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Abstract

Currently, most state-of-the-art pipelines for 3D micro-connectomic reconstruction deal
with neuron over-segmentation, agglomeration and subcellular compartment (nuclei, mito-
chondria, synapses, etc.) detection separately. Inspired by the proofreading consensus of
experts, we established a paradigm to acquire priori knowledge of cellular characteristics
and ultrastructures, as well as determine the connectivity of neural circuits simultane-
ously. Following this novel paradigm, we were keen to bring the Intra- and Inter-Cellular
Awareness back when Tracking and Segmenting neurons in connectomics. Our proposed
method (II-CATS) utilizes few-shot learning techniques to encode the internal neurite rep-
resentation and its learnable components, which could significantly impact neuron trac-
ings. We further go beyond the original expected run length (ERL) metric by focusing
on biological constraints (bERL) or spanning from the nucleus to spines (nERL). With
the evaluation of these metrics, we perform typical experiments on multiple electron mi-
croscopy datasets on diverse animals and scales. In particular, our proposed method is
naturally suitable for tracking neurons that have been identified by staining.

Keywords: connectomics, neuron tracking, neuron segmentation, few-shot learning

1. Introduction

Connectomics, which reconstructs the synaptic level connectivity between neurons in elec-
tron microscopy, is paving the way toward learning the structure of the brain. With the
advancements in high-resolution and high-throughput imaging with various electron mi-
croscopy, every interested cellular boundary and subcellular organelle (nuclei, mitochondria,
etc.) could be clearly visible. However, to achieve the above, the datasets of brain tissue
may now exceed a petabyte in size (Shapson-Coe et al., 2021; Bae et al., 2021), for which
we need feasible automatic object tracking and segmentation methods.
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Figure 1: Comparison of current paradigms and our novel paradigm. Both (a) and (b) treat cellular and
subcellular structures separately. In contrast, (c) obtains this information simultaneously.

Current state-of-the-art high-precision neuron reconstruction pipelines have already
been able to fully automatically handle the cubic 10µm scale saturate reconstruction (Lee
et al., 2017) and cubic 100µm dense reconstruction (Januszewski et al., 2018). These results
are evaluated by voxel-wise membrane boundaries and instance-wise neuron objects, re-
spectively. Due to the huge computation and labor cost, the large-scale dense connectome
and sparse projectome reconstruction of imperfect datasets still remains challenging (Ngai,
2022). Some boundary-based approaches (Bailoni et al., 2020; Lee et al., 2021; Sheridan
et al., 2022) use U-Nets (Ronneberger et al., 2015; Çiçek et al., 2016) flexibly, predict-
ing intermediate descriptors for segmentation and running the graph-based agglomeration,
as depicted in Figure 1(a). Some object-based approaches (Januszewski et al., 2018;
Meirovitch et al., 2019; Gonda et al., 2021) execute single-neuron filling iteratively, extend-
ing the tracing area from seed points, as depicted in Figure 1(b). Other skeleton-based
approaches (Motta et al., 2019; Schmidt et al., 2022) only focus on tracking the neuron
skeletons for further connectomic analysis. Both (a) and (b) treat cellular and subcellular
structures separately, lacking the procedure of integrating extra biological information.

Aside from these two pipelines, we consider introducing a new paradigm that could
take almost full advantage of both, as depicted in Figure 1(c). With the consensus in
micro-connectomics (Lee et al., 2019), the voxel -level accuracy of cellular descriptors (e.g.,
boundaries, affinities, and shape descriptors) and subcellular candidates (e.g., mitochondria
and synaptic clefts) usually exceeds instance-level neuron reconstruction. Therefore in our
paradigm, these more reliable offline results can actually be put to good use simultaneously
as a priori for a more robust online procedure from neurite proposals to segments.

Following the novel paradigm, we proposed a method to absorb these various masks by
integrating a differentiable few-shot learner into the encoder-decoder architecture, which
learns what to learn (Bhat et al., 2020). In other words, our method enables the decoder
to learn the rich internal learnable representation of object targets and region weights in
masks (three small patches in Figure 2) instead of directly assembling from raw masks.

We further determine what the few-shot learner should learn around the structure of
neurons. To generate primary proposals yb, we build a quasi-dense (Pang et al., 2021)
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Figure 2: Implementation of our paradigm in Figure 1(c). The few-shot learner F in encoder-decoder E-D
architecture acquires offline priori to constrain online predicted segments yp. The quasi-dense
tracker T generates box proposals yb from serial section images x. These further produced yp

0 ,
along with cellular descriptors yd, m itochondrion and synapse candidates ym,s, contribute to
the support set for F . Small patches: three samples of internal representation from G and W.
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Figure 3: Details of our architecture in Figure 2. The third encoder block features E(x) are employed
for matching with priori masks y in the support set (red circles) by two pathways: decoding
box representation B(yb) into initial prediction yp

0 (yellow arrows), or decoding target model
output E(x)∗ω into subsequent prediction yp (red arrows). Red: the few-shot learner optimizes
E(x) ∗ ω to the targeted G(y) with weighted W(y) online (dashed arrows). Green: the decoder
block. Purple: the channel attention block integrates same-level target matching (bottom) and
higher-level decoding (right) inputs. y∗, ground truth; [·], feature strides; (·), output channels.
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tracker T (x) for box -level matching on local consistency across sections x. To make use
of multifarious characteristics, we implemented emerging works (Sheridan et al., 2022) for
voxel -level cellular descriptors yd and pixel -level subcellular candidates ym,s (Figure 2 left).

