
Proceedings of Machine Learning Research 227:1581–1601, 2023 MIDL 2023 – Full paper track

Inherent Consistent Learning for Accurate Semi-supervised
Medical Image Segmentation

Ye Zhu1 zhuye1@cuhk.edu.cn

Jie Yang1 jieyang5@link.cuhk.edu.cn

Si-Qi Liu1 siqiliu@sribd.cn

Ruimao Zhang1,∗ ruimao.zhang@ieee.org
1 Shenzhen Research Institute of Big Data, The Chinese University of Hong Kong(Shenzhen), China
∗ Corresponding author

Abstract

Semi-supervised medical image segmentation has attracted much attention in recent years
because of the high cost of medical image annotations. In this paper, we propose a novel
Inherent Consistent Learning (ICL) method, aims to learn robust semantic category rep-
resentations through the semantic consistency guidance of labeled and unlabeled data to
help segmentation. In practice, we introduce two external modules, namely Supervised
Semantic Proxy Adaptor (SSPA) and Unsupervised Semantic Consistent Learner (USCL)
that is based on the attention mechanism to align the semantic category representations
of labeled and unlabeled data, as well as update the global semantic representations over
the entire training set. The proposed ICL is a plug-and-play scheme for various network
architectures, and the two modules are not involved in the testing stage. Experimental
results on three public benchmarks show that the proposed method can outperform the
state-of-the-art, especially when the number of annotated data is extremely limited. Code
is available at: https://github.com/zhuye98/ICL.git

Keywords: Semi-supervised Learning, Medical Image Analysis, Semantic Segmentation.

1. Introduction

Anatomical organ or tumor segmentation has aroused extensive attention in recent years
due to the helpful pixel/voxel-wise visual guidance in various medical imaging analysis tasks
like disease diagnosis and radiation therapy (Wang et al., 2018; Sahiner et al., 2019). With
the evolution of deep learning techniques, popular networks have also been applied in this
field and achieved huge success (Strudel et al., 2021; Chen et al., 2021a; Hatamizadeh et al.,
2022). However, these approaches are highly dependent on large-scale annotated data due
to the data-driven nature of deep networks. Different from natural images, the annotation
costs of medical images are much higher since it must be done by well-trained doctors (Jiao
et al., 2022; Ji et al., 2022).

To mitigate the need of a large amount of annotated data, Semi-Supervised Learn-
ing (SSL) has been introduced to learn from scarce annotated data and become a crucial
and challenging problem in the medical imaging analysis community. Existing commonly
used semi-supervised medical image segmentation methods are mainly related to pseudo-
labeling (self-training), co-training, and consistency regularization. The self-training strat-
egy that relies on generated pseudo labels as data expansion was first proposed by (Blum and
Mitchell, 1998) and later followed by other variants (Zou et al., 2020; Chen et al., 2021b);
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Co-training methods (Blum and Mitchell, 1998; Zhou et al., 2019; Peng et al., 2020; Wang
et al., 2021; Luo et al., 2022a) assume that different models can learn multiple independent
and complementary views from the same data. By combining information from different
perspectives, the accuracy of the final classification can be greatly improved. Consistency
regularization on intermediate representations of input perturbation was also introduced
to semi-supervised learning (Bachman et al., 2014; Ouali et al., 2020; Luo et al., 2022b)
to robustness. However, most follow the standard solution that relies on low-level features
for consistency regularization or co-training while ignoring the global high-level features
and their rich semantic information. For instance, (Luo et al., 2022a) leverages different
learning paradigms of CNN and Transfomer to perform consistency regularization on the
output-level pseudo labels. Although the method achieved the current SOTA performance,
experimental results show its limitation in discriminating some specific categories, especially
when the background appears similar to the foreground categories.

To tackle the above issues by using the limited annotated training samples, this paper
proposes a novel semantic consistent learning scheme termed Inherent Consistent Learning
(ICL), which can more effectively leverage unlabeled data to assist in learning robust cate-
gory representations. In practice, we introduce two external modules, Supervised Semantic
Proxy Adaptor (SSPA) and Unsupervised Semantic Consistent Learner (USCL), aligning
the semantic representations of labeled and unlabeled data and updating the global cate-
gory representations. In practice, the global category representations (i.e., semantic-aware
proxies) are initialized as the learnable parameters of SSPA and updated at multiple scales
by using the feature maps of the labeled data. These updated category representations
are further used to interact with the unlabeled data in the USCL module and instructively
generate the semantic-guided segmentation maps. Then multi-scale consistent constraints
are further applied to the semantic-guided segmentation maps of each unlabeled image to
provide detailed guidance on the entire learning process. In the test phase, both the above
two modules can be dropped to maintain the model’s simplicity. The main contributions are
three-fold: (1) An effective and novel Inherent Consistent Learning framework is proposed
to progressively learn robust category representations with semantic consistency between
labeled and unlabeled data. (2) Two plug-and-play external modules, Supervised Semantic
Proxy Adaptor (SSPA) and Unsupervised Semantic Consistent Learner (USCL), effectively
leverage limited labeled data and massive unlabeled data only in the training phase. (3) We
conduct experiments on three public benchmarks, and our proposed method outperforms
the state-of-the-art by a margin, especially when the number of annotated data is extremely
limited.

2. Methodology

For the semi-supervised segmentation setting, the training set usually contains a small por-
tion of labeled set Dl =

{
xli, y

l
i

}n

i=1
and a much larger scale unlabeled set Du =

{
xuj

}m

j=1

(n >> m). In this work, we propose the Inherent Consistent Learning (ICL) framework
that can efficiently learn robust category representations on Dl ∪ Du to enhance the seg-
mentation precision with the guidance of a limited amount of Dl. Specifically, based on the
attention mechanism, we construct a set of semantic-aware proxies that seek to preserve
the discriminability towards different categories. These semantic-aware proxies are trained
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Figure 1: A: Overview of our proposed Inherent Consistent Learning framework. B: Super-
vised Semantic Proxy Adaptor and Unsupervised Semantic Consistent Learner.

with Dl and then implicitly serve as a classifier to reveal the semantic-related areas within
the unlabeled images at different representation levels.

As illustrated in Fig. 1, our framework consists of a single encoder-decoder model with
a segmentation head, two newly proposed external modules named Supervised Semantic
Proxy Adaptor (SSPA) and Unsupervised Semantic Consistent Learner (USCL), and an
initialized semantic-aware proxy Q ∈ RZ×4C that aims at transferring the well-learned
semantic representation at different scales from limited labeled data. Z and C indicate the
number of categories (including the background) and the tokenized feature dimension of
the last scale. 4C is the dimension of the current proxy due to the scale factor. In training,
both xl and xu are fed to the encoder-decoder backbone, generating multi-scale intermediate
features

{
F l, F u

}
for the SSPA and USCL modules to perform inherent consistent learning

scheme by interacting with the initialized semantic-aware proxy. It is worth noting that
such a strategy is suitable for both 2D and 3D networks, and these external modules are
discarded during the inference phase.

2.1. Supervised Semantic Proxy Adaptor

We first define a learnable semantic-aware proxy as a query that aims to learn the statistics
of organ categories (Xie et al., 2021). After that, we utilize the proxy to calculate the
attention maps with the output features from the decoder. With a small convolutional
head applied to attention maps, final predictions can be obtained. Later the well-trained
proxy will be used to guide the learning of the USCL module.

