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Abstract: In multi-robot systems, robots often gather data to improve the perfor-
mance of their deep neural networks (DNNs) for perception and planning. Ide-
ally, these robots should select the most informative samples from their local data
distributions by employing active learning approaches. However, when the data
collection is distributed among multiple robots, redundancy becomes an issue as
different robots may select similar data points. To overcome this challenge, we
propose a fleet active learning (FAL) framework in which robots collectively select
informative data samples to enhance their DNN models. Our framework leverages
submodular maximization techniques to prioritize the selection of samples with
high information gain. Through an iterative algorithm, the robots coordinate their
efforts to collectively select the most valuable samples while minimizing commu-
nication between robots. We provide a theoretical analysis of the performance
of our proposed framework and show that it is able to approximate the NP-hard
optimal solution. We demonstrate the effectiveness of our framework through
experiments on real-world perception and classification datasets, which include
autonomous driving datasets such as Berkeley DeepDrive. Our results show an
improvement by up to 25.0% in classification accuracy, 9.2% in mean average
precision and 48.5% in the submodular objective value compared to a completely
distributed baseline.

1 Introduction

Consider a scenario where a fleet of autonomous vehicles (AVs) operates in various environments,
ranging from urban to rural or highway settings. These AVs aim to enhance their machine learning
(ML) models employed in perception, prediction, and planning by collecting data and sharing it
with a central server. An ideal strategy for these AVs is to gather diverse data, enabling the trained
models to generalize effectively across different environments. However, due to limitations such
as bandwidth, computational resources, and storage capacity, the AVs can only transmit a limited
amount of data to the central server. Notably, one AV can generate a data stream of more than 20-30
Gigabytes (GB) per second, combining video and LiDAR data [1]. In comparison, a standard 5G
wireless network offers a bandwidth of only 10 Gbps, which needs to be shared among multiple users
[2]. Consequently, it becomes crucial for the AVs to collaborate in selecting the most informative
data points that optimize the performance of the trained models.

To illustrate, suppose one AV collects data from a congested urban area during peak hours while
another AV captures data from a sparsely populated rural region. Instead of duplicating efforts in
either environment, the AVs should collaborate to ensure data diversity in the collected images. By
strategically selecting complementary images, the AVs contribute to the creation of a diverse dataset
that enhances the robustness of the trained models across various driving scenarios.

In our formulation (Fig.1), AVs communicate with each other using minimal information and ex-
clusively have access to their observed data, ensuring the AVs maintain data privacy and only share
selected information. Moreover, we acknowledge that the collected AV data is not independent and
identically distributed (i.i.d.), and the incremental value of selecting a particular data point relies on
the data points already chosen. Additionally, we do not assume the presence of a perfect labeler
capable of labeling data points on the fly; instead, we leverage the outputs of imperfect ML models.
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Figure 1: Fleet Active Learning Framework: Each robot i observes a stream of data points x1i , . . . , x
T
i and

processes them using its neural network fDNN(·; θri ) to obtain predictions ŷ and embeddings emb. Then, robots
utilize these embeddings and predictions to select an action ari to sample data points, maximizing a submodular
function f while considering the previous robots’ actions Ar

i−1. The aggregated action Ar
i = ari ∪ Ar

i−1 is
passed to the next robot, repeating the process until all robots have taken an action. At the end of each round,
the actions are shared with the cloud, which labels the newly acquired data points and updates the training
dataset Dr

c with newly acquired data points
⋃N

i=1 a
r
i , resulting in the creation of a new dataset Dr+1

c . The
model is retrained with the new dataset, yielding θr+1

c . Finally, the cloud shares the updated model weights
with all robots, and each robot updates its model parameters accordingly.

To create a framework that can be applied to a variety of data collection problems, we formulated this
problem as a distributed submodular maximization problem. The reasoning behind this comes from
the fact that the gain in collecting data points decreases over time, and the value of the data points
is not independent but rather depends on the previously selected data points. The submodularity
property captures the diminishing return in collecting data points and the dependence of the value
of the data points on the previously selected data points. The main contributions of our work can be
summarized as follows:

1. We present a framework to scale active learning in a multi-robot setting by formulating the
data collection problem in a networked AV system as a distributed submodular maximiza-
tion problem.

2. We propose an interactive algorithm that iteratively updates the actions of the AVs and
provide a rigorous proof that it achieves a solution within the 1/2 optimality bound.

