
Online Model Adaptation
with Feedforward Compensation

Abulikemu Abuduweili, Changliu Liu
Robotics Institute, Carnegie Mellon University
{abulikea,cliu6}@andrew.cmu.edu

Abstract: To cope with distribution shifts or non-stationarity in system dynam-
ics, online adaptation algorithms have been introduced to update offline-learned
prediction models in real-time. Existing online adaptation methods focus on opti-
mizing the prediction model by utilizing feedback from the latest prediction error.
However, this feedback-based approach is susceptible to forgetting past informa-
tion. This work proposes an online adaptation method with feedforward com-
pensation, which uses critical data samples from a memory buffer, instead of the
latest samples, to optimize the prediction model. We prove that the proposed ap-
proach achieves a smaller error bound compared to previously utilized methods in
slow time-varying systems. Furthermore, our feedforward adaptation technique is
capable of estimating an uncertainty bound for predictions.

Keywords: Online Adaptation, Optimization, Behavior Prediction

1 Introduction

Robots rely on prediction models of human behavior or other agents to plan safe and efficient mo-
tions within their environment. The development or learning of accurate and reliable behavior pre-
diction models is crucial for the successful deployment of autonomous systems in environments
involving humans or diverse agents [1, 2, 3]. However, creating a universal prediction model or
algorithm capable of accurately predicting different agents in various scenarios is extremely chal-
lenging. Recognizing this limitation, it becomes necessary and advantageous for robots to have the
capability to adapt their prediction models online when a high-fidelity behavior prediction model is
not available [4, 5, 6, 7]. For instance, consider the prediction of human motion in human-robot col-
laboration, due to variations in individual preferences and behavioral styles, prediction models that
effectively capture one person’s behavior may not be applicable to another individual. In such cases,
online adaptation of the human motion prediction model becomes essential, allowing the robot to
adapt its predictions by observing the specific behaviors of the individual [8, 9]. Similarly, in the
context of autonomous driving, the prediction of surrounding road participants’ behavior necessi-
tates adaptation [10, 11]. Driving behavior is subject to change based on road conditions, weather,
and various environmental factors. During the training phase, it is impractical to collect data encom-
passing all potential scenarios. Consequently, the prediction model of the agent must adapt online
while observing real-time driving behaviors.

In online adaptation, a prediction model receives sequential observations, and an online optimization
algorithm (such as stochastic gradient descent, SGD) is employed to update the model based on the
prediction loss computed from the observed data [12]. The goal of online adaptation is to improve
prediction accuracy in subsequent rounds. Most existing online adaptation approaches are based
on feedback compensation [13, 14, 15], analogous to feedback control. In feedback adaptation, the
prediction model exclusively incorporates the most recent data received. Following the observation
of a new sample, the online optimization algorithm updates the prediction model by calculating the
prediction loss between the previous prediction and the latest ground truth. However, this feedback
compensation approach is prone to disregarding past information, thus limiting its effectiveness.

7th Conference on Robot Learning (CoRL 2023), Atlanta, USA.

In this work, we propose feedforward compensation in online adaptation to maximize information
extraction from existing data, especially those that are more important. In the proposed feedfor-
ward adaptation, we enable recalling to compensate for potential shortsighted behaviors due to
forgetting in general online adaptation [16]. To achieve a balance between forgetting and recalling,
we maintain a memory buffer by storing recent L-steps observations. When similar trajectories are
observed, the feedforward adaptation method will pull similar samples from the memory buffer to
enhance learning. For example, in human behavior prediction tasks, a human subject may exhibit
similar behavior patterns on different days. Discovering such patterns becomes challenging using
conventional online adaptation that solely relies on the most recent data, whereas our feedforward
adaptation method with a memory buffer facilitates their identification. In addition, the proposed
feedforward adaptation is capable of estimating uncertainty bound by comparing the current ob-
servation and historical observations. The proposed approach shares similarity with replay-based
continual learning [17], as both methods involve retaining critical past samples in a buffer and sub-
sequently replaying them to enhance the learning process. However, many replay-based continual
learning techniques employ random replay mechanisms [18, 19] or focus on task or class incremental
problems [17, 20]. Furthermore, online adaptation emphasizes local performance, while continual
learning emphasizes generality. Further discussion on this topic is available in Appendix G. Our
main contributions are summarized below1.

• We introduce a general online adaptation framework.
• We propose a feedforward compensation method in online adaptation. The proposed feedforward

method has a smaller error bound than feedback methods in slow time-varying systems.
• We propose a method for uncertainty-bound estimation, which is agnostic from optimizers.
• We conduct extensive experiments to show that the proposed feedforward adaptation is superior

to conventional feedback adaptation.

2 Problem Overview

Behavior prediction Behavior prediction is a sub-topic of time series prediction, which mainly fo-
cuses on predicting future motions (e.g. trajectory) of human or other agents given the past and cur-
rent observations [21, 22, 23]. Assume the transition function of agent’s behavior is denoted as f . At
time step t, the input to the function is Xt = [xt−I+1, xt−I+2, · · · , xt], which denotes the stack of
I-step recent observations (or states). The output of the function is Yt+1 = [yt+1, yt+2, · · · , yt+O],
which denotes the stack of O-step future predictions. The observations xt and yt are vectors that
may contain trajectories or features, and xt = yt for some cases (e.g. univariate prediction).

Yt+1 = f(t,Xt). (1)

For prediction, we use a parameterized model (e.g. Neural Networks) f̂(θt, Xt) with learnable
parameters θt to estimate the ground-truth transition function f(t,Xt). The analysis of the online
adaptation in the paper is based on the following two conditions about the local smoothness of transi-
tion function f . Assume we maintain a L-size buffer to store recent L-steps historical observations.

Assumption 1. K-Lipschitz continuity condition. At time step t, the function f is locally K Lips-
chitz continuious for the recent L steps input data, if the following holds ∀s ∈ [t− L, t− 1]:

∥f(t,Xt)− f(t,Xs)∥ ≤ K∥Xt −Xs∥, (2)

where K is the bound (real number) for the change of the value of the function over input (observa-
tion) space. Intuitively, a Lipschitz continuous function is limited in how dramatically the function
value can change over input space. Similar to (2), we assume our parameterized function f̂t(θt, :)
(e.g. Neural Networks) is locally Lipschitz continuous ∀s ∈ [t− L, t− 1], with constant value K̂:

∥f̂(θt, Xs)− f̂(θt, Xt)∥ ≤ K̂∥Xt −Xs∥. (3)
1The code of the paper is available at https://github.com/intelligent-control-lab/

Feedforward_Adaptation.

2

https://github.com/intelligent-control-lab/Feedforward_Adaptation
https://github.com/intelligent-control-lab/Feedforward_Adaptation

Assumption 2. δ time-varying condition. At time step t, a transition function f is δ time-varying
for the recent L steps under the input Xs, if the following holds ∀s ∈ [t− L, t− 1]:

∥f(t,Xs)− f(s,Xs)∥ ≤ δ|t− s|, (4)

where δ ∈ R+ is the bound for the change rate on a fixed input observation. It is equivalent to the
local K-Lipschitz continuity condition over time space t, instead of input observation space X . δ
time-varying condition is common for time-series tasks because they usually do not change abruptly.

Online adaptation Online adaptation also can be called adaptable prediction, since it makes an
inference concurring with updating model parameters [7, 9]. In online adaptation, the estimate of
the model parameter is updated iteratively when new data is received. Online adaptation explores
local overfitting to minimize the expected prediction error et+1, at time step t:

Lerr(t) = min
θ

E[et+1] = min
θ

E[∥Yt+1 − f̂(θ,Xt)∥p], (5)

where Yt+1 = f(t,Xt) = [yt+1, yt+2, · · · , yt+O] is the ground truth observation (to be received
in the future) and Ŷt+1 = f̂(θt, Xt)) = [ŷt+1, ŷt+2, · · · , ŷt+O] is the predicted outcome from the
learned model parameter θt. The adaptation objective can be in any ℓp norm.

Feedback adaptation As discussed above, the goal of the online adaptation is to minimize the
expected prediction error in the future (5). Due to the lack of ground-truth value in the current steps,
it is not feasible to directly minimize the prediction error. In feedback adaptation, the objective of
minimizing the prediction error in the future is approximated by minimizing the fitting error in the
past Lfb(t) = minθt ∥Yt − f̂(θt, Xt−1)∥ + λLfb(t − 1) = minθt

∑t
i=1 λ

t−i∥Yi − f̂(θt, Xi−1)∥,
where 0 ≤ λ ≤ 1 is a forgetting factor. Then the optimization is done recursively. At time step
t, after receiving the current observations (xt, yt), the current samples were used to adjust the pa-
rameters of the prediction model by an online optimizer (e.g. SGD). Then a new prediction is
made using the new optimized parameters. In the next time step, the estimate will be updated again
given the new observation and the process repeats. In our main experiment and analysis, we utilize
Stochastic Gradient Descent (SGD) as the optimizer. This selection is equivalent to setting λ = 0 in
Lfb(t), resulting in the objective of optimizing the model using the latest observation. Additionally,
we present results for the case where λ = 1, utilizing the Extended Kalman Filter (EKF) as the
optimizer, as detailed in Appendix F.1.