For simplicity, 2D network is used for illustration. As depicted in Fig. 1B, a set of
multi-scale intermediate features

{
F l
λ, F

l
λ

}
(scale λ ∈ (1, 2, 3)) are tokenized as

{
T l
λ, T

u
λ

}
and sent to a series of Cross-Attention Blocks within the SSPA module as input Key and
Value. The input Query, i.e., initialized proxy Q0 ∈ RZ×4C is first sent to the cross-attention

module to interact with the tokenized features
{
T l
1, T

u
1

}
∈ R4C×(H

16
×W

16 ) at the first scale,
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generating the semantic-aware proxy Q1 ∈ RZ×4C and the semantic-aware attention maps{
Al

1, A
u
1

}
∈ RZ×(H

16
×W

16
) via Cross-Attention Mechanism (Details in Sec. A). Q1 is then

sent to the next cross-attention module after being applied a 1 × 1 convolution to reduce
the dimension from 4C to 2C, obtaining the semantic-aware attention map at scale 2 and

so on. At each scale the attention map
{
Al

λ, A
u
λ

}
∈ RZ×(λH

16
×λW

16
) can be applied with a

segmentation head to get the final predictions
{
M l

λ,M
u
λ

}
∈ RZ×λH

16
×λW

16 . To have strong
discrimination for the semantic representations for different categories, we apply the cross-
entropy and dice loss to actively supervise the M l

λ from the labeled data with yl:

Lspa =
1

λ

∑
λ

[
Ldice

(
σ
(
I
(
M l

λ

))
, yl

)
+ Lce

(
σ
(
I
(
M l

λ

))
, yl

)]
, (1)

where λ ∈ (1, 2, 3) represents different scales, σ(·) denotes the softmax operation, and I(·)
is the bilinear interpolation to upsample the predictions to the same size as label yl.

2.2. Unsupervised Semantic Consistent Learner

As depicted in Fig. 1B(right), the USCL module receives semantic-aware proxies Qλ ∈
RZ× 4C

λ with rich category semantic information from SSPA. They are utilized to reveal the
semantic-related areas of the unlabeled intermediate features at different representation lev-
els, instructively guiding the USCL module to generate the semantic-guided attention maps

Āu
λ ∈ RZ×(λH

16
×λW

16
) at different scale λ. Similar to the SSPA module, these attention maps

are used to get the guided segmentation maps Gu
λ ∈ RZ×λH

16
×λW

16 , but the USCL module
only processes data from unlabeled source. By applying dice loss between the prediction pu

of the network and Gu
λ, we can efficiently leverage the large amount of unlabeled data to

boost the final segmentation performance of the main network:

Lusc =
1

λ

∑
λ

[Ldice (σ (I (Gu
λ)) , σ (pu))] (2)

where pu is the prediction with no gradient back-propagation from unlabeled data.
The learned proxies used to guide USCL are updated via SSPA with a new batch of

samples. Considering the perturbation of the semantic-aware proxies introduced in this
update process, inconsistency may exist in the segmentation maps of these two modules
given the same unlabeled input sample. Different from the training strategy of SSPA,
there is no ground-truth segmentation mask to supervise directly USCL. We use the above
inconsistency to learn discriminative features from the unlabeled data. Specifically, we
design a consistency regularization between Gu

λ with Mu
λ at different scales, which can

leverage a large amount of unlabeled data to enhance the robustness of the global semantic
representation. The Mean Squared Error (MSE) is adopted to form the loss as follow:

Lcon =
1

λ

∑
λ

[LMSE (σ (Gu
λ) , σ (Mu

λ ))] (3)

Note that here the semantic-aware segmentation maps Mu
λ ∈ RZ×λH

16
×λW

16 is detached to
avoid disturbance of the well-trained SSPA.
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2.3. The overall objective function

The goal of our inherent consistent learning (ICL) framework is to minimize the following
combined objective function that contains the supervised and unsupervised parts:

Ltotal = Lseg + Lspa︸ ︷︷ ︸
supervised

+αLusc + βLcon︸ ︷︷ ︸
unsupervised

(4)

Lseg = Ldice

(
pl, yl

)
+ Lce

(
pl, yl

)
(5)

where Lseg is only used for supervising the final predictions of the labeled data, and we
apply different hyper-parameters α, β for different datasets. (Details in Sec. B.3):

3. Experiments

3.1. Datasets and evaluation metrics

In this work, we evaluate our proposed method on ACDC (Bernard et al., 2018) and
AMOS (Ji et al., 2022). (More experiments on BraTS (Menze et al., 2014) in Sec. C.2.)

ACDC dataset contains 200 cardiac cine-MR images with three segmentation targets,
the left ventricle (LV), the myocardium (Myo) and the right ventricle (RV). For a fair
comparison, we perform 2D segmentation and use the same data split, pre-processing and
augmentations following (Luo et al., 2022a). Specifically, We use 2D slices from 3 and 7
cases (6/140 and 14/140 scans) to train and the remaining 60 scans to validate.

AMOS dataset provides 500 CT and 100 MRI scans, each with voxel-level annotations
of 15 abdominal organs such as Spleen, Left and Right kidney, etc. In this work, we only
use 300 CT scans from the AMOS 2022 official grand challenge (Ji et al., 2022), including
200 scans for training and 100 for validation. In detail, we divide the original validation set
in a ratio of 3:7 to obtain the validation set and test set. Furthermore, 15/200 and 30/200
scans in the training set are used as two different semi-supervised settings.

During the validation phase, we perform slice-to-slice inference for 2D segmentation and
stack them into a 3D prediction volume. For 3D segmentation, sliding window inference is
applied to get the 3D predictions. To evaluate the segmentation results, we use the metrics
1) Dice Coefficient (DSC) and 2) 95% Hausdorff Distance (HD95).

3.2. Experimental details

Network architectures. Since we propose a plug-and-play scheme, we investigate the
performance based on different networks, including CNN-Based networks for 2D and 3D
segmentation, namely 2D- and 3D-UNet (Ronneberger et al., 2015). (More experiments
on Transformer-Based (Trans-Based) networks of SwinUNet (Cao et al., 2021) and Swin-
UNETR (Hatamizadeh et al., 2022) in Sec. C.1, C.2.)
Comparison with baselines and existing methods. We compare our proposed frame-
work with four baselines and some recent SOTA semi-supervised segmentation methods,
including Entropy Minimization (Ent-Mini) (Vu et al., 2019), Cross Consistency Training
(CCT) (Ouali et al., 2020), FixMatch (Sohn et al., 2020), Regularized Dropout (R-Drop)
(Wu et al., 2021), Cross Pseudo Supervision (CPS) (Chen et al., 2021b), Uncertainty Rec-
tified Pyramid Consistency (URPC) (Luo et al., 2022b) and Cross Teaching between CNN
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Table 1: Comparisons of the SOTA methods on ACDC using CNN-Based models. Mean
and standard variance (in parentheses) are presented in the table.