3. We empirically show that our interactive algorithm performs similarly to a centralized al-
gorithm while outperforming a fully decentralized algorithm. Our algorithm shows an
improvement of up to 48.5% in the submodular objective, 25.0% in classification accuracy,
and 9.2% in mean average precision (mAP) compared to the fully decentralized approach
in real-world datasets including the Berkeley DeepDrive autonomous driving dataset [3].

We also utilize embeddings generated by vision and language models such as CLIP [4], which are
trained on large-scale datasets to further enhance the data point selection process. These embeddings
aid in selecting data points to effectively cover the entire data distribution.

2 Related Work

Data collection is a well-studied problem in the robotics and machine learning literature, closely
related to active learning [5–9] and cloud robotics [10–20]. However, existing approaches typically
involve robots sharing all their data without considering other robots’ input during the data collection
process. The closest work to ours is [19], which addresses data collection in a multi-robot setting
with the interaction between robots. However, their focus is on minimizing a convex loss function
on dataset statistics, with an equal value assigned to each class point. In contrast, our framework
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Figure 2: Enhancing Information Coverage through Cooperation: We
illustrate a toy example involving 3 robots observing data mapped into a
2D space. Each point represents an embedding of a data point. The objec-
tive is to maximize the coverage of the observed data points through se-
lected points. In the distributed setting (red), each robot selects a subset of
data points independently, leading to overlaps and redundancy. However,
when the robots cooperate using an iterative policy (blue), they consider
previous actions, resulting in more diverse data collection that covers a
larger portion of the data points.

provides a more general approach, considering cases where data points are unequally valued and
utilizing submodular maximization for selecting the most informative samples.

Another related topic is federated learning (FL) [21–29]. FL aims to train a model using data dis-
tributed among multiple robots, where robots train the model locally and share parameters with each
other. However, our problem setting fundamentally differs as the robots lack access to perfectly la-
beled data and need to transmit their data to the cloud to obtain labels. Additionally, the models we
consider are considerably large, making local training infeasible.

Our work predominantly falls into the category of pool-based active learning [7, 30], where the
objective is to select the most informative data points from an unlabeled pool. Various methods
have been proposed for selecting these data points in general machine learning settings [31–37]
and robotics [38–41], each capturing informativeness in different ways and also requiring access
to all unlabeled data points. In our case, however, we consider a multi-robot setting where robots
only have access to their local data distribution. Our work extends these methods naturally to be
applicable in a multi-robot context.

The problem of active learning is closely related to submodular maximization [42, 43], as submodu-
lar functions capture the diminishing returns property and the marginal gain of selecting a data point
depends on the previously selected points [34, 43–46]. Numerous works address submodular max-
imization in both decentralized [42, 47–50] and centralized settings [43, 51–57]. Specifically, the
works such as [49, 50] investigate a similar problem to ours. However, they restrict robots to select
actions with a single element, whereas our work broadens this to accommodate actions with multi-
ple elements. Our extension is essential since AVs upload a batch of sampled data to labelers over
bandwidth-limited networks. Furthermore, the problems in [49, 50] address classical submodular
optimization, like set cover and sensor placement. Conversely, our work focuses on active learning
for ML models and distributed data collection.

3 Problem Formulation

We consider a practical problem that involves data collection from a distributed fleet of robots for
training a robust machine learning model in the cloud. Our goal is to select the most informative
samples from each robot in the fleet, such that when these data points are added to the training
dataset, the accuracy of the trained model is maximized. This problem formulation can be seen as a
generalized version of the active learning problem in the context of a distributed fleet of robots.

Robot Perception Model: We assume a fleet of Nrobot robots operating in diverse environments,
each performing a computer vision task such as classification or object detection. Robot i observes a
set of data points {x1i , . . . , xTi } = Xr

i , which represents the accumulated data available for sampling
in round r. A round represents a data collection period, like a day, during which robots operate and
gather data. In each round, the robots sample N cache data points from their accumulated data Xr

i
and send them to the cloud to retrain an ML model. The perception model used by robot i is a DNN
represented as fDNN(x; θri ) = ŷ, emb, where θri denotes the parameters of the perception model.
The perception model provides predictions ŷ and embeddings emb for the input data x.

Embeddings are crucial in our approach as they capture the similarity between data points. Un-
like raw data, which is high-dimensional and ineffective at summarizing information, embeddings
provide a more efficient and accurate representation. By leveraging embeddings generated by foun-
dation models like CLIP [4] or other active learning methods [32–34, 58], we enhance our ability to
capture data similarity effectively.

