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Abstract

Selective experience replay is a popular strategy for integrating lifelong learning with deep
reinforcement learning. Selective experience replay aims to recount selected experiences
from previous tasks to avoid catastrophic forgetting. Furthermore, selective experience re-
play based techniques are model agnostic and allow experiences to be shared across different
models. However, storing experiences from all previous tasks make lifelong learning using
selective experience replay computationally very expensive and impractical as the number
of tasks increase. To that end, we propose a reward distribution-preserving coreset com-
pression technique for compressing experience replay buffers stored for selective experience
replay.

We evaluated the coreset lifelong deep reinforcement learning technique on the brain
tumor segmentation (BRATS) dataset for the task of ventricle localization and on the
whole-body MRI for localization of left knee cap, left kidney, right trochanter, left lung,
and spleen. The coreset lifelong learning models trained on a sequence of 10 different
brain MR imaging environments demonstrated excellent performance localizing the ventri-
cle with a mean pixel error distance of 12.93, 13.46, 17.75, and 18.55 for the compression
ratios of 10x, 20x, 30x, and 40x, respectively. In comparison, the conventional lifelong
learning model localized the ventricle with a mean pixel distance of 10.87. Similarly, the
coreset lifelong learning models trained on whole-body MRI demonstrated no significant
difference (p=0.28) between the 10x compressed coreset lifelong learning models and con-
ventional lifelong learning models for all the landmarks. The mean pixel distance for the
10x compressed models across all the landmarks was 25.30, compared to 19.24 for the
conventional lifelong learning models. Our results demonstrate that the potential of the
coreset-based ERB compression method for compressing experiences without a significant
drop in performance.
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1. Introduction

The field of radiology is moving towards implementation of artificial intelligence (AI) meth-
ods for radiologists to use in advanced reading rooms. Deep reinforcement learning (DRL)
is an evolving area of research within the field of AI that deals with the development of AI
systems that can learn from experience (mimicking the human learning process). DRL has
produced excellent results across diverse domains (Mnih et al., 2013; Li et al., 2016; Silver
et al., 2017; Sallab et al., 2017).

Figure 1: Illustration of catastrophic forgetting in dynami-
cally evolving medical imaging environments.

The property of learning
from experience makes DRL
algorithms ideal for deploy-
ment into radiological deci-
sion support systems, where
the DRL models can learn
how to map the intra- and
inter-structural relationships
within different radiological
images. The use of DRL in
radiological applications is an
emerging area of active re-
search with new techniques
being developed for anatomi-

cal landmark localization, image segmentation, registration, treatment planning, and assess-
ment (Ghesu et al., 2017; Tseng et al., 2017; Maicas et al., 2017; Ma et al., 2017; Alansary
et al., 2018; Ali et al., 2018; Alansary et al., 2019; Vlontzos et al., 2019; Allioui et al., 2022;
Zhang et al., 2021; Joseph Nathaniel Stember, 2022).

Figure 2: A schematic of the coreset-compressed life-
long deep reinforcement learning setup for
training deep reinforcement learning models.
ERB=Experience Replay Buffer

In medical imaging appli-
cations, the same task might
be present within different
radiological imaging environ-
ments. For example, brain
imaging will involve differ-
ent imaging orientations (ax-
ial, sagittal, or coronal), dif-
ferent imaging sequences (ie,
MRI: T1, T2, FLAIR, PWI),
and modalities (PET, CT)
or different pathologies (low-
grade or high-grade gliomas),
potentially resulting in large
environments, depending on
the application. Furthermore,
the imaging environments for

medical imaging tasks are constantly evolving, i.e., newer environments might be present
at future time points due to change in image acquisition parameters or the introduction of
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newer imaging sequences. As a result, a model trained in an old environment may fail when
evaluated in a new unseen environment. The model could then be fine-tuned using different
learning methods to work in the new environment, However, these methods could poten-
tially result in catastrophic forgetting, where the model is no longer capable of operating
in the original environment. Such an example is shown in Figure 1.