Labeled CNN-Based
RV Myo LV Mean

DSC ↑ HD95 ↓ DSC ↑ HD95 ↓ DSC ↑ HD95 ↓ DSC ↑ HD95 ↓

3 cases

UNet [MICCAI15] 41.26(33.74) 79.78(125.91) 56.73(26.44) 29.21(80.07) 65.04(29.25) 32.78(80.81) 54.34(29.81) 47.25(95.59)
Ent-Mini [CVPR19] 46.56(29.91) 39.86(32.72) 61.46(24.02) 29.37(67.14) 71.74(25.72) 33.11(68.69) 59.92(26.55) 34.11(56.18)

CCT [CVPR20] 46.88(31.96) 29.65(52.68) 63.18(22.92) 21.14(24.49) 68.88(26.47) 33.56(31.22) 59.65(27.12) 28.11(36.13)
FixMatch [NeurIPS20] 66.98(26.62) 28.22(67.68) 71.3(18.61) 9.22(21.52) 81.73(19.77) 9.03(20.07) 73.34(21.67) 15.49(36.42)
R-Drop [NeurIPS21] 43.55(34.04) 97.72(152.73) 63.46(25.02) 13.23(47.62) 72.93(25.95) 26.94(80.48) 59.98(28.34) 45.96(93.62)

CPS [CVPR21] 49.46(33.21) 43.93(90.65) 63.24(24.14) 18.9(66.64) 74.96(24.53) 28.01(67.59) 62.56(28.29) 30.28(74.96)
URPC [MIA22] 51.05(27.98) 43.16(68.09) 60.43(24.13) 9.73(14.25) 71.32(26.53) 17.19(24.51) 60.93(26.21) 23.36(35.62)
CTCT [MIDL22] 71.68(26.24) 28.96(92.18) 70.58(23.82) 9.28(47.58) 80.23(23.56) 16.55(66.77) 74.16(24.54) 18.27(68.85)

Ours 81.75(10.82) 3.56(4.52) 79.37(13.09) 4.93(8.34) 86.01(17.46) 6.86(7.89) 82.37(13.79) 4.28(6.92)

7 cases

UNet [MICCAI15] 68.92(28.24) 9.53(13.28) 78.26(9.24) 6.6(11.78) 85.18(11.36) 10.51(17.42) 77.46(16.28) 8.88(14.16)
Ent-Mini [CVPR19] 73.42(22.73) 4.85(7.98) 80.47(8.45) 5.36(10.19) 87.73(9.66) 9.14(16.76) 80.54(13.61) 6.45(11.64))

CCT [CVPR20] 80.08(15.95) 5.85(10.4) 82.85(7.63) 5.36(10.4) 89.17(9.13) 13.97(21.93) 84.01(10.9) 8.4(14.24)
FixMatch [NeurIPS20] 84.22(15.05) 2.01(2.50) 83.14(6.38) 2.5(5.73) 89.70(9.68) 6.08(12.67) 85.69(10.37) 3.53(6.97)
R-Drop [NeurIPS21] 72.7(26.22) 5.24(7.64) 81.38(6.79) 4.4(8.83) 89.28(8.42) 7.18(16.32) 81.12(13.81) 5.24(10.93)

CPS [CVPR21] 80.47(17.55 3.51(6.75) 82.65(6.38) 6.36(11.54) 87.89(10.03) 11.39(17.98) 83.67(11.32) 7.09(12.09)
URPC [MIA22] 81.57(16.69) 4.3(7.69) 82.41(8.54) 5.95(13.12) 89.84(8.78) 8.31(17.76) 84.61(11.34) 6.19(12.86)
CTCT [MIDL22] 85.37(10.54) 3.45(8) 84.77(4.81) 7.05(18.04) 90.21(8) 9.2(16.2) 86.78(7.78) 5.43(10.58)

Ours 88.24(8.63) 1.67(1.46) 86.71(4.85) 1.6(1.94) 92(7.02) 3.54(6.88) 88.98(6.84) 2.27(3.43)

Total UNet [MICCAI15] 90.07(7.53) 1.31(0.78) 88.87(3.3) 1.09(0.37) 94.32(3.8) 1.52(3.6) 91.09(4.88) 1.31(1.581)

and Transformer (CTCT) (Luo et al., 2022a). For a fair comparison, all implementations
of these methods are consistent with our framework under the same task. All the auxiliary
training modules are discarded, and only the trained backbones are used to generate final
predictions. The above methods are openly available (Luo, 2020).

3.3. Results of 2D segmentation on ACDC dataset

Improvements over baselines. Tab.1 presents the results of all methods on the ACDC
dataset using CNN-Based models (UNet). All methods have an improvement over the
baseline under 3 and 7 labeled cases. Specifically, our proposed method surpasses the
baseline by a large margin, with an average improvement of 28% in DSC and 43mm in
HD95 under 3 labeled cases, 11.5% in DSC and 6.6mm in HD95 under 7 labeled cases.
Especially for the category RV, our method improves the DSC from 41.26% to 81.75% and
reduces the HD95 from 79.78mm to 3.56mm using only 3 labeled cases.

Comparison with SOTA. Compared with some SOTA methods, our approach outper-
forms the best under all partition protocols, especially when the number of labeled scans
is extremely limited. In detail, Tab.1 shows that our method significantly surpasses the
current SOTA method CTCT (Luo et al., 2022a) by 8.21% in DSC and 14mm in HD95
under 3 labeled cases. And we also achieved great improvement in DSC and HD95 (2.2%
larger and 3.16mm smaller than CTCT) using only 7 labeled cases. The first three columns
in Fig. 2(left) present a visualization of the segmentation performance of different methods.
Compared with others, our method presents more stable results for hard-to-segment cate-
gories like the RV and even stronger discrimination for the background and the foreground
categories when they have similar and ambiguous representations.

3.4. Results of 3D segmentation on AMOS dataset

Improvements over baselines. Tab.2 reports partial quantitative comparison results
of our method and others under 15/200 and 30/200 labeled settings (Complete results in
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Table 2: Comparisons of the SOTA methods on AMOS using CNN-Based models. Full
results of all categories are presented in Tab. 11. Mean and standard variance (in
parentheses) are presented in the table.

DSC ↑

Labeled CNN-Based
Large Medium Small

SPL LIV STO BLA PAN IVC DUO GBL RAG LAG Mean

15 scans

3D-UNet [MICCAI15] 14.98(13.84) 73.37(11.66) 19.02(17.17) 15.38(16.27) 20.94(17.44) 58.01(16.92) 14.69(12.83) 7.44(17.9) 15.98(15.32) 13.36(20.14) 31.34(17.6)
Ent-Mini [CVPR19] 76.26(17.08) 80.94(9.41) 48.64(19.49) 42.08(21.34) 30.61(16.9) 59.25(16.2) 15.84(14.44) 23.32(22.74) 29.78(20.19) 24.58(23.33) 49.76(18.74)

CTCT [MIDL22] 73.48(12.15) 70.13(10.07) 39.16(17.76) 27.79(20.76) 22.49(14.31) 50.92(12.4) 13.72(12.91) 4.29(20.25) 13.04(14.89) 23.04(19.99) 40.82(16.08)
Ours 88.11(12.38) 89.45(6.92) 60.29(22.28) 51.41(27.71) 62.47(16.86) 69.98(11.99) 42.54(19.1) 40.26(29.7) 44.7(21.21) 40.21(25.21) 61.44(19.5)