3



Assumption 1 (Robots’ Accumulated Data Points are Disjoint). Each robot i stores its observed
data Xr

i separately, resulting in disjoint sets of accumulated data points for selection in each round
r. That is, Xr

i ∩Xr
j = ∅ for all i 6= j.

This assumption reflects the fact that each robot maintains its own storage of observed data points.
As a result, the sets of accumulated data available for selection in each round are disjoint. Then for
each round r, we can define the set of all observed images as Xr =

⋃Nrobot

i=1 Xr
i .

Robotic Fleet: The fleet of Nrobot robots operate in diverse environments, observing different
data distributions Xr

i in each round r. In each round, each robot i selects at most N cache
i data points

from its observed images Xr
i and sends them to the cloud for retraining the ML model. The size

of the selected samples N cache
i is determined based on factors such as communication bandwidth

and labeling budget. The samples chosen by robot i in round r are denoted as action ari , where
ari ⊂ Xr

i and |ari | ≤ N cache
i , indicating that the number of selected samples is smaller than or equal

to the cache size N cache
i . Additionally, we assume that the robotic fleet is connected via a wireless

network, enabling communication among the robots.
Definition 1 (Robots’ Feasible Action Space). In round r, each robot i can select at most N cache

i
samples from the observed datapoints Xr

i such that:

Ari = {ari ⊂ Xr
i : |ari | ≤ N cache

i }, Ar = {
Nrobot⋃
i=1

ari : ari ∈ Ari ,∀i = 1, . . . , Nrobot}.

Here, Ari represents the set of all feasible actions for robot i, and Ar represents the combined
feasible actions of all robots.

Data Collection Problem: The goal of the data collection process is to select the most informative
samples from each robot in the fleet, such that when these samples are added to the training set, the
accuracy of the trained model is maximized. However, there is no proven function that reliably
represents dataset quality, as it depends on various factors such as data diversity and image quality
[59]. Instead, heuristic methods are used to measure dataset quality. To provide a general framework
for the data collection problem, we will assume two properties about the dataset quality.

First, we will assume that the quality of the dataset always increases with the addition of new samples
[43–46, 60]. This is a reasonable assumption since, unless the training data points are intentionally
manipulated, adding more data points improves the coverage of the training set of the real data
distribution. Thus, we can safely make the following assumption:
Assumption 2 (Dataset Quality Function is Monotone). The dataset quality function f : 2X → R
is a monotone function, meaning that for all A ⊆ B ⊆ X , f(A) ≤ f(B).

Secondly, we assume that the marginal gain of adding a new sample to the training dataset exhibits
a diminishing returns [43–46]. This is also a reasonable assumption because if the training dataset
already covers a significant portion of the real data distribution, adding more samples may not in-
crease the accuracy of the trained model significantly. We verified this on four real-world datasets,
confirming a diminishing returns relationship between test accuracy and the percentage of training
data (App. A.6). This property, known as submodularity, is exhibited by many problems, such as
set cover, facility location, and sensor placement [51]. Formally, we state the following assumption:
Assumption 3 (Dataset Quality Function is Submodular). The dataset quality function f : 2X → R
is submodular, i.e., for all A ⊆ B ⊆ X and x ∈ X \ B it holds that f(A ∪ {x}) − f(A) ≥
f(B ∪ {x})− f(B).

Finally, we define the data collection problem: given a fleet of Nrobot robots sharing a common
dataset Drc in the cloud, the objective is to select a maximum of N cache

i samples from each robot i,
maximizing the quality of the dataset. Formally, we can define the data collection problem as:
Problem 1 (The Data Collection Problem).

max
ar
1,...,a

r
Nrobot

f(Dr
c ∪

Nrobot⋃
i=1

ari ) (1)

subject to: ari ⊆ Xr
i ∀i = 1, . . . , Nrobot

|ari | ≤ Ncache
i ∀i = 1, . . . , Nrobot.
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This problem is a combinatorial optimization problem and, without any further assumptions, solv-
ing for the optimal solution is NP-hard [61]. Thus, we use algorithms that provide approximation
guarantees to the optimal solution. For such problems, the greedy algorithm is shown to provide a
good approximation to the optimal solution [53].