The challenges of catastrophic forgetting could be addressed using lifelong deep rein-
forcement learning. Elastic weight consolidation (EWC) (Kirkpatrick et al., 2017) and
selective experience replay (Rolnick et al., 2019) are two commonly used techniques for
integrating lifelong learning with reinforcement learning. Elastic weight consolidation aims
to preserve the network parameters learned in the previous tasks while learning a new task.
On the other hand, selective experience replay aims to recount selected experiences from
previous tasks to avoid catastrophic forgetting. Furthermore, selective experience replay
based techniques are model agnostic and allow experiences to be shared across different
models. However, storing experiences from all previous tasks make lifelong learning using
selective experience replay computationally very expensive and impractical as the number
of tasks increase. To that end, we develop a reward distribution-preserving coreset compres-
sion technique based on weighted sampling to compress experience replay buffers (ERBs)
stored for lifelong learning without sacrificing the performance, as shown in Figure 2. We
evaluated the proposed coreset based ERB compression technique for the task of ventri-
cle localization in brain MRI across a sequence twenty-four different imaging environments
consisting of a combination of different MRI sequences, diagnostic pathologies, and imaging
orientations.

2. Related Work

Compression and Sampling experience replays has been an active area of research in the
field continual reinforcement learning (Schaul et al., 2015; Pan et al., 2022; Ramicic et al.,
2022; Hessel et al., 2018; Tiwari et al., 2021; Lazic et al., 2021). The majority of the previous
work on experience replay sampling is built on top of the work by Schaul et. al. (Schaul
et al., 2015), in which the authors proposed a method to use temporal difference (TD) error
to prioritize the more valuable experiences. Further work explored the idea of prioritized
experience replay and developed new methods that improved the results (Pan et al., 2022;
Ramicic et al., 2022; Hessel et al., 2018). However, they all need an extra calculation for
absolute TD error, which is constantly updated during the network’s training session, since
the TD error requires the Q function, and the Q function updates after every training
iteration. In contrast, recent work from Tiwari et al. (Tiwari et al., 2021) used gradient
coreset based experience replay sampling with excellent results. However, a major limitation
of the proposed approach was the required access to the training model for compression.
Alternatively, Lazic et. al. (Lazic et al., 2021) utilized q-functions for sampling a coreset
from ERBs, which could potentially be a major limitation.

To that end, the goal of this work was to develop a coreset based ERB sampling technique
that does not require additional information from the training session nor does it require
the model parameters from the training session, thereby addressing the shortcomings of
the current techniques. Furthermore, the proposed technique only requires the experience
replay buffer for compression. This is an asynchronous process and can be used to learn
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from reinforcement learning models that just use an experience replay buffer, but do not
have any additional implementation.

3. Methods

3.1. Lifelong deep reinforcement learning

We implemented a deep learning framework based on the deep Q-network (DQN) algorithm,
as illustrated in Figure 2. The 3D DQN model implemented in this work was adapted from
(Mnih et al., 2013; Alansary et al., 2018; Vlontzos et al., 2019; Parekh et al., 2020). The
environment was represented by the 3D imaging volume and the agent, by a 3D bounding
box with six possible actions, a ∈ {x++, x--, y++, y--, z++, z--}. The state is defined by
the current location (or a sequence of locations), where each location is represented by a 3D
bounding box. The reward is defined by the difference in the distance between the agent’s
location and the target landmark before and after the agent’s action. The state-action-
reward-resulting state [s, a, r, s′] tuples resulting from the DRL agent’s interaction with the
environment over many episodes were used to populate the experience replay buffer (ERB).

To perform lifelong learning, we implemented a selective experience replay buffer to
collect a trajectory of experience samples across the model’s training history. The model
attempts to learn a generalized representation of its current and previous tasks by sampling
a batch of experience from both its current task’s experience replay buffer (ERB) as well
as from its history of previous tasks’ experience replays during training.