30 scans

3D-UNet [MICCAI15] 71.83(21.51) 90.94(8.88) 68.14(23.86) 62.81(25.46) 67.99(16.48) 81.95(7.96) 50.74(20.28) 65.05(30.36) 57.11(17.37) 56.03(21.07) 68.47(18.59)
Ent-Mini [CVPR19] 83.21(15.77) 90.07(8.44) 62.92(25.31) 52.02(28.86) 41.45(22.45) 72.78(11.7) 42(20.39) 41.64(30.19) 47.83(22.61) 29.79(23.21) 59.74(20.91)

CTCT [MIDL22] 89.39(7.67) 93.32(5.51) 65.95(22.58) 55.21(23.32) 65.58(14.33) 77.12(8.4) 52.03(15.96) 63.38(25.03) 64.74(13.96) 46.52(22.6) 70.41(15.64)
Ours 81.63(15.2) 92.24(7.3) 75.01(20.85) 67.81(27.34) 70.34(15.67) 83.78(6.84) 58.56(19.77) 64.5(29.43) 61.15(16.31) 58.44(20.12) 74.81(16.56)

Total 3D-UNet [MICCAI15] 94.21(5.94) 96.43(2.27) 87.89(15.81) 83.53(18.9) 83.27(11.51) 88.02(4.78) 77.43(14.4) 80.61(23.38) 71.83(13.35) 73.43(13.45) 85.17(11.71)

HD95 ↓

Labeled CNN-Based
Large Medium Small

SPL LIV STO BLA PAN IVC DUO GBL RAG LAG Mean

15 scans

3D-UNet [MICCAI15] 39.69(31.09) 17.99(16.85) 64.2(62.24) 41.39(62.47) 27.14(19.27) 15.46(27.51) 41.36(52.49) 116.4(153) 79.58(118) 155.9(177.5) 51.39(63.97)
Ent-Mini [CVPR19] 13.58(28.33) 13.89(24.21) 50.1(72.23) 17.57(43.32) 21.29(43.16) 9.26(15.06) 26.44(43.58) 55.83(86.59) 18.6(47.28) 87.21(149.65) 25.99(48.5)

CTCT [MIDL22] 33.98(42.47) 11.11(11.52) 37.45(52.03) 25.17(43.8) 36.52(31.28) 73.3(23.62) 39.49(45.24) 357.14(75.57) 108.05(161.82) 35.74(71.12) 63.98(56.06)
Ours 9.13(23.78) 9.33(21.83) 22.49(47.53) 19.83(47.56) 10.41(21.27) 6.44(8.38) 16.75(43.54) 33.91(86.06) 23.78(74.81) 52.56(123.2) 17.85(43.27)

30 scans

3D-UNet [MICCAI15] 10.57(19.29) 10.88(25.58) 15.5(44.2) 7.62(6.41) 8.38(18.39) 2.91(4.49) 15.44(44.77) 32.95(95.03) 3.73(2.61) 11.75(45.95) 13.44(31.07)
Ent-Mini [CVPR19] 16.24(32.13) 7.87(18.29) 17.99(44.53) 16.5(43.88) 15.73(17.97) 3.98(2.8) 17.96(43.63) 31.86(84.70) 15.31(61.48) 44.01(109.77) 18.8(43.37)

CTCT [MIDL22] 7.58(21.85) 4.61(17.33) 15.38(44.18) 16.6(44.04) 7.25(7.04) 3.23(2.57) 13.96(43.52) 23.45(76.08) 2.81(2.1) 10.87(43.75) 10.34(30.2)
Ours 7.77(15.91) 9.76(23.93) 13.5(44.51) 8.19(11.06) 5.32(5.44) 1.91(1.29) 13.46(43.96) 26.22(85.68) 3.41(3.26) 8.89(43.91) 9.87(28.68)

Total 3D-UNet [MICCAI15] 0.77(2.18) 0.26(1.23) 8.2(44.33) 3.91(9.8) 2.49(4.65) 1.34(0.81) 8.83(43.97) 13.73(62.01) 7.28(44.07) 2.32(3.23) 4.83(21.94)

Tab. 11). The results in Tab.2 show that our method exceeds the baselines by a large
margin, especially under 15/200 protocol, achieving the tremendous improvement of over
30% in mean DSC and 33.5mm in mean HD95. When using 30 labeled scans, there is still
an obvious improvement over the baseline, with a gain of 6.3% in mean DSC and 3.6mm
in mean HD95. Although all methods show enhancement under 15 labeled scans, Ent-Mini
gets degraded results when using 30 labeled scans.

Comparison with SOTA. Here we conduct comparative experiments on two existing
methods considering the training cost and resource limitation. As presented in Tab.2, our
proposed method attains mean DSC and HD95 of 61.44% and 17.85mm under 15 labeled
scans, 74.81% and 9.87mm under 30 labeled scans, which outperforms the SOTA methods
Ent-Mini and CTCT by a large margin. Particularly, under the least labeled data setting
(15/200), our method surpasses the Ent-Mini and CTCT with improvements of 11.7% and
20.6% in DSC, 8.1mm and 46.1mm in HD95, respectively. We also notice that our proposed
method has remarkable performance when segmenting medium and small-size organs that
are hard to distinguish, especially with limited labeled training data. The visual comparison
base on 30 labeled data is presented in the last four columns in Fig. 2(left), It shows that our
method can generate better results with fewer false-positive regions, especially on medium-
size and small-size organs.

3.5. Ablation study:

Analysis of the discrimination ability towards the semantic-aware proxy. In this
section, we produce qualitative analysis to demonstrate the semantic-aware proxy can dis-
tinguish the semantic representation of different categories well. In detail, we utilize the
well-learned proxy to interact with all labeled data successively in the first scale of the SSPA
module. By regarding each updated proxy as a sample, we apply the t-SNE (Van der Maaten
and Hinton, 2008) to visualize the proxy distribution of different categories in ACDC and
AMOS datasets. In Fig.2(right), different categories are clearly separated with a larger met-
ric distance, proving the discriminability of our semantic-aware proxy.
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Figure 2: Left: Visual comparisons on ACDC and AMOS (zoom in for better observation).
Right: Visual results of the t-SNE on the semantic-aware proxy.

Analysis of the Supervised Semantic Proxy Adaptor. In this section, we conduct
experiments on the ACDC dataset using 7 labeled cases and without unlabeled data to
further investigate the effectiveness of the Supervised Semantic Proxy Adaptor. Particu-
larly, we utilize UNet and SwinUNet as our backbone modules. As presented in Tab. 3,
our proposed SSPA module brings promising gains to the segmentation results in overall
categories on the CNN-Based and Trans-Based networks. Specifically, the SSPA module
improves 5% in the mean DSC for UNet, boosts 2.5% in the mean DSC, and reduces 3.7mm
in HD95 for SwinUNet. More experiments can be found in Sec. C.3.