We perform experiments on a mouse dataset Kasthuri (Kasthuri et al., 2015), a songbird
dataset J0126 (Januszewski et al., 2018), and a stained dataset (Joesch et al., 2016) by
voxel -level metrics VI (Meilă, 2003) and skeleton-level metric expected run length (ERL).
Inspired by the proofreading consensus of experts, we extended the original ERL metric by
focusing on biological constraints (bERL) or spanning from the nucleus to spines (nERL).
Our method sets new state-of-the-art of ERL-based metrics on certain datasets compared
to other competitive neuron tracking methods in the field of connectomics.

2. Methodology

Our proposed method (II-CATS) utilizes few-shot learning for implementation of the novel
paradigm in Figure 1(c). We illustrated some samples of input, output, and intermediate re-
sults of our pipeline in Figure 2. We also deconstructed the details of our encoder-decoder E-
D architecture in Figure 3. For simplicity, x is an image from serial sections of the brain tis-
sue, y is the corresponding segmentation mask of certain biological structures, E(x) is defined
as E3

(
E2
(
E1(x)

))
, and D(E(x), ·) is an abbreviation of D

(
E1(x), E2(x), E3(x), E4(x), ·

)
.

The integral pipeline starts with box proposals yb of targets, which are generated
from the quasi-dense tracker T . Then, these proposals get through the box representa-
tion extractor B and segmentation decoder D, producing the initial predicted segments
yp0 = D

(
E(x0),B

(
E(x0), y

b
))

. Next, these neurite segments, along with cellular descriptors
yd, m itochondrion and synapse candidates ym,s, contribute to the support set {(x, y)}
(Figure 2 left, the cellular and subcellular candidates could be precomputed offline). After
that, the few-shot learner F acquires the internal representation from this support set (Fig-
ure 2 right, the initial proposals and recurrent predictions should be tracked online). The
target model output E(xs) ∗ ωs is optimized to the targeted G(ys) with weighted W(ys).
And the learned target filters ωs are used for producing the subsequent predicted segments
yps+1 = D (E(xs+1), E(xs+1) ∗ ωs) section by section (· → s→ s + 1→ ·).

All modules in II-CATS are open source1 and still under continuous development. Al-
ternative details about the modules described below are provided in Appendix C.

2.1. Quasi-Dense Tracker (T )

We take the popular region proposal network (RPN) with feature pyramid networks as the
base of our tracker (Ren et al., 2015). The RPN generates regions of interest (i.e., anchors)
for the detection head with classification and regression branches. These was trained by
three corresponding losses Lbox = Lrpn + γ1Lcls + γ2Lreg, and γ1, γ2 are the loss weights.

On this basis, we merge the plenty of anchors to reasonable proposals by learning in-
stance similarity across sections with quasi-dense matching. The quasi-dense matching only
considers the potential neuron candidates at informative regions (Pang et al., 2021), which
is better than dense (high computation intensity) or sparse (less training pairs) for crowded

1. https://github.com/JackieZhai/II-CATS
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neurites. As for the architecture after RPN, an extra lightweight embedding head is added
in parallel with the detection head. This was trained by contrastive loss Lembed (17).

Overall, the quasi-dense tracker T was trained by Lprop = Lbox+Lembed, and it generates
neurite proposals yb by matching anchor candidates (yellow arrows in Figure 2 top-left).

2.2. Internal Representation Extractor (B,G,W)

A variety of cutting-edge few-shot learning strategies have been implemented for volume-EM
images due to the special characteristics of certain biological structures. Inspired from (Bhat
et al., 2020), we apply the learning what to learn strategy for a glance at a few masks y.

As shown in Figure 3 bottom-left, the two pathways of the D(E(x), ·) decode either
box proposals of neurites or segment masks of cellular, intra- and inter-cellular structures.
Predicting only from single- or several-channel masks severely limits the information passed
to the decoder D, and thus increases the training burden of the Dθ(Eθ(x), ·). To address
this problem, we expanded these masks to multi-channel representation, learning what our
internal few-shot learner F and subsequent decoder D should learn.

Along the box pathway (yellow arrows in Figure 3), we introduced the box representation
extractor B. It takes yb along with backbone features E(x) as input and predicts mask-
related encoding. Along the segment pathway (red arrows in Figure 3), we introduced the
target and weight representation extractor G and W. G(y) sets multi-dimensional targets
for target model outputs E(x)∗ω, andW(y) tunes corresponding weights of different objects
(big or small) and regions (clear or ambiguous). All extractors in use have 32 channels.