Figure 3: Reward distribution of original ERB (left) vs. compressed and unpacked ERB
with a compression ratio of 10x (right)

3.2. Weighted sampling-based reward distribution preserving coreset ERB
compression

We proposed and introduce a new method to compress the ERB based on coresets for lower
storage cost, less communication cost, and preservation of information: given an ERB of
size N and compression rate of R, we use k-means++ clustering to partition the points in
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the ERB to N/R clusters based on their rewards. We use k-means++ clustering because
we want to manually pick the number of clusters to be N/R as it reflects the compression
ratio. Moreover, since the reward distribution for ERBs is known, does not have outliers,
and is only 1-dimensional, k-means++ clustering can guarantee convergence on a good label
assignment very fast and accurately. We pick the closest point to the center of these clusters
to be in the compressed ERB. Additionally, we give these points in the compressed ERB a
weight parameter that is equal to the number of points in the clusters they are in. When the
compressed ERB is received by an agent, the agent will unpack it by repeating the points
in the compressed ERB multiple times according to their weight parameter. For example,
if a point [s, a, r, s′] has a weight of 2 in the compressed ERB, then it will be repeated twice
in the unpacked ERB. This method guarantees an approximate reward distribution similar
to the original reward distribution, as illustrated in Figure 3.

4. Experiment and Data

4.1. Experiment 1: Brain MRI

4.1.1. Clinical Data

Figure 4: Illustration of a subset of task-environment
pairs in the BRATS dataset and the per-
formance of no compression and the pro-
posed coreset-compression method at differ-
ent compression rates. The red and yellow
bounding boxes represent the ground truth
and the agent’s prediction, respectively.

We used the brain tumor seg-
mentation (BRATS) dataset for
evaluating the coreset compression
method (Menze et al., 2014). The
dataset consisted of 285 patients
with T1-weighted pre- and post-
contrast enhanced, T2-weighted,
and Fluid Attenuated Inversion
Recovery (FLAIR) sequences. All
the images were acquired in the
axial orientation. In this work, we
selected a random subset of 100
patients from the BRATS dataset
for the development, training, and
evaluation of different DRL mod-
els. This subset consisted of 60
patients with high-grade glioma
(HGG) and 40 patients with low-
grade glioma (LGG). Of the 100
patients, 80 were used for train-
ing and 20 were used for evalu-
ation. The training dataset con-
sisted of 48 patients with HGG
and 32 patients with LGG tumors.
The test dataset consisted of 12

patients with HGG and 8 patients with LGG tumors. We synthetically resliced the axial
images into coronal and sagittal views and reconstructed each dataset in all three imag-
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ing orientations, resulting in a total of twenty-four imaging environments (2pathologies ×
4sequences× 3orientations = 24). We used the top left ventricle as the task for this experi-
ment, resulting in a total of 24 task-environment pairs, as shown in Figure 4.

4.1.2. Training Protocol

We trained 5 lifelong deep reinforcement learning models (no-compression, 10x compression,
20x compression, 30x compression, and 40x compression) to test the performance of our
coreset compression algorithm. The models are trained for the localization of the top left
ventricle in a randomly sampled 10 task-environment pairs out of the 24 task-environment
pairs. The models were trained for four epochs with a batch size of 48. The agent’s state
was represented as a bounding box of size 45x45x11 with a frame history length of four. The
models were iteratively trained for the localization of the top left ventricle in one imaging
environment at a time, resulting in 10 rounds of training. The no-compression model used
complete ERBs generated by previous training rounds for the next training round. The
10x, 20x, 30x, and 40x compression models used 10x, 20x, 30x, and 40x compressed ERBs,
respectively, and unpacked based on weights in the ERBs from all previous rounds for the
next training round.

4.2. Experiment 2: Whole Body MRI

4.2.1. Clinical Data

Figure 5: Illustration of the performance of no-
compression and coreset compression lifelong
learning models on the two imaging environ-
ments and five tasks for whole body MRI.