Table 3: Effects of Supervised Semantic Proxy Adaptor on ACDC dataset.
Labeled 2D Models

RV Myo LV Mean
DSC ↑ HD95 ↓ DSC ↑ HD95 ↓ DSC ↑ HD95 ↓ DSC ↑ HD95 ↓

7 cases

UNet [MICCAI15] 68.92(28.24) 9.53(13.28) 78.26(9.24) 6.6(11.78) 85.18(11.36) 10.51(17.42) 77.46(16.28) 8.88(14.16)
UNet w/ SSPA 77.59(20.58) 5.9(9.71) 81.87(5.99) 8.08(15.89) 88.38(7.99) 11.16(18.94) 82.61(11.52) 8.38(14.85)

SwinUNet [arXiv21] 75.17(16.72) 10.74(21.86) 74.69(9.65) 4.75(6.9) 83.13(14.47) 9.6(13.36) 77.75(13.61) 8.36(14.04)
SwinUNet w/ SSPA 78.03(16.36) 2.46(2.11) 77.77(7.96) 4.17(6.55) 85.03(13.04) 7.39(10.28) 80.27(12.45) 4.67(6.31)

4. Conclusion

In this paper, we propose Inherent Consistent Learning (ICL) framework that aims to
progressively learn robust category representations from scarce labeled data and numerous
unlabeled data to help segmentation under the semi-supervised scenario. To achieve this
goal, we introduce two plug-and-play modules, namely Supervised Semantic Proxy Adaptor
(SSPA) and Unsupervised Semantic Consistent Learner, based on attention mechanism
to align the semantic representations of labeled and unlabeled data, providing semantic
consistency guidance to boost the final segmentation performance. Experimental results on
three open benchmarks demonstrate the effectiveness of the proposed method. Future work
may focus on semi-supervised domain adaption problems adopting the proposed framework.
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Appendix A. Methodology details

A.1. Semantic-aware Proxy Progressive Updating

In Sec. 2.1, the initialized proxy is sent to the cross-attention module to conduct inter-

action with the tokenized features
{
T l
1, T

u
1

}
∈ R4C×(H

16
×W

16 ) at the first scale, generat-
ing the semantic-aware proxy

{
Ql

1, Q
u
1

}
∈ RZ×4C and the semantic-aware attention maps{

Al
1, A

u
1

}
∈ RZ×(H

16
×W

16
). Progressively, the updated proxy is then sent to the next scale of

cross-attention after being applied a 1× 1 convolution to reduce the dimension from 4C to
2C, obtaining the semantic-aware attention maps at scale 2 and so on.

For simplicity, we illustrate the cross-attention (CA) updating process using the tok-
enized features T l

1 at scale 1 and the initialized proxy Q as follows,

q = QWQ, k = T l
1WK , v = T l

1WV , (6)

CA(Q,T l
1) = softmax(

qkT√
d
)v, (7)
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where WK , WV , WQ ∈ R4C×4C′
are the parameter matrices for linear projection. Here d is

the channel dimension 4C. The softmax(·) denotes the softmax function along the spatial

dimension. The qkT ∈ RZ×H
16

×W
16 indicates the Semantic-aware Feature Maps extracted

from a single CA head, where Z denotes the total numbers of classes. The Multi-head Cross
Attention (MCA) is the extension with N independent CAs and projects their concatenated
outputs as follows:

MCA(Q,T l
1) = C( CA1(Q,T l

1), ...,CAN (Q,T l
1) ) WO, (8)

where C denotes the concatenation operation. WO ∈ R4C′×4C is the learnable parameter
matrix, and we have 4C ′ = 4C/N . Here, we can obtain the semantic-aware attention maps

Al
1 ∈ RZ×(H

16
×W

16
) extracted from multi-heads. Finally, the Q can be updated by:

Q̂l
1 = MCA( Norm(Q), Norm(T l

1) ) +Q, (9)

Ql
1 = Conv(MLP( Norm(Q̂l

1) ) + Q̂l
1), (10)

where Ql
1 indicates the updated semantic-aware proxy at scale 1. Conv is a 1 × 1 convo-

lutional layer to reduce the channel dimension from 4C to 2C. The operations with the
tokenized features T u

1 at scale 1 are identical to those described above. It is worth noting
that T u

1 has no effect on the updating of the learnable parameterQ during back-propagation,
while T l

1 does. Moreover, the other scales are also the same as the above equations, and the
only difference is that we adopt the semantic-aware proxy (e.g. Ql

1 or Ql
2) to replace Q.

Appendix B. Experimental details

B.1. BraTS dataset

BraTS dataset includes 335 MR scans from four different modalities (FLARE, T1, T1ce
and T2). Here we conduct 3D segmentation using the whole tumors from FLARE (250/335)
following (Luo et al., 2022b), utilizing the same data split, augmentations and pre-processing
strategy. For the semi-supervised learning setting, we use 25/250 and 50/250 scans as
different portions of the training set and 85 scans as the validation set.

B.2. AMOS dataset

B.2.1. Category details.

AMOS dataset aims to promote abdominal multi-organ segmentation under diverse, com-
plex and clinical scenarios. To get a clearer vision of the effectiveness of our proposed
method, we objectively divide the abdominal organs into three different sizes as follows:

• Large: spleen (SPL), liver (LIV) and stomach (STO)

• Medium: right kidney (RKI), left kidney(LKI), bladder (BLA), aorta (AOR), pan-
creas (PAN), infer vena cava (IVC), duodenum (DUO) and prostate/uterus (PRO/UTE)

• Small: gallbladder (GBL), esophagus (ESO), right adrenal gland (RAG) and left
adrenal gland (LAG)
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B.2.2. Data splits.

In the AMOS dataset, 300 CT scans are derived from three distinct scanners (domains) to
ensure data diversity, including 200 scans for training and 100 for validation. In particular,
we randomly selected one sample of each domain from the training set and repeated 5
times, obtaining 15 labeled scans for the first semi-supervised setting. To get the other
semi-supervised setting, we repeated the selection 5 more times and got 30 labeled scans
with the former acquiring 15 labeled scans. Furthermore, we perform the similar strategy
to choose 30 scans to form the validation set to validate and select the best model during
training. The remaining 70 scans are used for later testing.

B.3. Training details.

Our experiments are implemented in Pytorch (Paszke et al., 2019) using an NVIDIA A100
GPU. All the networks, including 2D and 3D, are trained by an SGD optimizer with the
poly-learning rate strategy. Specifically, during training, a batch of data consists of half-
labeled and half-unlabeled data.

2D networks. For the ACDC dataset, we train the 2D models for 30000 iterations
with an initial learning rate (lr) of 0.01 and a batch size of 16, validate the models every
200 iterations, and find the best models to make the final comparison.

3D networks. For the BraTS dataset, we set the batch size to 4 with an initial lr of
0.01 and train all 3D models for 30000 iterations. Considering that the AMOS22 dataset
with multiple categories may take a longer time for the models to converge, we train the
models on AMOS dataset for 60000 iterations with a batch size of 4 and an initial lr of 0.02.
To find the best model of each model, we validate the models every 200 (on BraTS) and
1200 (on AMOS) iterations.

As mentioned in Sec. 2.3, the unsupervised part of the overall objection function contains
two hyper-parameters α, β. During training, we set these hyper-parameters as (1, 50), (1,
10) and (0.1, 10) for ACDC, BraTs and AMOS datasets respectively.

B.4. Computational cost.

Tab. 4 reports the total training time and per scan inference time of different SOTA methods
and our proposed method under 7 labeled cases in the ACDC dataset using the same device.
It can be found that our method needs longer training costs due to the attention-mechanism-
based modules that we proposed. But all the methods have a similar time since we utilize
the same backbone network to perform inference.

Table 4: Comparison of the computational cost of the different SOTA methods and our
proposed method under 7 labeled cases on the ACDC dataset. TTimes (hours)
denotes the total training time, and ITimes (seconds) denotes the inference time
per scan.