Several prior works have aimed to enhance the robustness of feedback adaptation, with examples
such as Abuduweili et al. [5], which employs multi-epoch training strategies to reuse hard samples,
resulting in improved overall performance. However, it’s important to note that feedback adaptation,
in its current form, cannot fundamentally address the problem of forgetting. This limitation arises
from the recent-based discounting in the objective function Lfb(t). To tackle this challenge, we
propose a Feedforward Adaptation strategy with different objective functions, enabling the recall of
important or similar past experiences. The next section will delve into the methodology in detail.

3 Methodology

3.1 General Online Adaptation Framework

Feedback adaptation recursively utilizes the latest observations to adapt its models, which may re-
sult in forgetting important past information. In order to enable recalling, we generalize the data
compensation strategy of feedback adaptation (i.e. utilizing the latest observation) to samples from
recent L-steps historical observations. The general online adaptation framework is shown in Al-
gorithm 1. At time step t, after receiving the current observations (xt, yt), we sample the critical
input-output pairs (Xs, ys+1) from recent L-steps historical observations. The critical pair will then
be used to adjust the parameters of the model by an online optimizer (e.g. SGD). As a special case,
the critical pairs are composed by the latest observations Xs = Xt−1 in feedback adaptation.

3

Algorithm 1 General Online Adaptation Framework (Adaptable Prediction)

Require: Initial predictor f(θ0, :) with parameters θ0, Optimizer O(:, :, :); buffer size L

Ensure: Sequence of predictions {Ŷt+1}Tt=1
1: for t = 1, 2, · · · , T do
2: Receive the ground truth observations xt, yt
3: Find the critical input-output pairs for adaptation (Xs, ys+1), with t− L ≤ s < t

4: Adaptation: θt = O(θt−1, ŷs+1, ys+1), where Ŷs+1 = [ŷs+1, · · · , ŷs+O] = f̂(θt−1, Xs)

5: Prediction: Ŷt+1 = [ŷt+1, · · · , ŷt+O] = f̂(θt, Xt)
6: end for

3.2 Feedforward Adaptation

We propose feedforward adaptation algorithms based on the feedforward compensation, which
shares similarities with feedforward control strategies [24]. The proposed feedforward adapta-
tion directly minimizes prediction error (bound) by compensating for historical data without relying
on feedback mechanisms. The feedforward adaptation strategy works by estimating the error bound
of the prediction model and selecting historical data that can compensate for the model to minimize
this error bound. Specifically, when a prediction model encounters a sample resembling very early
data, the feedforward adaptation method retrieves historically similar samples to enhance the learn-
ing process. By incorporating this mechanism, the model benefits from an improved ability to make
predictions without disregarding past information, thereby achieving a minimum error bound.

Feedforward adaptation aims to minimize the upper bound of the prediction error:

Lff (t) = min
θt

Bound[et+1] = min
θt

Bound[∥Yt+1 − f̂(θt, Xt)∥]. (6)

That is equivalent to optimizing the worst-case scenarios [25]. Minimizing the error bound of the
prediction model is critical to providing robust prediction and safe planning [26]. To establish a
sample selection strategy in feedforward compensation for minimizing the error bound, we estimate
the error bound in Lemma 1.

Lemma 1. Error Bound of Online Adaptation. Under the K-Lipschitz continuity condition and
δ time-varying condition (2) to (4), the (prior) prediction error et+1 of general online adaptation
(Algorithm 1) has the following upper bound:

et+1 ≤K∥Xt −Xs∥+ δ|t− s|+ ∥Ys+1 − f̂(θt, Xs)∥+ ∥f̂(θt, Xs)− f̂(θt, Xt)∥ (7)

≤ (K + K̂)∥Xt −Xs∥+ δ|t− s|+ ∥Ys+1 − f̂(θt, Xs)∥. (8)

The error bound estimation comprises three components. The first term accounts for the difference
between the current sample Xt and the selected critical sample Xs; the second term considers the
time difference between current step t and the step s associated with the selected critical samples;
the third term represents the (posterior) fitting error of input-output tuple (Xs, Ys+1), which tends
to be small through appropriate fitting techniques. The proof can be found in Appendix A.

Directly minimizing the error bound (8) is impractical since we do not exactly know the Lipschitz
constant K and time-varying factor δ. However, in a slow time-varying system, it is possible to
simplify the aforementioned error bound.

Slow time-varying system is one whose transition function (or behavior) changes slowly over time,
i.e. δ ≈ 0. The slow time-varying system only assumes that the transition function f varys slowly
(locally) within recent L-steps, not (globally) for every step. Slow time-varying systems are common
in real-world applications because we can choose the adaptation step to be small or the adaptation
rate to be fast compared to the changing rate of the dynamics.2 We describe the detailed condition

2In some cases, we can convert the non-slow-varying system into a slow-varying system by differencing,
more details are shown in Section 4.2.

4

for feedforward adaptation in Section 4.1. In the slow time-varying system, let δ ≈ 0 in the error
bound (8), the optimization objective for the error bound can be simplified as below:

min
θt

Bound[et+1] = min
θt,s

(K + K̂)∥Xt −Xs∥+ ∥Ys+1 − f̂(θt, Xs)∥, (9)

The unknown parameter K still makes it difficult to directly optimize the above objective. To address
the problem, we change the joint minimization over s and θt to a bi-level optimization which first
minimizes the first term of objective (9) over the sampling time step s, then minimizes the second
term of the objective over parameter θt. Thus, the simplified objective function becomes:

Lfinal = min
θt
∥Ys⋆+1 − f̂(θt, Xs⋆)∥ (10)

s.t. s⋆ = arg min
i∈[t−L,t−1]

∥Xt −Xi∥ (11)

In summary, the proposed feedforward adaptation method operates as follows: it selects the most
similar samples to the current observation to create the critical pair (Xs⋆ , Ys⋆+1), as determined by
(11). Subsequently, it employs this critical pair to optimize the prediction model following the prin-
ciples outlined in (10). When connected with Algorithm 1, this approach is essentially a replacement
for the operations in line 4 and line 5 within Algorithm 1, substituting (11) and (10) in their place.
For a comprehensive view of the feedforward adaptation algorithm, please refer to Appendix C.4.

3.3 Uncertainty Estimation

The error bound (7) provides uncertainty estimation of the prediction results. Here we use estimation
of K̃t and δ̃ to approximate real K and δ in (7). We use confidence factor σ ∈ (0, 1] to decay the
error bound. The uncertainty estimation Ût+1 for prediction Ŷt+1 can be computed as:

Ût+1 =σ · (K̃t∥Xt −Xs∥+ δ̃(t− s) + ∥Ys+1 − f̂(θt, Xs)∥+ ∥f̂(θt, Xs)− f̂(θt, Xt)∥). (12)

The confidence factor σ is a predefined hyperparameter, e.g. σ = 0.9 for 90% confidence of un-
certainty estimation. δ̃ and K̃t are also predefined hyperparameters, in our experiments we set
δ̃ = 10−4, K̃ = 1. In order to improve the accuracy of the uncertainty estimation, we have the
option to iteratively update K̃t based on the estimated uncertainty Ût and the actual error et, such
that if the previous uncertainty estimation is much larger than the real error then we shrink the K̃t

value; and vice versa. The K̃t estimation rule are chosen to be:

K̃t = K̃t−1 + β · et − Ût

∥Xt −Xs∥
, β ∈ [0, 1]. (13)

4 Analysis

4.1 Comparison between Feedforward and Feedback Adaptation

The main difference between feedforward adaptation and feedback adaptation lies in the critical
sample selection strategy that used in the optimization. In feedback adaptation, the critical sample
is composed by the latest observation Xs = Xt−1. In the proposed feedforward adaptation, the
critical sample is the most similar sample to the current observation within recent L-steps Xs =
argminXi ∥Xt − Xi∥. In the following analysis, we assume there is no fitting error and mainly
focus on the data selection strategy. The important findings regarding the expected error bounds
for feedforward and feedback adaptations are presented in Lemma 2. Proof of these results can be
found in Appendix B.

Lemma 2. Expected Error Bound. Considering a transition function f(t,X) and a parameterized
model f̂(θ,X) subject to the K-Lipschitz continuity condition and δ time-varying condition (2)
to (4). Let E[|Xt −Xt−1|] := D represent the expected distance between consecutive samples, and
E[minXi

|Xt − Xi|] := D⋆ denote the expected minimum distance. We have the following results
for error bound for feedback adaptation Bfb

e and error bound for feedforward adaptation Bff
e .

5

10
4

10
3

10
2

10
1

0.1

0.2

0.3

0.4

0.5

Av
er

ag
e

E
rr

or

Feedback
Feedforward (L=2)
Feedforward (L=3)
Feedforward (L=5)
Feedforward (L=10)
Feedforward (L=100)
Feedforward (L=1000)

(a) Average error

(b.1)

(b.2)

(b.3)

(b.4)

(b) Prediction output
Figure 1: (a) Average error of feedback and feedforward adaptation with different buffer sizes L and
time-varying factors δ. (b) Prediction output of feedforward (blue curve) and feedback adaptation
(green curve) with buffer size L = 100 and time-varying factor δ = 10−3 and δ = 10−2.

(a) Expectated error bound for feedback adaptation: E[Bfb
e] = (K + K̂)D + δ.

(b) Expected error bound for feedforward adaptation: E[Bff
e] ≤ (K + K̂)D⋆ + δL.