The WB multiparametric MRI
data set consisted of thirty sub-
jects acquired using the imaging
protocol that scanned from the
shoulders to the lower mid calf and
described in (Leung et al., 2020).
We evaluated the proposed core-
set ERB compression technique
for training lifelong reinforcement
learning models to localize five
landmarks (left lung, left kidney,
right trochanter, spleen, and the
left knee cap) across two imag-
ing environments (DIXON Fat and
DIXON water images) in this
study, as shown in Figure 5

4.2.2. Training Protocol

We trained two lifelong deep re-
inforcement learning models (no-
compression and 10x compres-
sion) to test the performance of
our coreset compression algorithm.
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The dataset comprising of 30 subjects was randomly divided into three groups - ten for train-
ing, ten for lifelong learning, and the remaining ten for testing. Furthermore, the first group
comprised of only the DIXON water and the second group of only the DIXON fat imaging
sequences. The models were iteratively trained (using the same hyperparameters as the first
experiment) for the localization of each of the five landmars in one imaging environment at
a time, resulting in two rounds of training.

4.3. Performance Evaluation

The performance metric was set as the terminal Euclidean distance between the agent’s
prediction and the target landmark. We performed paired t-tests to compare the perfor-
mance of the no-compression model with the compression models at different compression
rates. The p-value for statistical significance was set to p ≤ 0.05.

5. Results

For the first experiment on the BRATS dataset, we sequentially trained each selective
experience replay based lifelong reinforcement model (no compression, 10x compression,
20x compression, 30x compression, and 40x compression) on 10 distinct task-environment
pairs, one pair each round. After every round of training, the models were evaluated across
all 24 task-environment pairs in the test set. Figure 4 illustrates the performance of all
five models across a subset of four task-environment pairs after 10 rounds of training. As
shown in Figure 4, both the compressed and uncompressed models demonstrated excellent
continual learning performance across all task-environment pairs. The average Euclidean
distance errors for no compression, 10x compression, 20x compression, 30x compression,
and 40x compression were 10.87, 12.93 (p = 0.01), 13.46 (p = 0.0001), 17.75 (p ≤ 0.0001),
and 18.55 (p ≤ 0.0001) respectively. Figure 6 (left) compares the performance at different
compression levels across different rounds. The performance after 10 rounds of training
across different compression levels has been illustrated as a box plot in Figure 6 (right).
The original sizes of the ERBs tested were 90MB. The 10x, 20x, 30x and 40x coreset
compression resulted in ERBs of size 9MB, 4.5MB, 3MB, and 2MB, respectively.

For the second experiment on the whole-body MRI dataset, we sequentially trained
each selective experience replay based lifelong reinforcement model (no compression and
10x compression) on two distinct environments (one each round) across all five landmarks.
After every round of training, the models were evaluated across both the environments pairs
in the test set. Figure 5 compares the performance the baseline (trained only on the DIXON
water images), no-compression, and 10x compression models across all five landmarks for
an example patient. Table 1 summarizes the pixel distances demonstrating no significant
difference between no compression and 10x compression models. The coreset technique here
compressed the ERBs from 750MB to 75MB.

6. Discussion

In conclusion, we propose a coreset-based ERB compression technique for increased com-
putational efficiency and scalability of selective experience replay based deep lifelong rein-
forcement learning with excellent performance. In particular, our weighted sampling-based
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Figure 6: Left: Average Euclidean distance error on testing images (24 task-environment
pairs) after every training round. Right: Box plot of the Euclidean distance
error on testing images (24 task-environment pairs) after ten rounds of training.

Table 1: Comparison between conventional Lifelong Learning and Coreset Lifelong Learning
for the localization of five landmarks across two imaging environments in whole
body MRI

knee trochanter kidney lung spleen Average
Baseline (trained on just DIXON water) 73.44 45.05 100.33 40.25 20.63 55.94
No compression 6.34 30.95 25.50 21.71 11.69 19.24
Coreset 10x compression 15.74 19.93 36.97 35.92 17.92 25.30
Paired TTEST (coreset vs. conventional LL) 0.27 0.65 0.15 0.06 0.13 0.28

reward distribution-preserving coreset ERB compression showed excellent performance for
shrinking the size of saved experiences from previous tasks for lifelong deep reinforcement
learning in medical imaging. Our results demonstrated that experience replay buffers can
be compressed up to 10x without any significant drop in performance.