2.3. Few-Shot Learner (F)

Above all, we designed the target model for mapping the backbone features E(x) to the
internal representation of masks y. It is simply implemented as the convolution E(x) ∗ ω,
and the few-shot learner F learns the target filter ω. Then, we push forward our few-shot
learner to minimize the squared error between the target model output and the various
internal representations G(y), which are weighted by the element-wise attention W(y):

Lshot(ω) =
1

2

∑
{(x,y)}

∥W(y) ◦ (E(x) ∗ ω − G(y))∥2 +
λ

2
∥ω∥2, (1)

where the {(x, y)} is the online updating support set. Operator ∗ is the convolution, and ◦
is the Hadamard product. The scalar λ is a learnable regularization parameter.

Since {(x, y)} receives various support pair (xi, y
j
i ), we introduced a series of gate func-

tion g and gji (dashed line in Figure 3) to control whether we propagate the information

and back-propagate the loss of corresponding ωj
i , i ∈ N, s−M < i ≤ s, j ∈ {p, d,m, s}.

E(xs) ∗ ωs = g

 ∑
s−M<i<s

gpi (E(xs) ∗ ωp
i ),

∑
s−M<i≤s
j∈{d,m,s}

gji (E(xs) ∗ ωj
i )

 , (2)
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where M is the memory size of support set for current section s. We implemented gji by lin-
ear functions and g by fully-convolutional networks (FCN) in order to learn the importance
of each and project the sum to a proper space for following decoder D, respectively.

After that, the differentiable few-shot learner optimizes the target arg minω Lshot(ω).
Following (Bhat et al., 2020), we apply an approximate solution of several iterations of the
steepest descent. It can be expressed as ω ← ω − αiβi, where βi = ∇Lshot (19) is the
gradient and αi = arg minα′ Lshot(ω − α′βi) (18) is the found step-length on the i-th step.
In practice, it converges to a satisfactory filter ω by a handful of N iterations, i ≤ N .

2.4. Training and Inference

For the inference procedure, we follow the pipeline described above. Note that: the online
loss Lshot (1) is being used; the offline representation of G,W(yd,m,s) could be processed in
advance. The resulting segments for each proposal will be agglomerated by post-processing
steps (Meirovitch et al., 2019) for the automatic connectome (dashed arrows in Figure 2).

For the training procedure, we simulate the inference procedure for our end-to-end
architecture. To ensure robustness, we randomly sample S serial sections as each sequence
from the whole tissue. All network parameters θ (except Bθ) are trained by the per-sequence
loss Lfilm (3). Our box extractor Bθ is trained by freezing other parameters in the network
and minimizing the segment loss (Berman et al., 2018) Lseg

(
D
(
E(x0),Bθ(E(x0), y

b
0)
)
, y∗0
)
.

Lfilm(θ) =
1

S − 1

S−1∑
s=1

Lseg (Dθ (Eθ(xs), Eθ(xs) ∗ ωs−1) , y
∗
s) , where

ω0 = FB,Gθ,Wθ

({
(x0, y

j
0)
}
j∈{b,d,m,s}

)
or ωs = FGθ,Wθ

({
(xi, y

j
i )
}

s−M<i≤s
j∈{p,d,m,s}

)
,

(3)

where y∗ denotes the ground truth, and G,W could be learned through the differentiable
F . As mentioned in (2), i traverses sections and j traverses types in the support set.

3. Experiments

We evaluate our method on multiple connectomic datasets across various animals and differ-
ent scales. These open datasets (Table 1) are listed following: SNEMI (Arganda-Carreras
et al., 2015), Kasthuri (Kasthuri et al., 2015), J0126 (Januszewski et al., 2018), and
Joesch (Joesch et al., 2016). Note that: Kasthuri is the superset of full SNEMI dataset;
J0126 is kindly provided by (Sheridan et al., 2022); Joesch is in the region of Starburst
Amacrine cell (SAC) plexus selected from ∼ 4.5× 105µm3, stained with APEX2 tags.

The main challenges of 3D reconstruction of connectomic datasets could be briefly de-
scribed as the large scale of data, the huge variance of different areas (Figure 4C), and other
issues introducing the merged or split errors. We employ the VI metric to distinguish the
integrity of segmentation, the ERL-based metrics (more details in Appendix B) to check
tracking errors, and the FLOPs to examine the feasibility in practice.

We use the widely-used PyTorch Connectomics (Lin et al., 2021) repository with de-
fault configurations from the official document, which could be easy to reproduce related
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Table 1: Comparison on datasets used for experiments.