UNet Ent-Mini CCT FixMatch R-Drop CPS URPC CTCT Ours
TTimes (h) 1.03 1.56 1.55 1.16 1.14 1.03 0.77 1.72 2.46

ITimes (s) 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18
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Appendix C. Additional experiments.

To investigate the generalization ability of our proposed method, we further conduct addi-
tional experiments adopting Trans-Based models on the ACDC and both Cnn-Based and
Trans-Based for the BraTS dataset. And these additional experimental results further
demonstrate the generality of our proposed method. Besides, we present the full results of
all categories in the AMOS dataset based on CNN-Based as a complement in Tab. 11.

C.1. Experiments of ACDC dataset on Trans-Based models.

Improvements over baselines. As shown in Tab. 5, our method still has tremendous
improvements over the baseline using Trans-Based backbone by 15.1% in mean DSC and
-6.2mm in mean HD95 under 3 labeled cases, yet some of the compared approaches (Ent-
Mini, R-Drop and CPS) suffer from declined performance. Comparison with SOTA.
Compared with the current SOTA method using the Trans-Based model, we surpass the
CTCT by 3.1% in mean DSC and 4.5mm in mean HD95 under 3 labeled cases, 2% in mean
DSC and 2.4mm in mean HD95. Our method significantly affects the metric HD95, where
we achieve 1.91mm, extremely close to the fully supervised baseline performance (1.56mm).

Table 5: Comparisons of the SOTA methods on the ACDC using Trans-Based models.
Mean and standard variance (in parentheses) are presented in the table.

Labeled Trans-Based
RV Myo LV Mean

DSC ↑ HD95 ↓ DSC ↑ HD95 ↓ DSC ↑ HD95 ↓ DSC ↑ HD95 ↓

3 cases

SwinUNet [arXiv21] 58.53(27.06) 10.15(15.66) 58.69(21.84) 8.03(9.16) 71.63(24.86) 10.69(11.23) 62.95(24.58) 9.62(12.02)
Ent-Mini [CVPR19] 29.93(22.24) 16.9(11.82) 36.78(18.34) 20.01(16.31) 48.92(24.6) 27.53(19.72) 38.54(21.73) 21.48(15.95)
R-Drop [NeurIPS21] 30.57(21.56) 24.82(21.27) 36.11(19.4) 18.31(16) 48.59(24.78) 23.67(15.33) 38.43(21.91) 22.27(17.53)

CPS [CVPR21] 30.51(21.58) 24.88(21.33) 36.13(19.41) 18.38(16.03) 48.63(24.76) 23.81(15.41) 38.43(21.92) 22.36(17.59)
CTCT [MIDL22] 72.99(22.93) 14.67(49.73) 70.75(20.14) 4.16(5.06) 81.15(20.52) 4.97(7.86) 74.96(21.2) 7.93(20.89)

Ours 76.85(14.21) 4.07(5.26) 72.31(16.36) 3.19(4.51) 85(14.42) 3.09(3.28) 78.06(15) 3.45(4.35)

7 cases

SwinUNet [arXiv21] 75.17(16.72) 10.74(21.86) 74.69(9.65) 4.75(6.9) 83.13(14.47) 9.6(13.36) 77.75(13.61) 8.36(14.04)
Ent-Mini [CVPR19] 44.15(22.17) 21.36(22.58) 50.46(17.72) 12.49(11.46) 62.64(21.32) 18.28(13.15) 52.42(20.4) 17.38(15.73)
R-Drop [NeurIPS21] 48.42(20.77) 19.84(20.13) 49.58(17.46) 10.80(11.11) 63.81(21.9) 16.32(12.44) 53.94(20.04) 15.65(14.56)

CPS [CVPR21] 46.82(21.02) 23.64(22.35) 50.55(17.2) 11.8(11.59) 63.24(21.53) 17.40(12.38) 53.54(19.92) 17.61(15.44)
CTCT [MIDL22] 85.09(8.51) 2.86(7.98) 82.68(5.16) 2.69(4.97) 88.68(9.73) 7.51(13.74) 85.48(7.8) 4.35(8.9)

Ours 85.78(10.37) 1.86(1.63) 84.94(4.28) 1.8(4.57) 91.88(5.82) 2.08(5.63) 87.54(6.83) 1.91(3.94)

Total SwinUNet [arXiv21] 89.36(7.5) 1.82(3.9) 87.49(4.04) 1.16(0.75) 93.4(4.15) 1.69(3.13) 90.08(5.23) 1.56(2.59)

C.2. Experiments on BraTS dataset on both CNN- and Trans-Based models.

Improvements over baselines. For the BraTS Dataset, the quantitative comparisons
are shown in Tab. 6. It can be found that our method has significant improvements over
the baselines under 25 and 50 annotated scans. Specifically, our CNN-Based method out-
performs the 3D-UNet with a gain of 2.23% in DSC and 3.24mm in HD95 under 25 labeled
cases and with a gain of 2.13% in DSC and 4.16mm in HD95 under 50 labeled cases. Our
method using only 20% labeled scans has even better results than the fully supervised
baseline using 250 labeled scans in HD95, which is 7.44mm and 7.52mm, respectively.
Comparison with SOTA. For the BraTS dataset, we compare our method with some
recent semi-supervised segmentation methods. As observed, our proposed method outper-
forms all the compared methods with the highest DSC and lowest HD95 in all settings,
including different partition protocols and backbones. In particular, we surpass the cur-
rent best method URPC by a notable margin, achieving improvements of +2.55mm and
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+2.31mm on the metric HD95 under 25/250 and 50/250 partition protocols, respectively.
Fig.5 presents several tumor segmentation results of the compared methods and our pro-
posed method. As observed, our method can generate better results with fewer false-positive
regions.

Table 6: Comparisons of the SOTA methods on the BraTS using CNN- and Trans-Based
models. In particular, the upper-bound (250 scans) performance of 3D-UNet
is 86.77%(11.14) in DSC and 7.52mm(10.58) in HD95, and for SwinUNETR is
87.33%(10) in DSC and 7.24mm(9.6) in HD95. Mean and standard variance (in
parentheses) are presented in the table.

CNN-Based
Tumor (25 scans) Tumor (50 scans)

DSC ↑ HD95 ↓ DSC ↑ HD95 ↓
3D-UNet [MICCAI15] 82.67(12.8) 13.96(19.05) 83.76(12.27) 11.6(16.4)
Ent-Mini [CVPR19] 83.17(12.53) 12.01(17) 84.32(12.17) 10.59(14.81)
R-Drop [NeurIPS21] 83.21(11.46) 13.05(15.96) 84.41(11.7) 9.91(13.08)

CPS [CVPR21] 83.62(11.6) 14.3(20.22) 84.26(12.43) 10.13(14.83)
CTCT [MIDL22] 83.9(11.92) 12.32(18.24) 84.32(12.41) 10.01(14.72)
URPC [MIA22] 84.15(10.66) 13.27(19.4) 85.63(10.05) 9.75(13.1)
Ours 84.9(10.23) 10.72(14.02) 85.89(10.16) 7.44(8.65)

Trans-Based DSC ↑ HD95 ↓ DSC ↑ HD95 ↓
SwinUNETR [arXiv21] 83.9(12.3) 9.2(11.25) 84.87(11.57) 9.29(12.67)

Ent-Mini [CVPR19] 84.09(12.24) 10.67(13.84) 84.97(11.72) 8.29(10.28)
R-Drop [NeurIPS21] 84.05(11.76) 9.72(12.38) 84.83(10.91) 10.53(16.92)

CPS [CVPR21] 83.79(12.52) 10.02(12.51) 84.99(11.16) 9.22(11.51)
CTCT [MIDL22] 84.55(11.25) 10.21(13.12) 85.08(11.47) 9.65(13.17)
Ours 85.38(10.71) 9.05(11.69) 85.63(10.93) 8.05(10.36)

Table 7: Effects of Supervised Semantic Proxy Adaptor on the ACDC dataset. Mean and
standard variance (in parentheses) are presented in the table.