(c) If time-varying factor δ is smaller, specifically δ
K+K̂

< D−D⋆

L−1 , feedforward adaptation has a
smaller expected error bound than feedback adaptation.

(d) If the inputs are random variables sampled from the uniform distribution, Xt ∼ U(0, 1), we
have more concrete conclusions. (1) E[Bfb

e] = K+K̂
3 + δ; (2) E[Bff

e] = K+K̂
L+2 + δL; (3) If

δ
K+K̂

< 1
12 , feedforward adaptation with buffer size L = 2 outperforms feedback adaptation.

The optimal buffer size for minimum error bound is L⋆ =

√
K+K̂

δ − 2.

Numerical Example. We design a toy example to evaluate Lemma 2, where we use a neural network
to learn the a linear time-varying system yt+1 = f(xt) = sinxt + αt where xt ∼ U(0, 1).

The results in Fig. 1a validate the theoretical results from Lemma 2(d). For a smaller time-varying
factor δ, feedforward adaptation with a larger buffer size achieves a smaller prediction error. How-
ever, if δ is larger, the performance of the feedforward adaptation deteriorates. If δ < 0.1, feed-
forward adaptation (buffer size L ≥ 2) outperforms feedback adaptation. Conversely, if δ > 0.1,
feedback adaptation is better. The threshold δ⋆ = 1

12 (K + K̂) ≈ 0.1 aligns with Lemma 2(d).

Figure 1b illustrate the comparison of prediction results between feedforward and feedback adap-
tation. The first row shows the prediction results for δ = 10−3 using feedforward adaptation with
L = 100 (b.1) and feedback adaptation (b.3). As shown in the figure, feedforward adaptation results
in better prediction. The second row shows the prediction results for δ = 10−2. The relatively poor
performance observed in the feedforward approach depicted in Fig. 1b.2 aligns with our theoretical
analysis. Compared to feedback adaptation, the feedforward adaptation method excels at learning
the prediction model using critical samples, enabling it to effectively capture the input-dependent
component, such as sinxt in the numerical examples. However, it struggles to capture the time
dependency, like αt in the numerical examples. Fortunately, the linear time dependency can be
effectively mitigated through differencing (as discussed in the next section).

4.2 Applications of Feedforward Adaptation

According to Lemma 2(c), feedforward adaptation outperforms feedback adaptation when δ ≈ 0,
regardless of the values of δ,K,D,D⋆. To aid in making this determination, we propose a straight-
forward criterion based on time series stationarity analysis.

A stationary time series is one whose properties do not depend on the time at which the series is
observed [27]. For a time series (Xt, Yt+1), stationarity implies that the transition function f : Xt →
Yt+1 does not have a significant time-varying factor δ. To determine the stationarity of a given time
series signal, we employ the ADF test [28]. If the time series is found to be stationary, indicating

6

δ ≈ 0, feedforward adaptation can be used to achieve improved results. If the original time series
is non-stationary, we can employ differencing to transform the series and assess stationarity again
based on the differenced signal. Differencing calculates the difference between two consecutive
observations [29], i.e. predicting dt+1 = Yt+1 − Yt instead of Yt+1. It stabilizes the mean of a time
series and thus reduces the trend. Differencing has the ability to convert many non-stationary series
into stationary ones. Readers are referred to Appendix C for more explanations.

5 Experiments

Dataset. In this section, we conduct a comprehensive evaluation of the proposed feedforward adap-
tation on both robotics-related and real-world time-series benchmarks. The robotics-related scenar-
ios include the following tasks. 1) Human Motion Prediction in Human-Robot Collaboration: For
this task, we utilize the THOR dataset [30] to predict human motion and the Assembly dataset [31]
to predict arm motion. 2) Vehicle Trajectory Prediction in Autonomous Driving: We employ the
NGSIM dataset [32] to assess vehicle trajectory prediction performance. 3) Robotic Arm Trajectory
Prediction for Quality Control and Monitoring: The task involving the prediction of robotic arm
trajectories in pick-and-place scenarios. Moreover, we evaluate the feedforward adaptation on three
well-established real-world time-series benchmarks: 1) Electricity Transformer Temperature (ETT)
dataset [33]; 2) Exchange-Rate dataset [34]; 3) Influenza-like Illness (ILI) dataset.

Experimental Design. We employ a Multi-layer Perceptron (MLP) with direct multistep (DMS)
prediction strategy [35] as our parameterized prediction model f̂(θ, :). We first train prediction
models on the train set. In the evaluation phase, we simulate real-world applications by incremen-
tally receiving observations from the test set. At each time step, we perform online adaptation by
optimizing the model using stochastic gradient descent (SGD) with selected previous observations.
Subsequently, we obtain the prediction output from the updated model. The prediction results are
evaluated using the root-mean-squared error (RMSE) metric. More details of the experimental de-
sign can be found in Appendix D.

Baselines. We compare the proposed feedforward adaptation method with five baseline strategies.
1) w/o adapt performs prediction without any adaptation. 2) Feedback adaptation utilizes the latest
observations to adapt its models [5]. 3) Experience Replay (ER) introduces random sample replay
from this buffer to enhance learning [18] . 4) Average Gradient Episodic Memory (A-GEM) aims to
minimize loss on current data under the constraint of avoiding loss increase on replayed data [19].
5) Sequential Monte Carlo Dropout (SMCD) employs a particle filter to sustain a distribution over
dropout masks, thereby dynamically adapting the neural network to changing environment [36].

Results. We conducted experiments across 10 distinct random seeds and present the mean results
alongside their corresponding standard deviations. Results of the robotics-related datasets are shown
in Table 1. Additionally, results for the general time-series prediction benchmarks are presented
in Table 2. Evidently, the feedforward adaptation method consistently surpasses other baseline
approaches across all datasets. This shows the effectiveness of the similarity-based sample selection
strategy in online adaptation.

Table 1: Performance (RMSE) comparison between the proposed feedforward adaptation method
and other baselines on Robotic-related datasets. We use boldface and underline for the best and
second-best results.

Method\Dataset THOR (m) Assembly (cm) NGSIM (m) Robot arm (rad)

w/o adapt 1.208 ± 0.005 1.324 ± 0.001 1.203 ± 0.011 0.257 ± 0.001
ER 0.914 ± 0.002 1.188 ± 0.001 0.985 ± 0.015 0.210 ± 0.001

A-GEM 0.873 ± 0.002 1.194 ± 0.001 0.935 ± 0.012 0.216 ± 0.001

SMCD 0.937 ± 0.006 1.201 ± 0.001 1.002 ± 0.015 0.210 ± 0.002
Feedback 0.891 ± 0.002 1.191 ± 0.001 0.963 ± 0.012 0.214 ± 0.001

Feedforward 0.839 ± 0.002 1.180 ± 0.001 0.901 ± 0.011 0.193 ± 0.001

7

Table 2: Performance (RMSE) comparison between the proposed feedforward adaptation method
and other baselines on general time-series benchmarks.

Method\Dataset ETTh1 Exchange ILI

w/o adapt 0.485 ± 0.011 0.783 ± 0.006 2.195 ± 0.009

ER 0.391 ± 0.013 0.601 ± 0.013 1.943 ± 0.016
A-GEM 0.373 ± 0.013 0.619 ± 0.013 1.906 ± 0.012

SMCD 0.413 ± 0.015 0.673 ± 0.008 2.051 ± 0.010
Feedback 0.383 ± 0.013 0.619 ± 0.012 1.953 ± 0.013

Feedforward 0.357 ± 0.012 0.589 ± 0.012 1.843 ± 0.011

0 500 1000 1500 2000 2500 3000
Time step

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Pr
ed

ict
io

n
Ou

tp
ut

GroundTruth
Feedforwad Prediction

(a) Prediction and uncertainty

0 500 1000 1500 2000 2500 3000
Time step t

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Pr
ed

ict
io

n
Er

ro
r e

t+
1

w/o Adapt
Random
Feedback
Feedforward

(b) Online prediction error
Figure 2: Experimental results on Assembly dataset. (a) A segment of the prediction output and
uncertainty estimation of the proposed feedforward adaptation. For simplicity, only the prediction
for the future 10th step in the first dimension is plotted. The blue dashed region represents the
uncertainty. (b) Comparison of prediction errors between the feedforward adaptation and other
baselines.

One advantage of the proposed feedforward adaptation is its capability to provide uncertainty esti-
mation, as shown in (12) and (13). Figure 2a shows the prediction output (blue curve), ground truth
label (red curve), and uncertainty estimation (blue dashed region) on the Assembly dataset. It is evi-
dent that the estimated uncertainty generally encompasses the actual ground truth value, confirming
the effectiveness of the proposed uncertainty estimation. Figure 2b showcases the real prediction
error for different adaptation methods over time, with feedforward adaptation exhibiting the small-
est error. Moreover, in the context of periodic data, feedforward compensation inherently possesses
the capacity to capture the underlying periodic patterns within the time series, as demonstrated in
Appendix E.2. Furthermore, the proposed feedforward compensation strategy demonstrates the po-
tential to generate additional improvements beyond the state-of-the-art optimization algorithms for
online adaptation. This approach can be seamlessly integrated with any leading-edge prediction
model, offering an avenue for further enhancements. More discussions are shown in Appendix F.