Dataset Resolution Training Data Testing Data
(abbreviated) (x, y, z-axis) (approximate size) (approximate size)

SNEMI 6, 6, 30 nm 1/2 dense seg. ∼ 50µm3 the remaining 1/2
Kasthuri 6, 6, 30 nm the whole SNEMI 1 sparse seg. ∼ 106µm3

J0126 9, 9, 20 nm 33 dense seg. ∼ 200µm3 50 skel. ∼ 97mm, 106µm3

Joesch 4, 4, 30 nm 1/2 sparse seg. ∼ 3500µm3 the remaining 1/2

experiments on the ultrastructure segmentation, long-range affinities and watershed. For
experiments on Kasthuri, we primitively borrow the network parameters trained on SNEMI
and fine-tune them. Training and inference codes will be released upon publication.

3.1. Ablation Studies

Here, we analyze the impacts of the various awareness introduced into our proposed II-
CATS architecture. The ablation studies are performed on the hold-out testing set, i.e.,
the remaining 1/2 densely labeled 6x3x3 µm3 stack in SNEMI. For simplicity, we use the
same pretrained backbone ResNet-50 (He et al., 2017) for our models in Table 2.

Baseline model FFN-a/b constitutes the open source version Flood-Filling Networks
(Januszewski et al., 2018) (FFN), where the FCN blocks could be simply plugged in the
color encoding of transfer mechanism from (Meirovitch et al., 2019) (FFN-3C), or the mito-
chondrion and synapse information (FFN w/ mito., syn.). To achieve this, we put parallel
input channels for these subcellular pixel -level candidates, increase the number of residual
modules, and dilate the field of view (FoV) size in the original FFN.

TS model directly explores the quasi-dense matching proposal of neurons. Our few-shot
learner F only receives the output of the tracker T , i.e., the initial support set is {(x, yb)}.

CATS model further exploits the cellular description yd (long-range affinities, shape
direction vectors and shape sizes). We also use the differentiable F to train the underlying
representation for target filter ω in an end-to-end manner.

II-CATS models are verified separately (w/ mito., syn.) and simultaneously. The
information on interposition mitochondrion provides a substantial decrease in VI, which
is similar to previous reports on FFN. Besides, the information of synaptic cleft partition
contributes to merged errors, extending the ERL by additional (x, ym,s) support pairs.

The results of the bERL metric (Appendix B.2) emphasize the need for connectivity
robustness around biological structures. It suggests that we could add explicit modeling of
bERL concept to the training procedure of F (w/ mito.) in future work.

3.2. Comparison

In this subsection, we extend our comparison from the small-scale SNEMI to rather large-
scale datasets, which could be more meaningful in practice, shown in Table 1, 3. As for the
decreased VI on the Kasthuri dataset, II-CATS successfully obtains the predicted subcellular
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Table 2: Ablative analysis of cellular, intra- and inter-cellular awareness modules on SNEMI dataset. The
unit of all kinds of ERL-based metrics is nm. The top-2 ranking places are in bold.

Method VI ↓ ERL ↑ bERL ↑

FFN-a 0.938 2771 3313
FFN-b 0.953 2816 3305
FFN-3C 1.152 2925 3464
FFN w/ mito. 0.920 2905 3472
FFN w/ syn. 0.991 2766 3249

TS 1.003 2088 2191
CATS 0.917 2267 2506
CATS w/ mito. 0.761 2332 3489
CATS w/ syn. 0.890 2827 3025
II-CATS 0.709 3056 3690

Table 3: Comparison on the Kasthuri, J0126, and the stained Joesch dataset.

Kasthuri J0126 Joesch
Method VI ↓ tERL ↑ tERL ↑ nERL ↑ VI ↓ tERL ↑ FLOPs ↓

Watershed 1.505 3264 ∼ 1017

FFN-a 1.898 8964 16886 8209 0.922 5931 > 1019

CATS 1.835 8561 14942 9361 0.820 5956 ∼ 1018

II-CATS 1.725 8819

results, which were only trained on a small-scale SNEMI dataset. As for the two ERL results
on J0126, CATS also reaches comparable results to the original FFN method.

The results of the nERL metric (Appendix B.3) considered the scale factor among the
different parts of skeletons, which needs to be closely followed during whole-cell proof-
reading. The visualization on a part of the J0126 dataset (neuron N3 in Appendix A)
demonstrates that our method almost gets rid of small fragments and tunnels the FFN
results still exists, even though both of methods have masked out the nucleus region.

In particular, we also do our experiments on the target cells that possessed typical stain-
ing characteristics, illustrated in Table 3. Due to the interference between the darkened areas
and original membrane boundaries, methods tracking from proposals (Figure 1b) usually
excel the other methods segmenting from membrane descriptors (Figure 1a). However,
our proposed method outperforms both of them on these cells of the Joesch dataset. We
also estimate qualitative computational complexity analysis, which infers that our method
(CATS) is at least 10 times faster compared to FFN-a.