Labeled 2D Models
RV Myo LV Mean

DSC ↑ HD95 ↓ DSC ↑ HD95 ↓ DSC ↑ HD95 ↓ DSC ↑ HD95 ↓

3 cases

UNet [MICCAI15] 41.26(33.74) 79.78(125.91) 56.73(26.44) 29.21(80.07) 65.04(29.25) 32.78(80.81) 54.34(29.81) 47.25(95.59)
UNet w/ SSPA 38.13(32.27) 104.38(149.63) 61.80(26.26) 22.71(67.03) 70.99(28.05) 20.14(51.33) 56.97(28.86) 49.08(89.33)

SwinUNet [arXiv21] 58.53(27.06) 10.15(15.66) 58.69(21.84) 8.03(9.16) 71.63(24.86) 10.69(11.23) 62.95(24.58) 9.62(12.02)
SwinUNet w/ SSPA 57.51(27.35) 7.38(13.27) 60.56(21.94) 8.5(9.86) 71.09(25.7) 11.17(11.49) 63.05(24.99) 9.01(11.54)

7 cases

UNet [MICCAI15] 68.92(28.24) 9.53(13.28) 78.26(9.24) 6.6(11.78) 85.18(11.36) 10.51(17.42) 77.46(16.28) 8.88(14.16)
UNet w/ SSPA 77.59(20.58) 5.9(9.71) 81.87(5.99) 8.08(15.89) 88.38(7.99) 11.16(18.94) 82.61(11.52) 8.38(14.85)

SwinUNet [arXiv21] 75.17(16.72) 10.74(21.86) 74.69(9.65) 4.75(6.9) 83.13(14.47) 9.6(13.36) 77.75(13.61) 8.36(14.04)
SwinUNet w/ SSPA 78.03(16.36) 2.46(2.11) 77.77(7.96) 4.17(6.55) 85.03(13.04) 7.39(10.28) 80.27(12.45) 4.67(6.31)

Total

UNet [MICCAI15] 90.07(7.53) 1.31(0.78) 88.87(3.3) 1.09(0.37) 94.32(3.8) 1.52(3.6) 91.09(4.88) 1.31(1.58)
UNet w/ SSPA 90.53(7) 1.23(0.71) 89.04(3.34) 1.57(2.88) 94.27(4.07) 1.04(0.19) 91.28(4.81) 1.28(1.26)

SwinUNet [arXiv21] 89.36(7.5) 1.82(3.9) 87.49(4.04) 1.16(0.75) 93.4(4.15) 1.69(3.13) 90.08(5.23) 1.56(2.59)
SwinUNet w/ SSPA 90.13(7.32) 1.24(0.63) 88.27(3.22) 1.04(0.12) 93.89(4) 1.08(0.27) 90.76(4.84) 1.12(0.33)

C.3. Effects of the Supervised Semantic Proxy Adaptor.

In this section, we conduct experiments on ACDC and AMOS datasets to further investigate
the effectiveness of the Supervised Semantic Proxy Adaptor module. In practice, we utilize
the SSPA module with only labeled data to train the network, achieving surprising results.
Tab. 7 and Tab. 8 show that our proposed SSPA module can take full advantage of the
high-level semantic information and evidently improve the segmentation performance for
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Table 8: Effects of Supervised Semantic Proxy Adaptor on the AMOS dataset. Mean and
standard variance (in parentheses) are presented in the table.

DSC ↑

Labeled CNN-Based
Large Medium Small

SPL LIV STO BLA PAN IVC DUO GBL RAG LAG Mean

15 scans
3D-UNet [MICCAI15] 14.98(13.84) 73.37(11.66) 19.02(17.17) 15.38(16.27) 20.94(17.44) 58.01(16.92) 14.69(12.83) 7.44(17.9) 15.98(15.32) 13.36(20.14) 31.34(17.6)
3D-UNet w/ SSPA 67.76(23.72) 70.4(21.93) 37.25(23.38) 15.83(19.14) 44.21(19.35) 72.6(10.71) 30.08(18.46) 36.01(27.48) 35.52(22.66) 22.54(23.59) 46.71(20.58)

30 scans
3D-UNet [MICCAI15] 71.83(21.51) 90.94(8.88) 68.14(23.86) 62.81(25.46) 67.99(16.48) 81.95(7.96) 50.74(20.28) 65.05(30.36) 57.11(17.37) 56.03(21.07) 68.47(18.59)
3D-UNet w/ SSPA 83.56(15.42) 90.42(9.28) 72.24(22.23) 70.35(25.81) 66.08(18.38) 82.1(7.24) 44.78(19.08) 70.35(25.81) 62.05(16.77) 51.23(23.66) 72.31(17.41)

Total
3D-UNet [MICCAI15] 94.21(5.94) 96.43(2.27) 87.89(15.81) 83.53(18.9) 83.27(11.51) 88.02(4.78) 77.43(14.4) 80.61(23.38) 71.83(13.35) 73.43(13.45) 85.17(11.71)
3D-UNet w/ SSPA 94.18(6.73) 96.77(1.44) 86.84(17.51) 84.76(17.91) 83.08(11.44) 88.61(4.65) 76.77(15.66) 81.62(20.8) 68.63(11.99) 70.98(11.66) 84.92(11.09)

HD95 ↓

Labeled CNN-Based
Large Medium Small

SPL LIV STO BLA PAN IVC DUO GBL RAG LAG Mean

15 scans
3D-UNet [MICCAI15] 39.69(31.09) 17.99(16.85) 64.2(62.24) 41.39(62.47) 27.14(19.27) 15.46(27.51) 41.36(52.49) 116.4(153) 79.58(118) 155.9(177.5) 51.39(63.97)
3D-UNet w/ SSPA 30.57(39.29) 16.69(26.61) 31.97(48.5) 73.39(101.12) 13.27(19.24) 14.77(24.94) 21.66(44.6) 48.01(109.34) 22.29(74.36) 112.28(165.02) 34.77(57.08)

30 scans
3D-UNet [MICCAI15] 10.57(19.29) 10.88(25.58) 15.5(44.2) 7.62(6.41) 8.38(18.39) 2.91(4.49) 15.44(44.77) 32.95(95.03) 3.73(2.61) 11.75(45.95) 13.44(31.07)
3D-UNet w/ SSPA 36.16(46.47) 9.17(22.99) 15.21(44.6) 10.53(20.6) 6.44(6.9) 3.14(6.59) 15.96(43.63) 10.53(20.6) 3.18(3.05) 4.76(3.75) 10.96(24.6)

Total
3D-UNet [MICCAI15] 0.77(2.18) 0.26(1.23) 8.2(44.33) 3.91(9.8) 2.49(4.65) 1.34(0.81) 8.83(43.97) 13.73(62.01) 7.28(44.07) 2.32(3.23) 4.83(21.94)
3D-UNet w/ SSPA 1.32(5.19) 0.17(0.77) 9.33(44.45) 4.04(10.5) 2.44(4.03) 1.38(0.86) 8.76(44) 13.18(61.98) 2.21(1.79) 2.37(1.91) 4.35(17.27)

ACDC and AMOS datasets respectively. Especially our SSPA can bring huge improvements
in the segmentation of small organs like GBL, RAG, and LAG, as shown in Tab. 8.