6 Conclusion, Limitation, and Future work

This paper investigates an effective feedforward adaptation algorithm for behavior prediction tasks.
We provide evidence that feedforward adaptation exhibits a smaller error bound compared to con-
ventional feedback adaptation in slow time-varying systems.

One of the limitations of the work is that the proposed feedforward adaptation method only works
well on slow-varying systems. In the future, we plan to explore the integration of feedforward
and feedback adaptation in more general systems, aiming for a more comprehensive approach and
applications.

8

Acknowledgments

This research is supported by the National Science Foundation (NSF) under Grant No. 2144489.

References
[1] Y. Cheng, L. Sun, C. Liu, and M. Tomizuka. Towards efficient human-robot collaboration with

robust plan recognition and trajectory prediction. IEEE Robotics and Automation Letters, 5
(2):2602–2609, 2020.

[2] J. Li, H. Ma, and M. Tomizuka. Conditional generative neural system for probabilistic trajec-
tory prediction. In 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 6150–6156. IEEE, 2019.

[3] R. Liu, R. Chen, A. Abuduweili, and C. Liu. Proactive human-robot co-assembly: Leveraging
human intention prediction and robust safe control. In 2023 IEEE Conference on Control
Technology and Applications (CCTA), pages 339–345, 2023.

[4] P. Pastor, L. Righetti, M. Kalakrishnan, and S. Schaal. Online movement adaptation based on
previous sensor experiences. In 2011 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 365–371. IEEE, 2011.

[5] A. Abuduweili and C. Liu. Robust nonlinear adaptation algorithms for multitask prediction
networks. International Journal of Adaptive Control and Signal Processing, 35(3):314–341,
2021.

[6] L. Wang, Y. Hu, L. Sun, W. Zhan, M. Tomizuka, and C. Liu. Transferable and adaptable
driving behavior prediction. arXiv preprint arXiv:2202.05140, 2022.

[7] A. Abuduweili, S. Li, and C. Liu. Adaptable human intention and trajectory prediction for
human-robot collaboration. arXiv preprint arXiv:1909.05089, 2019.

[8] Y. Cheng, W. Zhao, C. Liu, and M. Tomizuka. Human motion prediction using semi-adaptable
neural networks. In 2019 American Control Conference (ACC), pages 4884–4890, 2019. doi:
10.23919/ACC.2019.8814980.

[9] A. Bajcsy, A. Siththaranjan, C. J. Tomlin, and A. D. Dragan. Analyzing human models that
adapt online. In 2021 IEEE International Conference on Robotics and Automation (ICRA),
pages 2754–2760. IEEE, 2021.

[10] W. Si, T. Wei, and C. Liu. Agen: Adaptable generative prediction networks for autonomous
driving. In 2019 IEEE Intelligent Vehicles Symposium (IV), pages 281–286. IEEE, 2019.

[11] P. Kothari, D. Li, Y. Liu, and A. Alahi. Motion style transfer: Modular low-rank adaptation for
deep motion forecasting. In Conference on Robot Learning, pages 774–784. PMLR, 2023.

[12] A. Blum. On-line algorithms in machine learning. Online algorithms: the state of the art,
pages 306–325, 2005.

[13] A. Tonioni, F. Tosi, M. Poggi, S. Mattoccia, and L. D. Stefano. Real-time self-adaptive deep
stereo. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pages 195–204, 2019.

[14] A. Abuduweili and C. Liu. Robust online model adaptation by extended kalman filter with
exponential moving average and dynamic multi-epoch strategy. In Learning for Dynamics and
Control, pages 65–74. PMLR, 2020.

[15] S. Bhasin, R. Kamalapurkar, H. T. Dinh, and W. E. Dixon. Robust identification-based state
derivative estimation for nonlinear systems. IEEE Transactions on Automatic Control, 58(1):
187–192, 2012.

9

http://dx.doi.org/10.23919/ACC.2019.8814980
http://dx.doi.org/10.23919/ACC.2019.8814980

[16] C. Paleologu, J. Benesty, and S. Ciochina. A robust variable forgetting factor recursive least-
squares algorithm for system identification. IEEE Signal Processing Letters, 15:597–600,
2008.

[17] B. Bagus and A. Gepperth. An investigation of replay-based approaches for continual learning.
In 2021 International Joint Conference on Neural Networks (IJCNN), pages 1–9. IEEE, 2021.

[18] A. Chaudhry, M. Rohrbach, M. Elhoseiny, T. Ajanthan, P. K. Dokania, P. H. Torr, and M. Ran-
zato. On tiny episodic memories in continual learning. arXiv preprint arXiv:1902.10486,
2019.

[19] A. Chaudhry, M. Ranzato, M. Rohrbach, and M. Elhoseiny. Efficient lifelong learning with
a-gem. In International Conference on Learning Representations, 2018.

[20] P. Yin, A. Abuduweili, S. Zhao, L. Xu, C. Liu, and S. Scherer. Bioslam: A bioinspired lifelong
memory system for general place recognition. IEEE Transactions on Robotics, pages 1–20,
2023.

[21] J. Butepage, M. J. Black, D. Kragic, and H. Kjellstrom. Deep representation learning for hu-
man motion prediction and classification. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 6158–6166, 2017.

[22] S. Lefèvre, D. Vasquez, and C. Laugier. A survey on motion prediction and risk assessment
for intelligent vehicles. ROBOMECH journal, 1(1):1–14, 2014.

[23] A. S. Weigend. Time series prediction: forecasting the future and understanding the past.
Routledge, 2018.

[24] R. C. Dorf. Modern control system. 2008.

[25] T. Roughgarden. Beyond the worst-case analysis of algorithms. Cambridge University Press,
2021.

[26] N. E. Du Toit and J. W. Burdick. Robot motion planning in dynamic, uncertain environments.
IEEE Transactions on Robotics, 28(1):101–115, 2011.

[27] D. Kwiatkowski, P. C. Phillips, P. Schmidt, and Y. Shin. Testing the null hypothesis of station-
arity against the alternative of a unit root: How sure are we that economic time series have a
unit root? Journal of econometrics, 54(1-3):159–178, 1992.

[28] D. A. Dickey and W. A. Fuller. Distribution of the estimators for autoregressive time series
with a unit root. Journal of the American statistical association, 74(366a):427–431, 1979.

[29] R. J. Hyndman and G. Athanasopoulos. Forecasting: principles and practice. OTexts, 2018.

[30] A. Rudenko, T. P. Kucner, C. S. Swaminathan, R. T. Chadalavada, K. O. Arras, and A. J.
Lilienthal. Thör: Human-robot navigation data collection and accurate motion trajectories
dataset. IEEE Robotics and Automation Letters, 5(2):676–682, 2020.

[31] R. Liu and C. Liu. Human motion prediction using adaptable recurrent neural networks and
inverse kinematics. IEEE Control Systems Letters, 5(5):1651–1656, 2020.

[32] J. Colyar and J. Halkias. Us highway 101 dataset. Federal Highway Administration (FHWA),
Tech. Rep. FHWA-HRT-07-030, 2007.

[33] H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, and W. Zhang. Informer: Beyond
efficient transformer for long sequence time-series forecasting. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35, pages 11106–11115, 2021.

10

[34] G. Lai, W.-C. Chang, Y. Yang, and H. Liu. Modeling long-and short-term temporal patterns
with deep neural networks. In The 41st international ACM SIGIR conference on research &
development in information retrieval, pages 95–104, 2018.

[35] A. Zeng, M. Chen, L. Zhang, and Q. Xu. Are transformers effective for time series forecasting?
arXiv preprint arXiv:2205.13504, 2022.

[36] P. Carreno, D. Kulic, and M. Burke. Adapting neural models with sequential monte carlo
dropout. In Conference on Robot Learning, pages 1542–1552. PMLR, 2023.

[37] Z. Allen-Zhu, Y. Li, and Z. Song. A convergence theory for deep learning via over-
parameterization. In International Conference on Machine Learning, pages 242–252. PMLR,
2019.

[38] R. Pyke. Spacings. Journal of the Royal Statistical Society: Series B (Methodological), 27(3):
395–436, 1965.

[39] G. A. Noghre, V. Katariya, A. D. Pazho, C. Neff, and H. Tabkhi. Pishgu: Universal path
prediction architecture through graph isomorphism and attentive convolution. arXiv preprint
arXiv:2210.08057, 2022.

[40] L. Wang, X. Zhang, H. Su, and J. Zhu. A comprehensive survey of continual learning: Theory,
method and application. arXiv preprint arXiv:2302.00487, 2023.

[41] S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert. icarl: Incremental classifier and
representation learning. In Proceedings of the IEEE conference on Computer Vision and Pat-
tern Recognition, pages 2001–2010, 2017.

[42] C. F. Perez, F. P. Such, and T. Karaletsos. Efficient transfer learning and online adaptation with
latent variable models for continuous control. arXiv preprint arXiv:1812.03399, 2018.

[43] A. Nagabandi, C. Finn, and S. Levine. Deep online learning via meta-learning: Continual
adaptation for model-based rl. arXiv preprint arXiv:1812.07671, 2018.

11

A Lemma 1: Error Bound of Online Adaptation

In this section, we establish the error bound for prediction errors in the general online adaptation.
At time step t, we select the critical input-output pairs (Xs, ys+1) from recent L-steps observa-
tions.These critical pairs are utilized to update the parameters of the prediction model, resulting in a
refined model. Subsequently, predictions are made using the newly optimized parameters.