Further details are provided in Appendix D. Note that: the nERL metric needs somas
or nuclei, which is unavailable for the original SNEMI stack (Table 2). We also do not have
the ground truth of mitochondria and synapses in Kasthuri, J0126 and Joesch datasets, so
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we can not test the bERL metric in these datasets right now. Next step, we are looking
forward to building our own dataset, which will contain everything we need.

4. Discussion

We present II-CATS, a series of connectomic few-shot learning methods based on our pro-
posed novel paradigm. First and foremost, this new way of thinking guides us to exploit the
cellular, intra- and inter-cellular priori for more robust neuron tracking and segmentation
results. After that flash of insight, we implement a multiple object tracker with quasi-dense
anchors and a single object decoder with learning to learn parameters in order to achieve
that paradigm in practice. Furthermore, we use the VI and ERL metrics along with the
biologically implied bERL and nERL metrics to evaluate our methods.

Among open source volume electron microscopy (vEM) datasets2 for connectomics, our
section-by-section tracking and segmentation method works well on anisotropy datasets (Ta-
ble 1, serial-section vEM methods), by contrast, we could directly fly through 3D isotropy
datasets (block-face vEM methods) as an extension (Schmidt et al., 2022) in future works.
Besides, it may also be essential to prune the complex pipeline and give more protocols in
various datasets for reproducibility. Moreover, we found bERL (w/ mito.) is exceptionally
useful, so that the differential version of bERL may contribute to the skeleton-level track-
ing. Finally, resent works (Bae et al., 2021; Turner et al., 2022) has revealed the necessity
of functional connectomics, which needs to be analyzed in conjunction with fluorescence
imaging3 and behavioral recordings4 (Chen et al., 2021) to obtain more meaningful neuron
circuit modeling data in brain projects (Ngai, 2022).

To sum up, our methods have the advantages on small, large and stained vEM datasets,
meanwhile having the potential to generalize to more complex 3D reconstruction.
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Appendix A. Qualitative Results
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Figure 4: Visualizations of a part of dataset J0126. A: Qualitative comparison between FFN and CATS
(Ours) from an about 13µm2 patch of 1755µm2. B: We also render 4µm automatic prediction
of segments as well as 14µm somas and myelin of N1−3, and manual skeletons upon the section,
demonstrating the results of our results. C: Nearby the nucleus, other tracking method generates
split errors due to the huge scale variance, which could be measured by our nERL metric.
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Figure 5: Sketches of the ERL, tERL, bERL and nERL metric. These ERL-based metrics are evaluated
by proofread skeletons (solid line) and predicted segments (dotted envelope line). Left: Our
proposed bERL punishes errors nearby mitochondria (blue) and synaptic clefts (green). Right:
The soma or nucleus (yellow) and its neurites indicate the different error punishment of nERL
from near to far and from thin to thick.

Appendix B. Metrics

Metrics in connectomics are essential for the error evaluation of automated reconstruction.
This condition is mainly because of the catastrophic man-hour consumption of proofread-
ing (Scheffer et al., 2020). Intuitively, the classic and adapted random error (ARAND (Lee
et al., 2017)) and variation of information (VI (Meilă, 2003)) was introduced to measure
the voxel -level error between segments. Then, it is reasonable for tolerant edit distance
(TED (Funke et al., 2017)) and other topological errors (Hu et al., 2020) to focus on shape-
level uniformity, which reduces the side effect of a tiny distinction. To assess the con-
nectivity of reconstructed neural networks, synaptic cleft-level partner identification could
be examined by neural reconstruction integrity (NRI (Reilly et al., 2018)). According to
the reported false merges and false splits in the process of proofreading, the inter-error dis-
tance (IED (Berning et al., 2015)), expected running length (ERL (Januszewski et al., 2018;
Wei et al., 2021)) and min-cut metric (MCM (Sheridan et al., 2022)) utilize skeleton-level
tracings to determine the error rate.

The evolution of large-scale connectomic metrics matters. It may be risky that
only extrapolate from the benchmark evaluation of limited data, instead, the large-scale
datasets are robust to estimate real-world accuracy of the neural circuit reconstruction (Lee
et al., 2017). The original ERL-based metrics should have been suitable for large-scale
because they only need manual skeletons (instead of segments) for sparse reconstruction (Liu
et al., 2021), but they are missing key biological constraints (e.g., the nuclei information
only occurs in large-scale volumes).

The insight into subcellular structures matters. Nuclei are located in the center
of neurons (Jiang et al., 2019). Synapses (and their clefts) extract the inter-neuron connec-
tions (Parag et al., 2018; Liu et al., 2022). Mitochondria (and their unique texture) reflect
the intra-neuron stability (Xiao et al., 2018; Hong et al., 2022, 2023). Other structures such
as myelin and glia may also helpful (Dorkenwald et al., 2017). From these perspectives,
we think the integrated evaluation of neurons ERL needs to embrace a priori of organelles
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and a structure centered on nuclei. Also, some recent experiments showed similar ERL
results (Schmidt et al., 2022). Thus, we extended the original ERL metric by focusing on
biological constraints (bERL) and spanning from the nucleus to spines (nERL).