C.4. Study on the variability of the labeled data.

For semi-supervised learning, the selection of the labeled data can greatly affect the model’s
performance. Therefore, to further study the influence of different limited labeled data on
our method, we randomly selected three subsets of data based on the experimental settings
of the ACDC dataset with 3 labeled cases and compared the experimental results with
Baseline UNet (Ronneberger et al., 2015), the current SOTA method CTCT (Luo et al.,
2022a). Specifically, three selected subsets have a different number of 2D slices, which are
58, 56 and 58, respectively. And the original split of 3 labeled cases contains 68 slices.
As shown by the experimental results in Tab. 9, different subset selections influence the
model’s performance more or less. Compared with the training results from the original
split, both UNet and CTCT have larger fluctuations on both DSC and HD95. Although
the performance of our proposed method has slightly declined (fewer 2D slices were used),
the overall result is more stable and remains superior to the SOTA method. Experimental
results further demonstrate the effectiveness of our proposed method.

Table 9: Comparisons of the SOTA method on the ACDC using CNN-Based models under
3 different labeled subsets (not overlapped). (DSC, HD95) from the original split,
UNet:(54.34, 47.25), CTCT:(74.16, 18.27), Ours: (82.37, 4.28)

Labeled Trans-Based
RV Myo LV Mean

DSC ↑ HD95 ↓ DSC ↑ HD95 ↓ DSC ↑ HD95 ↓ DSC ↑ HD95 ↓

subset 1
UNet [MIDL22] 45.36(30.56) 97.22(152.77) 49.42(28.46) 56.17(124.6) 58.9(31.9) 60.13(131.56) 51.23(30.31) 71.17(136.32)

CTCT [MIDL22] 67.45(27.5) 40.32(110.97) 70.32(24.78 3.81(6.06) 78.02(27.33) 21.53(80.79) 71.93(26.54) 21.89(65.94)
Ours 77.09(14.72) 4.05(3.82) 77.91(18.91) 2.69(4.19) 85.46(18.2) 3.02(5.69) 80.15(17.28) 3.25(4.57)

subset 2
UNet [MIDL22] 42.86(32.68) 44.14(55.27) 55.98(21.43) 15.5(19.45) 60.82(25.62) 33.61(33.55) 53.22(26.58) 31.08(36.09)

CTCT [MIDL22] 69.62(24.8) 18.48(66.43) 76.93(11.94) 4.3(8.34) 86.47(10.78) 5.52(9.79) 77.67(15.84) 9.43(28.19)
Ours 75.98(14.69) 8.21(10.92) 79.68(8.18) 4.75(11.39) 86.8(11.12) 4.2(7.44) 80.82(11.33) 5.72(9.92)

subset 3
UNet [MIDL22] 47.51(30.06) 22.54(48.41) 57.82(25.11) 7.5(11.86) 71.57(27.4) 23.98(80.59) 58.97(27.53) 18(46.96)

CTCT [MIDL22] 69.51(27.47) 25.03(80.51) 69.72(23.24) 4.26(6.04) 78.39(25.51) 17.65(66.49) 72.54(25.41) 15.65(51.01)
Ours 75.53(24.31) 5.46(8.12) 75.9(17.8) 3.75(6.07) 83.26(20.66) 12.43(48.56) 78.23(20.93) 7.21(20.92)
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C.5. Effects of the number of unlabeled data used.

Normally, the amount of unlabeled data is very large in most datasets. Therefore, most
semi-supervised learning methods utilize massive unlabeled data to assist training. However,
in scenarios where the amount of unlabeled data is limited, the sensitivity and robustness of
the model to the number of unlabeled data are particularly important. Therefore, exploring
the impact of the amount of unlabeled data on the model’s performance is significant. In
this section, we conduct experiments on the ACDC dataset under 3 and 7 labeled cases
using a different partition of unlabeled data. Specifically, we use 1/32, 1/16, 1/8, 1/4 and
1/2 partition protocols. When using 1/32 unlabeled data, the number of scans is 2, and
1/16 is 4. Detailed experimental results can be found in Tab. 10.

Surprisingly, our model can achieve the best performance under the 3 labeled case
settings with only 1/2 unlabeled data. Also, using only 1/16 and 1/8 of the unlabeled data
(8 and 16 volumes) slightly degrades the model. And the performance will drop considerably
when using 1/32 of the unlabeled data (DSC from 82.37 to 71.24 and HD95 from 4.28 to
14.7). Except for the 1/32 partition, our model is better than the current SOTA method
CTCT under the other five settings.

When trained with 7 labeled cases, the number of unlabeled data has less impact on
the performance of our proposed model. When only 1/32 of the unlabeled data is used, our
model obtains comparable results to the current SOTA method CTCT, and it is even better
on HD95 (from 5.43 to 3.7). In summary, when the amount of labeled data is larger, the
impact of the amount of unlabeled data on the model is smaller. Besides, our model only
requires a small amount of unlabeled data to assist training and still can achieve satisfactory
performance, further illustrating our proposed method’s effectiveness.

Table 10: Effects of the number of unlabeled data used on the ACDC dataset. Mean and
standard variance (in parentheses) are presented in the table.

Labeled Mean
Unlabeled partition used

1/32 1/16 1/8 1/4 1/2 ALL ALL(CTCT)

3 cases
DSC ↑ 71.24(23.91) 79.47(14.47) 78.01(18.3) 76.4(19.69) 82.63(11.63) 82.37(13.79) 74.16(24.54)
HD95 ↓ 14.7(35.65) 8.76(23.06) 8.8(15.22) 8.06(21.21) 4.76(9.45) 4.28(6.92) 18.27(68.85)

7 cases
DSC ↑ 86.46(8.84) 86.34(8.95) 87.48(6.88) 86.57(8.5) 85.96(8.81) 88.98(6.84) 86.78(7.78)
HD95 ↓ 3.7(6.99) 4.56(8.86) 4.49(9.08) 3.5(6.92) 3.67(6.97) 2.27(3.43) 5.43(10.58)
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Appendix D. Additional visualization results.

Here we visualized more results of the test data from ACDC, BraTS and AMOS to further
indicate our proposed method’s effectiveness. As shown in Fig. 3, Fig. 4, Fig. 5 and Fig. 6,
multiple results have proven the discriminability of our method towards different categories,
especially for the hard-to-segment medium, small size organs. Such as the right ventricle
(RV) in ACDC datasets and adrenal glands (RAG, LAG), and gallbladder (GBL) in the
AMOS dataset.

Figure 3: Visualization of ACDC dataset under 3 labeled cases.
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Figure 4: Visualization of ACDC dataset under 7 labeled cases.

Figure 5: Visualization of BraTS dataset under 25 labeled scans.
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Figure 6: Visualization of AMOS dataset under 30 labeled scans.
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