There are various submodular functions that can be used; such examples are facility location, mutual
information, or the set cover problem [51]. In our experiments, we used a facility location function,
which assesses how well a subset A represents the entire dataset X [62]. It accomplishes this by
calculating the sum of similaritiesMx,a between each element x ∈ X and its closest element a ∈ A.
The facility location function is known to be submodular for non-negative similarity values Mx,a ≥
0 [63]. Fig. 2 shows an example of how our facility location submodular objective encourages
covering the data distribution. In formal terms, the facility location function is defined as follows:

f(A) =
∑
x∈Xr

max
a∈A

Mx,a. (2)

Model Retraining and Updating Weights: After each data collection round r, the cloud dataset
Drc is expanded with selected samples, and the perception model is retrained on the cloud using the
updated dataset Dr+1

c = Drc ∪
⋃Nrobot

i=1 ari to obtain new model weights θr+1
c . These weights are

then shared with the robots. The robots can simply use the updated cloud model θr+1
c or optionally

fine-tune it on their local datasets to yield models θr+1
i .

4 Baselines

Centralized Action Policy: We now introduce a centralized action policy, named CENTRALIZED,
described in Alg. 1. In this policy, a centralized cloud has access to all the data points observed by the
robotsXr (line 4). Starting from an empty solution set (line 3), the central cloud iteratively evaluates
all combined data points Xr, selects the data point within the feasible action space that maximizes
the submodular function f (line 6) and adds it to the action (line 7). This process continues until
no more points can be added to the action (lines 5 - 8). The action of the CENTRALIZED policy,
denoted as aC , is then appended to the cloud dataset Drc (line 9), and this algorithm is repeated for
each round r.

This algorithm has been proven to provide 1/2 optimality bound to the optimal solution [53]. Ad-
ditionally, randomized approximations exist that can achieve a 1 − 1/e optimality bound [52]. We
have chosen this version of the centralized policy because of its simplicity and generality. Since
solving the combinatorial optimization problem is NP-hard, we will use this centralized policy as a
target benchmark to compare the performance of our framework.

1 Input: Dr
c , Xr

i , f ;
2 Output: Dr+1

c ;
3 Initialize aC = ∅ ;
4 Xr =

⋃Nrobot
i=1 Xr

i ;
5 for j = 1 to

∑Nrobot
i=1 Ncache

i do
6 xj = argmax

x:aC∪{x}∈Ar

f(Dr
c ∪ aC ∪ {x}) ;

7 aC = aC ∪ {xj} ;
8 end
9 Dr+1

c = Dr
c ∪ aC ;

10 return Dr+1
c ;

Algorithm 1: CENTRALIZED Policy

1 Input: Dr
c , Xr

i , f ;
2 Output: Dr+1

c ;
3 for i = 1 to Nrobot do
4 Initialize aDi = ∅ ;
5 for j = 1 to Ncache

i do
6 xj = argmax

x:aD
i ∪{x}∈A

r
i

f(Dr
c ∪ aDi ∪ {x}) ;

7 aDi = aDi ∪ {xj} ;
8 end
9 end

10 Dr+1
c = Dr

c ∪
⋃Nrobot

i=1 aDi ;
11 return Dr+1

c ;
Algorithm 2: DISTRIBUTED Policy

Distributed Action Policy: In another scenario, we can solve this problem without considering
any communication between robots, referred to as DISTRIBUTED . This policy is described in Alg.
2. In the DISTRIBUTED policy, each robot independently runs the greedy selection in its observed
images Xr

i in parallel (lines 3 - 9). Starting with an empty solution (line 4), each robot adds data
points that maximize the submodular function f from its observed data points (line 5). At the end of
round r, the selected data points aDi are shared with the cloud, which adds them to the cloud dataset
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Drc (line 11). Although the DISTRIBUTED policy can be run in parallel and preserves the distributed
nature of the problem, it does not consider other robots’ actions, potentially resulting in repeatedly
selecting similar elements. Consequently, the solutions obtained through the DISTRIBUTED policy
can be an Ω(Nrobot) factor worse than the centralized solution [42].

These algorithms offer different approaches for sample selection from distributed robots, with the
CENTRALIZED policy utilizing global information and the DISTRIBUTED policy relying on local
observations of each robot. The CENTRALIZED policy needs O(

∑Nrobot

i=1 N cache
i ) iterations over all

robots and their samples, which may be impractical for a large number of robots. On the other hand,
the DISTRIBUTED policy can be implemented in parallel, making it more scalable. Our method
balances these two policies using a distributed policy with an iterative component.