Considering the proofread or generated skeletons S ∈ S (ground truth) and predicted
segments L ∈ L (labeled supervoxel), we define the mapping function m(e) for any edge
e = {v,v′} ∈ S, and the length function f(S,L) for the correct paths at the intersection of
S and L. Give:

m(e) =

{
0, v ∈ L1,v

′ ∈ L2

∥e∥, v,v′ ∈ L
, (4)

f(S,L) =

{
0,∃v1,v2 ∈ L,v1 ∈ e1 ∈ S1,v2 ∈ e2 ∈ S2∑

e∈S,v∈Lm(e), otherwise
(5)

where each skeleton S is defined as a set of edges, each segment L is defined as a set of
vertices, and ∥e∥ denotes the length of edge. The m(e) = 0 shows the split paths, and the
f(S,L) = 0 shows the merged paths. The original ERL (Januszewski et al., 2018) metrics
are:

ERL(S) =
1

∥S∥
∑
L∈L

f(S,L)2, (6)

ERL(S) =
1∑

S∈S ∥S∥
∑
S∈S

∑
L∈L

f(S,L)2, (7)

where ∥S∥ =
∑

e∈S ∥e∥ denotes the length of skeleton.

B.1. tERL

However, the original ERL metric has a few drawbacks. For example, it emphasizes merge
errors disproportionally (Sheridan et al., 2022), and may assign unexpected zero run length
from skeletonization artifacts. Wei et al. (Wei et al., 2021), therefore, designed a tolerance
threshold τ of merged vertices (around 2 µm in length) for the more robust tERL, which
could substitute ft(S,L) for f(S,L) in the original ERL:

ft(S,L) =

{
0, |T| > τ∑

e∈S,v∈Lm(e), otherwise
, (8)

where T = {(v1,v2) | v1,v2 ∈ L,v1 ∈ e1 ∈ S1,v2 ∈ e2 ∈ S2}, which is the vertex pair of
merged paths.

The following two subsections show some of our efforts, which have been dedicated to
extending the original ERL metric to the biological implications (Figure 5).

B.2. bERL

We design the biologically-constrained expected run length (bERL), which could substitute
mb(e) and fb(S,L):
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mb(e) =


−ϵ, v ∈ Vmito,v ∈ L1,v

′ ∈ L2

∥e∥, v,v′ ∈ L

0, otherwise

, (9)

fb(S,L) =

{
0, |T| > τ or ∃v ∈ T,v ∈ Vsyna∑

e∈S,v∈Lmb(e), otherwise
, (10)

where the constraints of Vmito and Vsyna are shown as:

∀v ∈ Vmito,∃u ∈ Umito, ∥e∥ := ∥v − v′∥
s.t. ∥Pe(u)− v∥ ≤ ∥e∥+ r(v)

∥Pe(u)− u∥ ≤ r(v)

(11)

∀v ∈ Vsyna,∃u ∈ Usyna, ∥c∥ := max
u

∥∥∥∥u− ∑
u

|Usyna|

∥∥∥∥
s.t. ∥Pc(v)− v∥ ≤ ∥c∥+ r(v)

∥Pc(v)− u∥ ≤ r(v)

(12)

where Umito and Usyna are existing mitochondrion and synapse candidates. Operator Pi
is the projection into i. We define the radius function r(v) to describe the average radius
of vertices and ∥c∥ to describe the radius of fitted synaptic clefts. The fitted cleft could be
abstracted to a center point and a surface with a radius.

The bERL metric could be quickly deployed when one has the proofread mitochondrion
or synaptic cleft instances, which are far easier to acquire than all of the neuron instances.
Moreover, this metric screens subcellular related fragments and checks them out, which will
be helpful for optimizing the areas consisting of biological information.

B.3. nERL

We further design the nucleus-centered expected run length (nERL), which could substitute
mn(e) and fn(S,L). We define the logarithmic distance function d(e) to measure the crow
flight between e ∈ S and the precomputed nucleus center of S. The r(v) and d(e) share
the same unit.

mn(e) =

{
0, v ∈ L1,v

′ ∈ L2

r(v) · ∥e∥, v,v′ ∈ L
, (13)

fn(S,L) =

{
0, |T| > τ∑

e∈S,v∈L
mn(e)
d(e) , otherwise

, (14)

Besides Figure 5 the sketches of our metrics, we also give real examples from the SNEMI
dataset (same as Figure 2). The extra figures below are viewed in the Neuroglancer5.

5. https://github.com/google/neuroglancer and https://neuroglancer-demo.appspot.com
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Figure 6: Top: Three views and 3D rendering of the relevant area in Figure 2 bottom-right. Three lines
indicate the skeleton of neurites. Purple represents a mitochondrion, and blue represents a
synaptic cleft. Bottom: 3D rendering of the relevant area in Figure 2 bottom-right. Purple
represents a mitochondrion, and blue represents a synaptic cleft. Neurites are translucent.