Experience replay has been one of the major methods for lifelong reinforcement learn-
ing because it is model agnostic and because different experiences can be shared between
models for collaborative lifelong learning. However, the computational complexity of stor-
ing multiple experiences from previous tasks makes experience replay less attractive as the
number of tasks increases. Many techniques have been developed in the literature for sam-
pling experience replay (Schaul et al., 2015; Pan et al., 2022; Ramicic et al., 2022; Hessel
et al., 2018). However, they required additional calculations that constantly update during
the network’s training and require the Q function. In contrast, our proposed coreset-based
compression techniques asynchronously compress the ERB, without the need for extra in-
formation from the training session where the ERB is produced or the model parameters
that came from the training session. This provides more flexibility to the training and is
less computationally intensive compared to other methods.

There are certain limitations to our study. This work approximates the joint distribution
of state-action-reward-next state using the reward distribution alone, resulting in a potential
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loss of information. For example, two state-action-reward-next state tuples with the same
reward may have different states, and our method would only pick one of the state-action-
reward-next state tuple. We plan to address this limitation by incorporating state and action
into the distribution preserving coreset compression method in the future. The second
limitation of this study is the limited focus on single-agent deep reinforcement learning
models. In the future, we plan to evaluate the coreset-based ERB compression technique in
a multi-agent setup where the size of the ERB linearly increases with the number of agents
and across a diverse set of applications.
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Appendix A. Background on Coresets

Coresets are an important concept in data science because they present a technique for rep-
resenting datasets with a large number of observations as weighted datasets with a smaller
number of observations. Coresets are frequently used as a pre-processing technique for
dimensionality reduction to significantly improve the runtime or memory cost of down-
streams tasks, such as clustering, regression, or low-rank approximation. See the surveys
(Feldman, 2020; Bachem et al., 2017) for a more comprehensive introduction and discussion
on coresets, their applications, and the state-of-the-art techniques.

More formally, we are given a dataset X = x1, . . . , xn such that xi ∈ Rd for all i ∈ [n].
In other words, the dataset X consists of n observations, each with d features. The goal
is to minimize the function f(X, q, u) across all possible values q in some query space Q.
Here we use u to denote the function that assigns unit weight to all of the n points in X.
For example, if the task was to do k-means clustering, then Q would be the set consisting
of all sets of k points from Rd, i.e., the set of all possible sets of centers for the clustering
problem.

A coreset construction produces a weighted subset Y consisting of m observations from
the original dataset X. Let w be the function that assigns weights to points in Y . Given
an approximation parameter ϵ > 0, the coreset with multiplicative error (1 + ϵ) satisfies

(1− ϵ)f(Y, q, w) ≤ f(X, q, u) ≤ (1 + ϵ)f(Y, q, w),

for all q ∈ Q. Similarly, a coreset with additive error E > 0 satisfies

|f(Y, q, w)− f(X, q, u)| ≤ E.

Since the coreset is defined with respect to f , then it naturally follows that there may be
drastically different coreset constructions depending on the task at hand, i.e., the function
f to be minimized.

The definition can then be naturally generalized to the setting where X is a set of
weighted points. Formally, we have the following:

Definition 1 (Coreset) Given a set X with weight function u and an accuracy parameter
ϵ > 0, we say a set Y with weight function w is an (1 + ϵ)-multiplicative coreset for a
function f , if for all queries q in a query space Q, we have

(1− ϵ)f(Y, q, w) ≤ f(X, q, u) ≤ (1 + ϵ)f(Y, q, w).