Assuming that the transition function f : Xt → Yt+1 satisfies the K-Lipschitz continuity condition
and the δ time-varying condition.

Bound of ground-truth difference. Given a transition function f(t,X), if the K-Lipschitz conti-
nuity and δ time-varying conditions holds within recent L steps, then the ground-truth value Yt+1

and Ys+1 has the following property:

∥Yt+1 − Ys+1∥ = ∥f(t,Xt)− f(s,Xs)∥ ≤ K∥Xt −Xs∥+ δ∥t− s∥ (14)

The proof is shown below:

∥Yt+1 − Ys+1∥ = ∥f(t,Xt)− f(s,Xs)∥
= ∥f(t,Xt)− f(t,Xs) + f(t,Xs)− f(s,Xs)∥
≤ ∥f(t,Xt)− f(t,Xs)∥+ ∥f(t,Xs)− f(s,Xs)∥ (triangle inequality)

≤ K∥Xt −Xs∥+ ∥f(t,Xs)− f(s,Xs)∥ (K Lipschitzness)

≤ K∥Xt −Xs∥+ δ|t− s| (δ time varying) (15)

Error Bound of Online Adaptation. For time step t, the (prior) prediction error et+1 has the
following inequality:

et+1 = ∥Yt+1 − Ŷt+1∥ = ∥Yt+1 − f̂(θt, Xt)∥
= ∥Yt+1 − Ys+1 + Ys+1 − f̂(θt, Xs) + f̂(θt, Xs)− f̂(θt, Xt)∥
≤ ∥Yt+1 − Ys+1∥+ ∥Ys+1 − f̂(θt, Xs)∥+ ∥f̂(θt, Xs)− f̂(θt, Xt)∥ (triangle inequality)

≤ K∥Xt −Xs∥+ δ|t− s|+ ∥Ys+1 − f̂(θt, Xs)∥+ ∥f̂(θt, Xs)− f̂(θt, Xt)∥ (16)

The first two terms come from the difference between ground-truth Yt+1 − Ys+1, the third term
is a (posterior) fitting error for input-output tuple (Xs, Ys+1), and the last term is the difference
between two predictions. Combining the above inequality with the Lipschitz continuity condition
for f̂(θt, Xt), we obtain the error bound for general online adaptation is shown below:

et+1 ≤ (K + K̂)∥Xt −Xs∥+ δ|t− s|+ ∥Ys+1 − f̂(θt, Xs)∥ (17)

Then lemma 1 is derived.

B Comparison of Error Bound between Feedforward Adaptation and
Feedback Adaptation

B.1 Lemma 2 (a,b,c): Expected Error Bound

Considering the error bound (17), the first two terms are associated with the specific data compensa-
tion strategy, while the last term represents the posterior fitting error on the selected samples. In this
study, our main focus is on the data compensation strategy, and we do not prioritize the data fitting
aspect. Additionally, with a powerful neural network prediction model, achieving a very small fitting
error (almost zero) is relatively straightforward [37]. Therefore, we can disregard the fitting error
when comparing feedforward and feedback adaptation. By neglecting the fitting error, we obtain an
approximate upper bound Be for general online adaptation, as shown below:

Be = (K + K̂)∥Xt −Xs∥+ δ|t− s| (18)

Error Bound for Feedforward Adaptation. In feedforward adaptation, the selected input-output
pairs are the most similar samples to the current observation Xs = argminXi

∥Xt − Xi∥ from

12

L-size buffer, and s = argmini∈[t−L,t−1] ∥Xt − Xi∥. Then we have an error bound Bff
e for

feedforward adaptation:

Bff
e = (K + K̂)∥Xt −Xs∥+ δ|t− s| ≤ (K + K̂)∥Xt −Xs∥+ δL (19)
Xs = arg min

Xi∈[Xt−L,Xt−1]
∥Xt −Xi∥ (20)

Error Bound for Feedback Adaptation. In feedback adaptation, the selected input-output pairs are
the latest observations Xs = Xt−1 and s = t−1. Then we have an error bound Bfb

e for feedforward
adaptation:

Bfb
e = (K + K̂)∥Xt −Xt−1∥+ δ (21)

Comparison of the expected error bound between Feedforward and Feedback Adaptation. Let
the expected distance between consecutive samples is D:

D := E[∥Xt −Xt−1∥]. (22)

Let the expected minimum sample distance is D⋆:

D⋆ := E[∥Xt −Xs∥] = E[min
Xi

∥Xt −Xi∥]. (23)

Then the expected error bound for feedforward adaptation is:

E[Bff
e] ≤ (K + K̂)E[∥Xt −Xs∥] + δL = (K + K̂)D⋆ + δL. (24)

The expected error bound for feedback adaptation is:

E[Bfb
e] = (K + K̂)E[∥Xt −Xt−1∥] + δ = (K + K̂)D + δ. (25)

Consider the conditions that feedforward adaptation has a smaller error bound than feedback adap-
tation in expectation. In order to make: E[Bff

e] < E[Bfb
e], we have:

(K + K̂)D⋆ + δL < (K + K̂)D + δ (26)

⇒ δ

K + K̂
<

D −D⋆

L− 1
(27)

Equation (27) represents the condition under which feedforward adaptation surpasses feedback
adaptation in terms of the expected error bound. Here, the hyperparameter L denotes the prede-
fined buffer size. It is important to note that when L = 1, feedforward adaptation is equivalent to
feedback adaptation. Therefore, our focus is primarily on the case when L > 1. From the equation,
we observe that if the system exhibits a smaller time-varying property δ compared to the Lipschitz
constant K, and a smaller minimum sample distance D⋆, feedforward adaptation is more likely
to achieve a greater improvement over feedback adaptation. For instance, when δ = 0, we have
E[Bff

e] < E[Bfb
e] for any K, K̂,D,D⋆, and L.

By combining (24), (25) and (27), we can conclude Lemma 2 (a,b,c).

B.2 Lemma 2 (d): Expected Error Bound on Random-input System

Consider a transition function f with randomly sampled input observations. Specifically, input Xt

is a random variable sampled from the uniform distribution: Xt ∼ U(0, 1). In this case, the current
sample Xt and last sample Xt−1 are independent random variables from U(0, 1). According to [38],
the expectation of the distance between these two independent and uniform-distributed variables is
1
3 . Then for feedback adaptation

E[∥Xt −Xt−1∥] =
1

3
, for Xt, Xt−1 ∼ U(0, 1) (28)

The term E[minXi ∥Xt − Xi∥] represents the expected minimum distance between the current
sample Xt and previous L samples in the buffer, which is 1

L+2 [38], according to [38]. Then for
feedforward adaptation:

E[∥Xt −Xs∥] = E[min
Xi∈[Xt−L,Xt−1]

∥Xt −Xi∥] =
1

L+ 2
, for Xt, Xi ∼ U(0, 1) (29)

13

Let D = 1
3 , D

⋆ = 1
L+2 on the expected error bound (24) and (25), we obtain the expected error

bound for feedforward and feedback adaptation on the system with random input:

E[Bff
e] = (K + K̂)D⋆ + δL =

K + K̂

L+ 2
+ δL (30)

E[Bfb
e] = (K + K̂)D + δ =

K + K̂

3
+ δ (31)

Consider the conditions that feedforward adaptation has a smaller error bound than feedback adap-
tation in expectation. In order to make: E[Bff

e] < E[Bfb
e], we have:

(K + K̂)D⋆ + δL < (K + K̂)D + δ (32)

⇒ K + K̂

L+ 2
+ δL <

K + K̂

3
+ δ (33)

⇒ δ

K + K̂
<

1

3L+ 6
(34)

If L = 1, the feedforward adaptation is equal to the feedback adaptation. For feedforward adapta-
tion, we have L > 1. Then we consider the buffer size L = 2 as general settings, then conclude the
conditions for applying feedforward adaptation:

δ

K + K̂
<

1

3L+ 6
=

1

12
≈ 0.083 (35)

In this case, with the optimal buffer size L = L⋆ :=

√
K+K̂

δ − 2, feedforward adaptation achieves
the smallest expected error bound:

E[Bff
e]⋆ = 2

√
δ(K + K̂)− 2δ (36)

As can be seen, if δ ≈ 0, feedforward adaptation could achieve the zero expected error bound with
optimal buffer size L⋆, while feedback adaptation cannot converge to zero expected error bound.

Thus, given a prediction system f with a random input state, if δ
K+K̂

< 1
12 , with buffer size L = 2,

feedforward adaptation achieves the smaller expected error bound than feedback adaptation. In this

case, the optimal buffer size for minimum error bound is L⋆ =

√
K+K̂

δ − 2.

By combining (30), (31), (35) and (36), one can conclude Lemma 2 (d).

B.3 Synthetic Experiments: Linear Time-varying System

We design a toy experiment to evaluate Lemma 2. We consider the following linear time-varying
system

yt+1 = f(xt) = sinxt + δt, xt ∼ U(0, 1)

Our parameterized prediction model is a one-layer perception with Sigmoid activation function.