The two Figure 7 and 8 illustrates one of the real situation of bERL in Figure 5.

In addition, we would like to describe the equations of our proposed metrics step by
step in detail.

In Equation (9), based on the original m(e), a more severe penalty is given to the vertex
v in Vmito. The penalty term ϵ can be given according to the reliability of the mitochondrial
segmentation results in the dataset.
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Figure 7: The purple line shows the skeleton of this mitochondrion, and the points of them will be projected
to corresponding neurite (Pe(u) in Equation (11), see the purple points).

Figure 8: The blue points show the counter and the center point of this synaptic cleft, which are the
results of fitting processing (c in Equation (12)). One neurite (yellow line) skeleton projects
to the synaptic cleft (Pc(v) in Equation (12), see the yellow points), another neurite (red line)
skeleton also projects to the synaptic cleft (see the red points), and they construct a connection
of neurites in the connectome.

In Equation (10), except for the case where the penalty is greater than the tolerance
threshold τ , the vertex v in Vsyna is directly penalized. Such drastic measures can signifi-
cantly reflect error conditions around the synapse.

Equation (11) and Equation (12) present a correspondence, and both show how we use
the projection operator to achieve the above idea. It should be noted that we abstract the
synaptic cleft as a kind of disk by fitting and saving it as three parameters of position c,
direction c̄, and radius ∥c∥, which is convenient for the subsequent projection process.

The significance of bERL is that for the areas that biologists pay more attention to,
such as the location of these important subcellular structures, we need to extract relevant
sites through automated algorithms and further optimize them.

In Equation (13), we achieve a strategy of increasing the merged error penalty for thin
places (like spines) by introducing the radius r(v) of the skeleton.

In Equation (14), we increase the split error penalty for objects that are too close by
introducing d(e). It is important to note that the reason this function varies logarithmically
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is that we do not want to cause objects that are too far away to completely lose their
contribution to the ERL.

The importance of nERL is that it gives us a perspective to evaluate the tracking IoU of
different FoV locations of skeletons on a larger scale, which cannot be reflected in previous
small-scale datasets.

Appendix C. Architecture Details

C.1. Quasi-Dense Tracker (T )

As shown in (Pang et al., 2021), given the key section for training, we randomly select a
reference section from the neighborhood. Assume the embedding of an object instance on
the key section is denoted as k. An instance on the reference section is defined as positive r+

if two anchors with IoU higher than 0.7 are associated with the same instance, and negative
r− otherwise. We can use the non-parametric softmax with cross-entropy to optimize the
embedding of the object k by Lmatch:

Lmatch = log

(
1 +

∑
r+

∑
r−

exp
[
k ◦ r− − k ◦ r+

])
, (15)

Lcosine =

(
k ◦ r+

∥k∥ ◦ ∥r+∥

)2

+ 3

(
k ◦ r−

∥k∥ ◦ ∥r−∥

)2

, (16)

Lembed = γ3Lmatch + γ4Lcosine, (17)

where loss weights are set to γ1 = 1.0, γ2 = 1.0, γ3 = 0.25, γ4 = 1.0 by default. Note the loss
Lcosine aims to constrain the logit magnitude and cosine similarity instead of improving the
performance. We select 128 anchors from the key frame as training samples and 256 anchors
from the reference frame with a positive-negative ratio of 1.0 as contrastive targets. We
use 4 convolution and 1 fully-connection head with group normalization to extract feature
embeddings. The channel number of embedding features is set to 256 by default. We train
our models with a total batch size of 16 and an initial learning rate of 0.02 for 20 epochs,
decreasing the learning rate by 0.1 after every 10 epochs.

C.2. Internal Representation Extractor (B,G,W)

By the way, we noticed that local shape descriptors (LSD) also tried to expand their chan-
nels (Sheridan et al., 2022) for encoding (10-channel descriptors, not limited to 1-channel
boundaries or 3-channel affinities), which may share similar concepts with our internal
representation extractor B,G,W (32-channel representation).

C.3. Few-shot Learner (F)

For simplicity, we redefine the corner of ω here as the iterations of the steepest descent
step. The differentiable few-shot learner optimizes the target ω = F({(x, y)}), which is
arg minω′ Lshot(ω′). The well-known closed-form solution of this problem requires extensive
matrix multiplications. Following (Bhat et al., 2020), we apply an approximate solution of
several iterations of steepest descent, which can be expressed as ωi+1 = ωi − αiβi and:
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αi =
∥βi∥2∑

t ∥W(y) ◦ (x ∗ βi)∥2 + λ∥βi∥2
, (18)

βi =
∑
t

x ∗T
(
W2(y) ◦ (x ∗ ωi − G(y)

)
+ λωi, (19)

where βi = ∇Lshot is the gradient and αi = arg minα′ Lshot(ω−α′βi) is the found step-length
on the i-th step. Operator ∗T is the transposed convolution.