5 An Interactive Approach to Fleet Active Learning

This section introduces our proposed policy, called INTERACTIVE , for the data collection problem.
The INTERACTIVE policy begins with an empty solution (line 1) and sequentially determines the
actions of the robots (lines 4 - 7). Each robot i takes into account the previous actions of the robots
1 to i − 1, denoted as AIi−1, and runs the greedy algorithm given in Alg.3 to determine its action
aIi and includes it in the previous actions AIi (line 6). This process is repeated until all robots have
determined their actions. Finally, the actions of all the robots are combined (line 8), resulting in the
combined action aI , and the cloud dataset is updated (line 9).

1 Input: Dr
c , Xr

i , f , AI
i−1 ;

2 Output: aIi ;
3 aIi = ∅ ;
4 for j = 1 to Ncache

i do
5 xj = argmax

x:aI
i∪{x}∈A

r
i

f(Dr
c ∪AI

i−1 ∪ aIi ∪ {x}) ;

6 aIi = aIi ∪ {xj} ;
7 end
8 return aIi ;

Algorithm 3: Action per Robot

1 Input: Dr
c , Xr

i , f ;
2 Output: Dr+1

c ;
3 AI

0 = ∅ ;
4 for i = 1 to Nrobot do
5 Get action aIi using algorithm 3 ;
6 AI

i = AI
i−1 ∪ aIi ;

7 end
8 aI =

⋃Nrobot
i=1 aIi ;

9 Dr+1
c = Dr

c ∪ aI ;
10 return Dr+1

c ;
Algorithm 4: INTERACTIVE Policy

Our proposed INTERACTIVE policy represents an improvement over both the CENTRALIZED and
DISTRIBUTED policies. It achieves a solution with the same optimality bound as the CENTRALIZED
policy while allowing for distributed execution. Moreover, the selection of points occurs only once
between robots, leading to a reduced number of messages passings between robots. To minimize
data exchange, we can share the embeddings of the points instead of the actual points themselves
[15]. This significantly reduces the amount of data transmitted. Furthermore, for specific functions
like the facility location function, additional optimizations can be employed. For example, rather
than sharing the points or embeddings, robots can update and share the maximum value of the
similarity metric Mx,a. We also theoretically show that the given algorithm will achieve a solution
that is at least 1/2 good as the optimal solution for submodular monotone objective functions.

Theorem 1 (Optimality of INTERACTIVE Policy). The INTERACTIVE policy described in Alg. 4
achieves a solution that is at least 1/2 as good as the optimal solution for submodular monotone
objective functions, that is:

fDr
c
(aI) ≥ 1

2
fDr

c
(aOPT). (3)

Here we denote the improvement on the objective function as fDr
c
(x) = f(Drc ∪ x)− f(Drc). aOPT

is the optimal solution to the optimization problem given in Eq. 1 and aI is the solution obtained by
the INTERACTIVE policy.

The proof of the theorem is given in Appendix A.2. As demonstrated in the theorem, the optimality
bound of the INTERACTIVE policy is independent of the number or ordering of the robots. Further-
more, the number of messages exchanged between robots is O(Nrobot). This subtle, yet significant,
difference between the CENTRALIZED policy and the INTERACTIVE policy enables the INTERAC-
TIVE policy to be scalable to a large number of robots. Moreover, our INTERACTIVE policy is
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MNIST CIFAR10 Adverse-Weather DeepDrive

Figure 3: Our INTERACTIVE policy achieves similar performance with the CENTRALIZED policy and
outperforms other benchmarks. This figure presents the accuracy of the retrained neural networks using
the dataset Dr

c in each round r, with each column representing a different dataset. It can be clearly seen
that INTERACTIVE and CENTRALIZED policies consistently outperform other benchmark policies across all
datasets, underscoring the practical advantages of our INTERACTIVE policy.

computationally efficient compared to the CENTRALIZED policy and shares the same complexity as
the DISTRIBUTED policy. In terms of function evaluations, both INTERACTIVE and DISTRIBUTED

policies have a computational complexity of O(
∑Nrobot

i=1 |Xr
i | ×N cache

i ), while the CENTRALIZED

policy has a complexity of O(
∑Nrobot

i=1 |Xr
i | ×

∑Nrobot

i=1 N cache
i ). Further analysis and a numerical

example are provided in the Appendix.