ŷt = f̂(Vt, bt;xt) = S(Vtxt) + bt =
1

1 + e−Vtxt
+ bt (37)

Where S(·) denotes a Sigmoid activation function. We have The Lipschitz constant K and K̂ for
the ground-truth function f and the one-layer perception f̂ :

K = sup | ∂f
∂xt
| = sup | cos(xt)| = 1 (38)

K̂ = sup(| ∂f̂
∂xt
|) = sup |Vt · S(Vtxt) · (1− S(Vtxt)) | = 0.25 sup |Vt| (39)

14

We use SGD as an optimizer in feedback and feedforward adaptation. During training, we keep the
∥Vt∥ bounded, i.e. ∥Vt∥ ≤ 1, then K̂ = 0.25. We use Lemma 3 (30) and (31) to calculate the error
bound for feedback and feedforward adaptation:

E[Bfb
e] =

5

12
+ δ (40)

E[Bff
e] =

5

4L+ 8
+ δL (41)

Then we calculate the threshold δ⋆ (35). If δ ≤ δ⋆, feedforward adaptation has a smaller error
bound.

δ⋆

K + K̂
=

1

12
(42)

⇒ δ⋆ =
1

12
(K + K̂) ≈ 0.1 (43)

Thus, in the toy experiment, If δ ≤ 0.1, feedforward adaptation has a smaller error bound. The
experimental results are shown in Figure 1 of the main paper.

C Applications of Feedforward Adaptation

When determining whether to apply feedforward adaptation to a system or time-series function,
Lemma 2(c) can serve as a criterion. However, estimating the values of δ,K,D,D⋆ for the system
is required. As a straightforward and conservative approach, if δ ≈ 0, feedforward adaptation
outperforms feedback adaptation for any δ,K,D,D⋆. To simplify this decision-making process, we
propose a simple criterion based on the widely used stationarity test in time-series analysis.

C.1 Stationary time series and ADF test

A stationary time series is one that exhibits properties that do not depend on time. Therefore, a sta-
tionary time series does not possess trends or seasonality. In the context of a time series (Xt, Yt+1),
stationarity implies that the transition function f : Xt → Yt+1 is not explicitly linked to the time
step t. In accordance with the δ time-varying condition, which is equivalent to δ ≈ 0.

The Augmented Dickey-Fuller (ADF) test is a widely used method for detecting the stationarity of
a time series [28]. It tests the null hypothesis that a time series is non-stationary or time-dependent
(i.e., it has a unit root), while the alternative hypothesis suggests stationarity, indicating that it cannot
be represented by a unit root. The ADF test yields a p-value that is used to assess the test. As the
proposed feedforward algorithm does not necessitate an exceedingly strict stationary condition, we
have set the threshold between stationary and non-stationary in our task to be 0.1. If the p-value is
less than 0.1, we reject the null hypothesis and conclude that the series is stationary. Conversely, if
the p-value is greater than or equal to 0.1, we fail to reject the null hypothesis and conclude that the
series is non-stationary.

C.2 Differencing

In many real-world scenarios, time series signals exhibit non-stationarity. Therefore, it is crucial to
transform these non-stationary signals into stationary ones in order to apply feedforward adaptation
effectively. One approach to achieve this is by computing the differences between consecutive ob-
servations, denoted as dt+1 = Yt+1−Yt. This process is commonly referred to as differencing [29].
Differencing helps stabilize the mean of a time series by eliminating changes in its level and remov-
ing trends. By applying differencing, it becomes possible to convert many non-stationary series into
stationary ones, thereby facilitating the use of feedforward adaptation.

C.3 Criterion for applying feedforward adaptation

The criterion and procedure for applying feedforward adaptation are presented in Figure 2 of the
main paper. In this approach, given a time series (Xt, Yt+1), such as the training set of the prediction

15

task f : Xt → Yt+1, we follow a specific process based on the stationarity of the series. If the ADF
test indicates that the series is stationary, we directly apply feedforward adaptation to the original
series. This involves prediction and adaptation on Yt+1 = f(t,Xt). If the series is found to be non-
stationary, we employ differencing by calculating the difference between consecutive observations,
denoted as dt+1 = Yt+1 − Yt. We then assess the stationarity of the differenced signal dt+1. If
it is determined to be stationary, we proceed with feedforward adaptation on the difference series.
This entails prediction and adaptation on dt+1, followed by converting it back to Yt+1 = Yt + dt+1

based on the value of Yt. If the differenced signal remains non-stationary even after differencing, we
resort to feedback adaptation for handling the non-stationary signal. The criterion and procedure for
applying feedforward adaptation are shown in Fig. 3. Please note that the differencing operator can
be applied up to K ≥ 1 times. In our experiments, we utilize at most one differencing operation,
which is equivalent to predicting velocity in trajectory datasets.

!!"# = #(%, '!) Is stationary?
() ≈ 0	?)

No

Yes

Feedforward Adapt (of !!"#)

Differencing: .!"# = !!"# − !! Is stationary?
() ≈ 0	?)

Yes

Feedback Adapt
No

ADF Test ADF Test

Feedforward Adapt (of .!"#)

Loop at most K times

!! ← .!
Figure 3: The criterion and procedure for applying feedforward adaptation.

C.4 Feedforward Adaptation Algorithms

Algorithm 2 Online Adaptation with Feedforward Compensation

Require: Initial predictor f(θ0, :) with parameters θ0, Optimizer O(:, :, :), L-size buffer B
Ensure: Sequence of predictions {Ŷt+1}Tt=1 and estimated uncertainty {Ût+1}Tt=1

1: for t = 1, 2, · · · , T do
2: Receive the ground truth observation values xt, yt; Construct input Xt = [xt−I+1, · · · , xt]
3: Find the critical (similar) input-output pairs (Xs⋆ , ys⋆+1) from buffer B by (11)
4: Adaptation by (10): θt = O(θt−1, ŷs⋆+1, ys⋆+1)

5: Prediction: Ŷt+1 = [ŷt+1, · · · , ŷt+O] = f(θt, Xt)

6: Uncertainty Ût+1 Estimation by (12) and (13)
7: Add current data to buffer: B.append(Xt, yt)
8: if size(B) > L then
9: B ← keep more recent samples (B,L)

10: end if
11: end for

D Additional Details of Experimental Design

D.1 Dataset

We evaluate the effectiveness of the proposed feedforward adaptation method in three robotic-related
scenarios: (1) Human motion prediction in human-robot collaboration, using the THOR dataset
and Assembly dataset; (2) Vehicle trajectory prediction in autonomous driving, using the NGSIM
dataset; and (3) Robotic arm trajectory prediction for quality control and monitoring purposes, using
the Robot arm trajectory dataset. The specific tasks for each dataset are illustrated in Fig. 4.

The description of the robotic-related datasets is shown below.

• THOR3 is a public dataset of human motion trajectories, recorded in a controlled indoor experi-
ment [30]. Which includes the motion trajectories with diverse and accurate social human motion

3http://thor.oru.se/

16

http://thor.oru.se/

(a) THOR human motion prediction dataset (b) Arm motion prediction in assembly tasks

(c) NGSIM vehicle trajectory prediction
dataset

(d) Robot arm trajectory prediction in pick-
and-place tasks

Figure 4: Illustration of tasks in different datasets. Figure (a) is copied from the public website of
the THOR dataset http://thor.oru.se/; Figure (b) is copied from the website of the Assembly
dataset https://github.com/intelligent-control-lab/Human_Assembly_Data; Figure
(c) is copied from the public website of the NGSIM dataset https://data.transportation.
gov/Automobiles/Next-Generation-Simulation-NGSIM-Program-I-80-Vide/
2577-gpny; Figure (d) shows a KINOVA robot arm performing pick-and-place tasks in our
dataset.

data in a shared indoor environment. In our experiments, we use No. 2 ∼ 4 agent’s trajectory as
a train set and No. 5 ∼ 10 agent’s trajectory as a test set.

• Assembly dataset 4 records arm motions in assembly tasks. This dataset includes 5 different
assembly tasks. Each task requires the human to use LEGO pieces to assemble an object. In our
experiments, we use task 1 ∼ 2 as a train set and task 3 ∼ 5 as a test set.

• NGSIM dataset: US 101 human driving data from Next Generation SIMulation dataset 5. The
dataset contains highway driving trajectories captured by cameras mounted on top of surrounding
buildings [32]. In our experiment, we use a subset of the dataset which contains 100 trials of
different agents. We use No. 1 ∼ 50 trial’s trajectory as a train set and No. 50 ∼ 100 trial’s
trajectory as a test set.

• We collect the Robot arm trajectory dataset, which records the joint position (De-
navit–Hartenberg parameters) of the KINOVA Gen 3 (7 DoF) robotic arm in pick-and-place
tasks. This dataset includes 4 pick-and-place tasks for picking objects from different positions
on a workbench. In our experiments, we use task 1 ∼ 2 as a train set and task 2 ∼ 4 as a test set.