The implemented few-shot learner module F(ω0) = ωN predict satisfactory filter ω by
a handful of N iterations. In practice, we would try various meta-learning-based steepest
descent methods to decide which one to use, including Newton’s method when minimizing
the KL-divergence loss (Battiti, 1992).

C.4. Segmentation Decoder (D)

We take the mirrored 3D residual networks as the segmentation decoder, which is similar
to U-Net. The decoder receives the output of the target ω convolution along with features
from encoder E to predict accurate segmentation masks. We used pretrained ResNet-50
to balance simplicity and accuracy. The encoder could be divided as four residual blocks
E1,2,3,4, so that the corresponding output feeds to D1,2,3,4.

For each decoder block Di, we designed three parts for feature projection and fusion.
First, the encoding features need to project to a lower-dimensional representation, which
could be concatenated with the ω representation. Second, the concatenated features are
processed by convolutional layers followed by a small residual block. Third, the resulting
features are then merged with features from deeper decoder Di+1 by a channel attention
block. Note that the interpolation ratio of ω representation for each Di is equal to 23−i.

C.5. Training and Inference

For training all networks except B: We use the sequence length S = 7 sections; The number
of steepest descent iterations N = 5 for the initial segment and N = 2 for subsequent seg-
ments; We use Adam to train; We trained for first 100k iterations with backbone fixed (Mask
R-CNN pretrained ResNet-50) and another 100k iterations. For training box extractor B:
We fixed all other networks and only trained for 50k iterations.

For the memory of the support set during the inference procedure, we reduce the impact
of the previous section support pairs by a decay function with parameters η. Note that the
initial supports have a low impact by default because boxes are weaker supervisor than
masks.

Appendix D. Implementation Details

We try not to use any meaningless tricks for network architecture design. Some of the
subsequent network settings are based on previous research (Januszewski et al., 2018; Bhat
et al., 2020; Pang et al., 2021).
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D.1. FFN-a/b

We used the open source on the official repository6 in 2020 as the FFN-a/b method without
agglomeration steps. The results of this code appear in Table 2, 3.

For the J0126 dataset, we use FFN FoV size 33x33x17, FoV step size 8x8x4, 9 residual
modules, initial FoV fill value 0.05, initial FoV seed value 0.95, FoV movement threshold 0.9,
image irregularity detection (tissue classification, patch-wise cross-correlation), consensus
input segmentations of 36x36x40, 18x18x20, 18x18x20, 9x9x20, 9x9x20.

For the SNEMI dataset, we use CLAHE and mirror padding for data pre-processing,
FFN FoV size 33x33x17, FoV step size 8x8x4, 9 of residual modules, initial FoV fill value 0.5,
initial FoV seed value 0.95, FoV movement threshold 0.6, consensus input segmentations of
6x6x30. And the superset Kasthuri7 uses the same configuration.

Note that the qualitative result of Figure 4 A is a patch in FFN results from Funke et
al., which are kindly provided by (Sheridan et al., 2022).

D.2. FFN-3C

For the so-called color encoding mechanism we use for FFN, it is named cross-classification
clustering (Meirovitch et al., 2019). Their goal is to extend a single-object classification
from one image to the next so as to simultaneously classify pixels for an a priori unknown
set of object labels.

D.3. FFN w/ mito., syn.

For add another channel for mito. or syn. on SNEMI dataset, we also use CLAHE and
mirror padding for raw images along with the voxel-level candidate segmentations. The
FFN then has the FoV size 65x65x33, FoV step size 8x8x4, 12 of residual modules, initial
FoV fill value 0.5, initial FoV seed value 0.95, FoV movement threshold 0.6, consensus input
segmentations of 6x6x30.

D.4. U-Nets

We not only use the long-range affinities, but also implement some of the LSD (Sheridan
et al., 2022). To be specific, we find the layer 0 to 2 and 9 are special for our tasks in their
code8 of generating 3D neuron LSD.

The layer 0 to 2 denote the Gaussian point offset to shape center and layer 9 denotes the
shape size. The LSD is lsdy(v) = (ŝ(v), m̂(v)− v, ĉ(v)), and we use the first 2 components
to formulate an auxiliary learning task that complements the prediction of affinities.

We use difference settings such as SNEMI-Affinity-ResNet, SNEMI- Affinity-UNet, SNEMI-
Affinity-UNet-LR, SNEMI-Affinity-UNet-MER, Zebrafinch-Affinity-UNet, Zebrafinch-Affi-
nity-UNet-MER, Distance-Transform-Quantized, and Multi-class-Semantic-Seg. These are
freely provided by Lin et al. on the documents of Pytorch Connectomics9.

6. https://github.com/google/ffn/tree/0570a55d75cae3a1ef1bedd5fb98a28f4dc68ef1
7. https://lichtman.rc.fas.harvard.edu/vast
8. https://github.com/funkelab/lsd
9. https://github.com/zudi-lin/pytorch_connectomics
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