A standard approach in coreset constructions is to first assign a sensitivity s(xi) to each
point xi with i ∈ [n]. The sensitivity is intuitively a value that quantifies the “importance”
of the point xi. The coreset construction then samples a fixed number m of points from
X, with probabilities proportional to their sensitivity. That is, for each of the m sampled
points p, we have that Pr[p = xi] ∝ si. In fact, the following statement shows this procedure
can generate a coreset even if we only have approximations to the sensitivities of each point
for the task of k-means clustering:

Theorem 2 (Theorem 35 in (Feldman et al., 2020)) Let C > 1 be a universal con-
stant and for each i ∈ [n], let q(xi) be a C-approximation to the sensitivity s(xi) for any
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point xi. Let T =
∑n

i=1 q(xi). Then sensitivity sampling m = O
(
Tk
ϵ2

log2 k
)
points with

replacement, i.e., choosing each of the m points to be xi with probability proportional to
q(xi) and then rescaling by the sampling probability, outputs a (1 + ϵ)-coreset for k-means
clustering with probability 2

3 .

However, it turns out that even approximating the sensitivities of each point may be time-
consuming. Thus for real-world datasets, it is often more practical to follow procedures
that capture the main intuition behind sensitivity sampling without actually performing
sensitivity sampling.

Uniform sampling. One reason to assign different sensitivities to each observation is the
following. Suppose there exist n − 1 similar observations and a single drastically different
observation. It may be possible the drastically different observation is an outlier that should
be ignored, but it may also be possible that the different observation is a crucial but rare
counterexample that behaves differently from the rest of the population, in which case the
counterexample needs to be sampled into the coreset in order to maintain representation.
Thus in this case, the sensitivity of the different observation should be much larger than
the sensitivities of the remaining points.

However, if the dataset is roughly uniform, then no particular example stands out,
and so intuitively, the sensitivities of the points are also roughly uniform. In this case,
the intuition behind sensitivity sampling is also achieved through uniform sampling, i.e.,
selecting a number of observations uniformly at random.

Group sampling. A frequent phenomenon is that the observations in the dataset can be
clustered or partitioned into a number of groups, so that the behavior of the observations is
similar within a group but drastically different across groups. In this case, the sensitivities
within each group are similar, but the sensitivities across different groups can also vary
greatly. Hence, sensitivity sampling would sample roughly an equal number of observations
from each group.

If a natural partition of the observations into the groups is known a priori, then sen-
sitivity sampling can be reasonably simulated by first partitioning the observations into
these groups. We can then sample a fixed number of points from each group, uniformly at
random. Specifically, if the coreset construction for sensitivity sampling intended to store
m points and k groups were formed from the natural partition of the observations, then we
can sample m

k points from each of the k groups. That is, for each of the k groups, m
k points

are selected uniformly at random from this group and then weighted proportional to the
number of points in the group.

Appendix B. Comparison between the proposed clustering based
coresets with uniform and inverse CDF sampling methods

Clustering gives us an intuition on how important the samples are by the number of samples
within each cluster. Uniform sampling or inverse cdf sampling do indeed preserve the distri-
bution, but do not provide information about the importance, resulting in just a subsample
of the original data. With our method incorporating importance or “weight”, we can gen-
erate the same amount of distribution preserving subsample of the original data with much
smaller size. Furthermore, we do not have explicit access to the reward distribution and so
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Figure 7: Comparison between the proposed clustering technique with the uniform and
inverse cdf sampling techniques for 10x coreset compression for the BRATS ex-
periment

naively performing inverse CDF sampling does not seem immediately possible. However,
given a sufficiently large number of samples, it does seem possible to construct a rough
estimate of the reward distribution, though this is already one possible source of error.

In addition, uniform sampling or inverse CDF sampling will provide a good representa-
tion of the original data when the original data is roughly uniformly distributed. Indeed,
when the data is roughly uniformly, our clustering approach will also perform well. How-
ever, in cases where there is a small fraction of the data that performs exceptionally well or
exceptionally poorly, these inputs will not be captured by uniform sampling, but may be
captured by clustering.

Appendix Figure 7 demonstrates an experimental comparison between uniform sam-
pling, cdf sampling, and the proposed clustering technique. As shown in the figure, the
clustering based 10x compression achieves an average pixel distance error of 12.93, signf-
icantly lower than uniform sampling (20.95, p ≤ 0.0001) and inverse cdf sampling (21.91,
p ≤ 0.0001)
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