4https://github.com/intelligent-control-lab/Human_Assembly_Data
5https://www.fhwa.dot.gov/publications/research/operations/07030/index.cfm

17

http://thor.oru.se/
https://github.com/intelligent-control-lab/Human_Assembly_Data
https://data.transportation.gov/Automobiles/Next-Generation-Simulation-NGSIM-Program-I-80-Vide/2577-gpny
https://data.transportation.gov/Automobiles/Next-Generation-Simulation-NGSIM-Program-I-80-Vide/2577-gpny
https://data.transportation.gov/Automobiles/Next-Generation-Simulation-NGSIM-Program-I-80-Vide/2577-gpny
https://github.com/intelligent-control-lab/Human_Assembly_Data
https://www.fhwa.dot.gov/publications/research/operations/07030/index.cfm

In addition to the evaluation of four robotics-related datasets, we further assess the proposed feed-
forward adaptation method using three real-world time-series benchmarks: ETT (Electricity Trans-
former Temperature), Exchange-Rate, and ILI (Influenza-like Illness) dataset. These three datasets
are extensively employed within the domain of time-series prediction research. The description of
the time-series benchmarks datasets is shown below.

• ETT [33] dataset contains the data collected from electricity transformers, including load and
oil temperature that are recorded every 15 minutes between July 2016 and July 2018. Which
consists of two hourly-level datasets (ETTh) and two 15-minute-level datasets (ETTm). In our
experiments, we used the first hourly-level dataset ETTh1 as a univariance prediction task.

• Exchange-Rate [34] records the daily exchange rates of eight countries from 1990 to 2016.
• ILI 6 describes the ratio of patients seen with ILI and the total number of patients. Which includes

the weekly recorded influenza-like illness (ILI) patients data from the Centers for Disease Control
and Prevention of the United States between 2002 and 2021.

D.2 Stationarity test of datasets

As discussed in Appendix C, we use the ADF method to test the stationarity of the time-series data
and check the slow-varying property of its transition function. If the p-value of the ADF test is less
than 0.1, we can reject the null hypothesis and conclude that the time series is stationary. If the
p-value of the ADF test is greater than 0.1, we cannot reject the null hypothesis and conclude that
the time series is non-stationary.

Table 3: ADF test results for raw time-series and the difference signal on Thor, Assembly, NGSIM,
Robot arm datasets.

Dataset THOR Assembly NGSIM Robot arm
P value on Raw Series 0.005 (stationary) 4e-3 (stationary) 0.34 (nonstationary) 0.09 (stationary)
P value on Difference < 0.001 < 0.001 0 (stationary) 0.008

Table 4: ADF test results for ETTh1, Exchange-rate, and ILI datasets.
Dataset ETTh1 Exchange-rate ILI

P value on Raw Series 0.008 (stationary) 0.533 (non-stationary) 0.049 (stationary)
P value on Difference 0 0 < 0.001

The outcomes of the Augmented Dickey-Fuller (ADF) test on the robotics-related datasets are pre-
sented in Table 3. It is evident that the original trajectories (raw signals) for the THOR, Assembly,
and Robot Arm datasets exhibit stationarity. This suggests that the transition function for these
datasets changes slowly over time. On the other hand, for the NGSIM dataset, the original trajectory
is non-stationary, but the difference signal (velocity) is stationary. In our experiments, we apply
feedforward adaptation to the raw trajectory for the THOR, Assembly, and Robot Arm datasets, and
we apply feedforward adaptation to velocity (difference signal) for the NGSIM dataset.

In the case of general time-series datasets, to maintain consistency with previous works [33] that
directly predict raw time-series signals (without differencing), we employ feedforward adaptation
on the original raw signals. For reference, the ADF test results of the general time-series datasets
are depicted in Table 4.

D.3 Experimental design

Parameterized Prediction models. We utilize a Multi-layer Perceptron (MLP) with a direct mul-
tistep (DMS) prediction strategy [35]. The choice of MLP with DMS is motivated by the superior
performance of a simple MLP over many larger Transformer-based models, as reported in [35]. Our

6https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html

18

https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html

MLP architecture consists of two layers. The first layer can be considered as an Encoder, denoted
as Xt = W · Xt. Following the encoder, the MLP incorporates layer normalization, an activation
function, and a final linear projection represented as Yt+1 = V ·Relu(LayerNorm(Xt)). The layer
normalization and the final projection can be viewed as a decoder. It is worth noting that we do not
flatten the input for the MLP. The expression Xt = W ·Xt represents a linear layer applied along
the temporal axis.

Baselines. We compare the proposed feedforward adaptation method with five baseline strategies.

• w/o adapt performs prediction without any adaptation, serving as a lower bound for all adaptation
methods.

• Feedback adaptation is a widely used online adaptation strategy, which utilizes the latest obser-
vations to adapt its models and minimize the fitting error for the last observations [5].

• Experience Replay (ER) is a widely used replay-based continual learning approach [18]. ER
maintains a compact memory buffer containing select old training samples. During each iteration,
ER introduces random sample replay from this buffer to enhance learning.

• Average Gradient Episodic Memory (A-GEM) integrates memory-relay and constrained optimiza-
tion [19]. Similar to ER, A-GEM employs random data replay from the memory buffer. However,
A-GEM’s unique aspect is that its objective doesn’t directly minimize loss on replayed samples.
Instead, it aims to minimize loss on current data under the constraint of avoiding loss increase on
replayed data.

• Sequential Monte Carlo Dropout (SMCD) is a simple and effective approach to adapting neural
models in response to changing settings [36]. SMCD treats learning a network with a dropout
layer akin to learning an ensemble of prediction distribution. At the adaptation phase, SMCD em-
ploys a particle filter to sustain a distribution over dropout masks, thereby dynamically adapting
the neural model to evolving settings.

Hyperparameters. For offline training, we follow the strategy in [35]. In adaptation, we set the
learning rate of SGD as η = 0.001. Buffer size for feedforward adaptation is L = 1000. For
uncertainty estimation, we set δ̃ = 0, K̃ = 1.

Input and output horizon of prediction task. For the robotics-related datasets, the prediction
model utilizes the most recent 1 second of observations to predict the trajectory for the next 2 sec-
onds. To ensure consistent sampling frequencies, we subsampled the THOR and Assembly datasets
to 20Hz. For these datasets, we set the input horizon to 20 and the prediction horizon to 40. The
NGSIM dataset has a sampling frequency of 15Hz, so we adjusted the input horizon to 15 and the
prediction horizon to 30 accordingly. As for the Robot arm trajectory dataset, we subsampled it to a
sampling frequency of 25Hz and set the input horizon to 25 and the prediction horizon to 50.

Adaptation and Evaluation. We first train prediction models on the train set. In the evaluation
phase, we simulate real-world applications by incrementally receiving observations from the test set.
At each time step, online adaptation is used to optimize the normalization layers of the model using
stochastic gradient descent (SGD) with selected previous observations. To leverage the pretrained
feature extraction part of the model without changing the parameters of the entire model, we only
update the parameters of the normalization layer. Subsequently, we obtain the prediction output
from the updated model. The prediction results are evaluated using the root-mean-squared error
(RMSE) metric.

Concerning the real-world time-series benchmarks, we align our settings with those presented in the
LTSF-benchmark [35]. The ETTh1 and Exchange-rate datasets share an input horizon of I = 96
and an output horizon of O = 192. Conversely, the ILI dataset entails an input horizon of I = 36
and an output horizon of O = 36.

19

0 200 400 600 800 1000
Time step

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Pr
ed

ict
io

n
Ou

tp
ut

GroundTruth
Feedforwad Prediction

(a) Prediction and uncertainty (b) Online prediction error
Figure 5: Experimental results on THOR dataset.

E Additional Experimental Results

E.1 Prediction output and Prediction Error

Figure 5a shows the prediction output (blue curve), ground truth label (red curve), and uncertainty
estimation (blue dashed region) on the THOR dataset. Figure 5b shows the real prediction error
for different adaptation methods over time. Notably, feedforward adaptation exhibits the lowest
prediction error among them.

(a) Prediction and uncertainty

0 200 400 600 800 1000
Time step t

0

5

10

15

20

25

30

Pr
ed

ict
io

n
Er

ro
r e

t+
1

w/o Adapt
Random
Feedback
Feedforward

(b) Online prediction error
Figure 6: Experimental results on NGSIM dataset.

Figure 6a shows the prediction output (blue curve), ground truth label (red curve), and uncertainty
estimation (blue dashed region) on the NGSIM dataset. Figure 6b shows the real prediction error
for different adaptation methods over time. Notably, feedforward adaptation exhibits the lowest
prediction error among them.

Figure 7a shows the prediction output (blue curve), ground truth label (red curve), and uncertainty
estimation (blue dashed region) on the Robot arm dataset. Figure 7b shows the real prediction error
for different adaptation methods over time. Notably, feedforward adaptation exhibits the lowest
prediction error among them.

Figure 8a shows the prediction output (blue curve), ground truth label (red curve), and uncertainty
estimation (blue dashed region) on the Etth1 dataset. Figure 8b shows the real prediction error
for different adaptation methods over time. Notably, feedforward adaptation exhibits the lowest
prediction error among them.

E.2 Study of the sample selection strategy of different adaptation methods

Feedforward adaptation selects samples with the smallest sample difference minXi
|Xt −Xi|. This

selection strategy allows feedforward adaptation to inherently capture the periodicity in time-series

20

0 200 400 600 800 1000 1200 1400
Time step

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

Pr
ed

ict
io

n
Ou

tp
ut

GroundTruth
Prediction

(a) Prediction and uncertainty

0 200 400 600 800 1000 1200 1400
Time step t

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Pr
ed

ict
io

n
Er

ro
r e

t+
1

w/o Adapt
Random
Feedback
Feedforward

(b) Online prediction error
Figure 7: Experimental results on Robot arm dataset.

