosis and pseudo palisading cells around necrosis. The
NEG prototype aims to capture the regions that do not contribute to the classification such
as normal tissues, blood vessels and artefacts. As shown in Figure 2, NEG is closer to ACM
and ODG compared to GBM. This might be attributable to the fact that GBM has more
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diverse morphological features, and that the NEG prototype accounts for a much smaller
proportion of tissues in the WSI.

Figure 3: Interpretability and visualization of heatmaps for brain tumor WSI classification.

3.4.2. Interpretability of WSI Images

Since the ground truth is not unavailable, we consult expert clinicians who helped to evaluate
and compare the interpretability of the different heatmaps shown in Figure 3. A represen-
tative slide from each subtype is shown in Figure 3 (1st column), with its corresponding
whole-slide heatmaps generated by computing attention scores for the predicted class of the
model over patches (2nd column: CLAM Attention Heatmap; 3rd column: the proposed
TPMIL Attention Heatmap), and by computing the distances of the patches to the proto-
type centres using TPMIL (4th column: distance to the predicted class prototype centre;
5th column: distance to the negative class prototype centre). The CLAM and the proposed
TPMIL method give similar attention heatmaps which could highlight the tumour-normal
tissue boundary. Patches of the most highly attended regions (in Attention Heatmaps) and
the regions in close proximity of the prototype centres (in Distance Heatmaps) generally
exhibit well-known tumour morphology, e.g., high tumour cellularity and necrosis.

The differences between attention heatmaps and distance heatmaps are highlighted in
the circled region in Figure 3. In Astrocytoma and Oligodendroglioma, the circled regions
are artefacts which should not be considered as positively related to the diagnosis, and it
can be seen that Distance heatmap is more robust to artefacts as it doesn’t give a dark red
colour. In Glioblastoma, the circled region is a necrotic area which is a diagnostic feature
of glioblastoma and Distance Heatmap successfully captured it by indicating the dark red
colour in that region. In contrast to the distance heatmap from the predicted tumour type,
the negative prototype distance heatmaps (5th column) highlight the regions that are close
to the negative prototype centres, including normal brain tissues and blood vessels, among
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different background artefacts such as the overstained regions in the Oligodendroglioma
WSI. This proves the effectiveness of the heatmaps based on the prototype distance which
can serve as an important alternative to the conventional attentional heatmaps employed
for explainability purposes. The enhanced interpretability with prototype distance heatmap
can really help clinicians to provide a reliable reference for analysing.

4. Conclusion

In this paper, we present TPMIL: a Trainable Prototype enhanced MIL framework with
a novel feature space refinement strategy for weakly supervised WSI classification. Com-
pared with existing MIL methods, our method is able to provide a better feature space
representation by considering all the instances rather than some selected ones. Our results
on two WSIs datasets demonstrate the superior performance and validity of our method
which achieves a new SOTA. Our method further improves interpretability by employing
distance-based visualization heatmaps which acts as an alternative to the conventional at-
tention score-based interpretability. We believe our work will provide a solid step forward
for the research community in MIL-based weakly supervised WSI classification task.
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