500 1000 1500 2000 2500
Time step

2.5

2.0

1.5

1.0

0.5

0.0

P
re

di
ct

io
n

O
ut

pu
t

GroundTruth
Prediction

(a) Prediction and uncertainty

0 500 1000 1500 2000 2500
Time step t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

P
re

d
ic

ti
o

n
 E

rr
o

r
e

t
+

1 Full
Random
Feedback
Feedforward

(b) Online prediction error
Figure 8: Experimental results on ETTh1 dataset.

data when faced with periodic patterns. In the case of the robot arm dataset, as depicted in Figure
7a, we observe an approximate periodicity of T ≈ 420. This is evident from the FFT (Fast Fourier
Transform) period analysis depicted in Figure 9a. In Figure 9b, we demonstrate how many samples
were chosen from (t−s) ≈ 420 steps earlier during the feedforward compensation process, aligning
with the repetition period of T ≈ 420. Feedforward adaptation’s selection of the most similar
samples to the current sample facilitates the extraction of hidden periodic patterns within the input
signal over time. Consequently, the distribution of (t − s) exhibits similarity to the FFT period
analysis.

0 200 400 600 800 1000
Period T

0.00

0.05

0.10

0.15

0.20

0.25

FF
T

in
te

ns
ity

(a) FFT period analysis

0 200 400 600 800 1000
time shift of selected sample t s

0
5

10
15
20
25
30

Co
un

t (
pe

rc
en

t)

(b) Time shift t− s of selected samples
Figure 9: Experimental results on Robot arm dataset. (a) FFT period analysis. (b) Timeshift t − s
between current sample Xt and selected sample Xs in feedforward adaptation.

21

F Discussion

F.1 Incorporating Feedforward Adaptation with SOTA optimization algorithms

The proposed feedforward compensation strategy exhibits the capability to yield further enhance-
ments on top of the SOTA optimization algorithms for online adaptation. Many prior works consider
the information gain in a feedback fashion. Here we specifically compare with MEKF [14]. The
MEKF introduces an Extended Kalman Filter (EKF)-based methodology for effectively leveraging
samples to achieve reduced fitting errors. Nevertheless, this paper [14] still incorporates the feed-
back compensation strategy. To maximize these advancements, we can incorporate the feedforward
compensation approach with MEKF. Tables 5 and 6 offers a comparison between the original MEKF
(feedback-based) and our refined version of MEKF+Feedforward. As can be seen, the incorporation
of feedforward adaptation distinctly enhances the performance of MEKF.

Table 5: Performance (RMSE) comparison between the original MEKF approach and MEKF +
feedforward adaptation approach on Robotic-related datasets.

Method\Dataset THOR (m) Assembly (cm) NGSIM (m) Robot arm (rad)
MEKF 0.865 ± 0.002 1.184 ± 0.001 0.895 ± 0.009 0.191 ± 0.002

MEKF + Feedforward 0.831 ± 0.002 1.179 ± 0.001 0.866 ± 0.009 0.179 ± 0.002

Table 6: Performance (RMSE) comparison between the original MEKF approach and MEKF +
feedforward adaptation approach on general time-series benchmarks.

Method\Dataset ETTh1 Exchange ILI
MEKF 0.359 ± 0.008 0.595 ± 0.011 1.848 ± 0.018

MEKF + Feedforward 0.346 ± 0.007 0.583 ± 0.011 1.697 ± 0.018

F.2 Incorporating Feedforward Adaptation with SOTA prediction models

The proposed feedforward adaptation approach can be readily applied to any SOTA prediction
model, providing further enhancements.As a demonstration, we incorporated the feedforward adap-
tation strategy into the Pishgu [39], which has shown promising results on the NGSIM dataset. The
results of this application are documented in Table 7.

Table 7: Performance comparison between the original Pishgu model and Pishgu + feedforward
adaptation approach on NGSIM dataset.

RMSE (m) 1s 2s 3s 4s 5s
Pishgu 0.15 0.46 0.82 1.25 1.74

Pishgu + Feedforward Adapt 0.13 0.39 0.69 1.03 1.41

F.3 Computational complexity

The computational complexity of the proposed approach involves two primary steps per iteration:
sample selection and optimization using the selected samples. 1) Sample Selection: This step in-
volves selecting samples based on similarity calculations between the current observation and all
samples in the buffer. Assume the input sample Xt ∈ RI×m has the input horizon I and the
dimension of each horizon (or coordinates) is m. L is the size of the buffer containing previous
samples. The complexity of sample selection can be estimated as O(I2 ·m2 · L). 2) Optimization:
The computational complexity of the optimization step is influenced by factors such as the model
size and the optimizer used. In our experiments, we utilized a relatively small MLP model with
approximately 7.8K parameters. Given that the dimensionality of the trajectory dataset is not as
extensive as that of images and considering our use of a reasonably sized buffer (e.g., L = 1000),
the computational load remains manageable. To offer a practical perspective, we present time usage
data for various methods in Table 8. It’s worth noting that the time required for sample selection

22

is generally less than that for optimization, further demonstrating the feasibility of our approach in
terms of computational efficiency.

Table 8: Time usage (sample selection and optimization) per iteration of different methods (unit:
ms) on THOR dataset.

Time (ms) ER A-GEM SMCD Feedback Feedforward
Sampling 0.60 0.59 0.35 0.35 0.99

Optimization 2.42 4.16 2.92 2.36 2.38
Total 3.02 4.75 3.27 2.71 3.37

G Further Related Works

G.1 Related Works in Continual Learning

The proposed feedforward adaptation strategy maintains a memory buffer by storing recent L-step
observations. It then selects important samples (those with higher similarity to the current sam-
ple in our implementation) from the buffer to enhance learning. This method shares similarities
with replay-based continual learning, as both approaches involve retaining crucial past samples in a
buffer and replaying them to enhance the learning process. However, numerous replay-based con-
tinual learning methods, such as Experience Replay [18] and Average Gradient Episodic Memory
(A-GEM) [19], rely on random replays. On the contrary, replay-based continual learning meth-
ods that employ importance sampling (as opposed to random replay) are specifically designed for
scenarios involving task-incremental or class-incremental learning [17, 40, 20]. These methods are
often developed within the context of classification tasks, which might not directly align with the
task structure of our online adaptation and regression tasks. For instance, methods like iCaRL [41]
primarily operate on class-wise samples, and approaches such as Ring Buffer and k-Means based
sampling [18] rely on class information for aggregating samples. Our proposed methods do not
rely on class or task information to sample important samples based on similarity. Furthermore, on-
line adaptation places its emphasis on the localized performance of multiple upcoming predictions,
which underscores the significance of both recalling and forgetting. Conversely, many continual
learning methods prioritize a more global and generalized prediction capability, which tends to em-
phasize the importance of effective recalling.

G.2 Related Works in Adaptation of Control tasks

Many researchers investigate the online adaptation property of prediction models or policy models
in control tasks, aiming to generalize to subtle variations of the environment. As an example, SMCT
is a simple and effective approach to adapting neural models in response to changing environments
[36]. While both our method and SMCT aim at adapting neural models to changing data distri-
butions, there are notable differences in their approaches. SMCT primarily utilizes feedback data
compensation strategies to adapt the dropout layer using particle filters, while our proposed method
employs feedforward compensation strategies to extract more crucial samples. Furthermore, SMCT
focuses on adapting to dropout layers using gradient-free methods, whereas our approach adapts
to arbitrary layers through gradient-based optimization. Latent variable models [42] are oriented
towards control problems where predicted outputs impact the environment and subsequent obser-
vations. Which is designed to collect many data points or trajectories while interacting with the
environment under specific latent variables or dynamics (ek), which is a setup not applicable to our
online adaptation of time-series prediction tasks. Meta-learning approach [43] in an online learning
context employs strategies like SGD for parameter updates and feedback compensation for sample
selection. In contrast, our approach employs feedforward compensation for sample selection and
subsequently utilizes these selected samples for model updates.

23

	Introduction
	Problem Overview
	Methodology
	General Online Adaptation Framework
	Feedforward Adaptation
	Uncertainty Estimation

	Analysis
	Comparison between Feedforward and Feedback Adaptation
	Applications of Feedforward Adaptation

	Experiments
	Conclusion, Limitation, and Future work
	Lemma 1: Error Bound of Online Adaptation
	Comparison of Error Bound between Feedforward Adaptation and Feedback Adaptation
	Lemma 2 (a,b,c): Expected Error Bound
	Lemma 2 (d): Expected Error Bound on Random-input System
	Synthetic Experiments: Linear Time-varying System

	Applications of Feedforward Adaptation
	Stationary time series and ADF test
	Differencing
	Criterion for applying feedforward adaptation
	Feedforward Adaptation Algorithms

	Additional Details of Experimental Design
	Dataset
	Stationarity test of datasets
	Experimental design

	Additional Experimental Results
	Prediction output and Prediction Error
	Study of the sample selection strategy of different adaptation methods

	Discussion
	Incorporating Feedforward Adaptation with SOTA optimization algorithms
	Incorporating Feedforward Adaptation with SOTA prediction models
	Computational complexity

	Further Related Works
	Related Works in Continual Learning
	Related Works in Adaptation of Control tasks