6 Experiments

We evaluate our method by comparing it against several benchmarks using four diverse datasets.
The first two datasets, MNIST [64] and CIFAR-10 [65], serve as foundational benchmarks, while the
Adverse-Weather dataset [66] and the DeepDrive dataset [3] provide realistic scenarios with data
captured by autonomous vehicles. In our simulations, we simulate the data observation processes
under heterogeneous environments and diverse data distributions. For classification tasks, we em-
ploy state-of-the-art vision models such as the Vision Transformer [67] and ResNet [68], while for
object detection tasks, we utilize YOLOv8 [69]. Detailed information regarding our experimental
setup and the models is given in the Appendix.

In addition to the baselines described in Section 4, we provide a comparison between our method
and classical active learning approaches. These approaches include: i) Random: Selecting data
points uniformly at random from the observations. ii) Least Confidence: Choosing samples
with the smallest predicted class probabilities [70]. iii) Best versus Second Best (BvSB): Pick-
ing samples with the smallest difference between the two most probable classes [71]. iv) En-
tropy: Selecting samples with the highest entropy in predictive class probabilities [70]. The
latter three methods fall within the category of uncertainty-based active learning techniques [7].

Policy mAP
INITIAL 33.2

DISTRIBUTED 37.2
CENTRALIZED 46.5
INTERACTIVE 46.4

Table 1: Results of DeepDrive
object detection.

Comparison Metrics: For classification tasks, we compare the
accuracy of the trained model on newly acquired datasets Dr+1

c
using the held-out test dataset. We compare the mean Average
Precision (mAP) for object detection tasks among different data
sampling policies. We also compare the submodular objective
value of selected data points in each round. All experiments are
repeated with 25 different seeds and the results are averaged.

Submodular Objective Function: We use the facility location
function, given in Eq. 2, as the objective function. To measure the similarity between points x and
a, we employ the similarity metric Mx,a = 1

1+βd(x,a) . Here, the distance d(x, a) is computed as the
L2 distance between the embeddings of the data points, given by ‖embx−emba‖2. The embeddings
are obtained by the models fDNN and we set the hyperparameter β = 0.01 to control the significance
of the distance metric. In our simulations, we employ the lazy greedy algorithm [54], a variant of
the greedy algorithm that achieves the same solution while being more efficient in practice.
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Results: The experimental results (Fig. 3) show that our INTERACTIVE policy performs as well
as the CENTRALIZED policy, as we have shown in the Theorem 1. Moreover, our INTERACTIVE
policy consistently outperforms the DISTRIBUTED policy in all simulations.

Figure 4: Visualization of Policy Coverage in Fea-
ture Space: We employed t-SNE [62] to project the
embeddings of data points into a 2D space, facilitating
the comparison of coverage across different policies.
Data points are color-coded according to the policy that
selected them, with INTERACTIVE (green), CENTRAL-
IZED (orange), and DISTRIBUTED (blue) policies rep-
resented. The visualization demonstrates that our pro-
posed INTERACTIVE method performs on par with the
CENTRALIZED baseline and achieves superior cover-
age of the training data (gray) in comparison to the DIS-
TRIBUTED policy. Although the DISTRIBUTED policy
might seem to have fewer points, this can be attributed
to the overlapping and repetition of similar data points
that are closely mapped together in the visualization.

What is the accuracy of the vision model after
each round?

In Fig.3, we show the perception model’s accu-
racy after each retraining round on the dataset
Drc . Clearly, our INTERACTIVE policy consis-
tently achieves higher accuracies compared to
the DISTRIBUTED policy, outperforming it by
9.7%, 10.1%, 25.0%, 8.8% and achieves simi-
lar accuracy values to the CENTRALIZED case.
Furthermore, our INTERACTIVE policy exhibits
significant accuracy improvements, with gains
of up to 21.0%, 17.6%, 16.7%, and 14.3%
in comparison to the Random, Entropy, Least
Confidence, and BvSB active learning methods,
respectively.

What is the object detection performance?

In Table 1, we present the mean average pre-
cision (mAP) of the initial DNN, denoted as
INITIAL , and at the end of all data collec-
tion rounds for each policy. Our INTERACTIVE
policy and CENTRALIZED policy show signifi-
cantly better performance compared to the DIS-
TRIBUTED policy, surpassing it by 9.2%.

Limitations: Our formulation, while effective,
has several assumptions that limit its general-
ity. Firstly, our formulation assumes that the
data collection rounds are synchronous among
all robots and that robots have communication
capabilities with each other. Finally, we assume that the robots are trying to maximize the objec-
tive function cooperatively, whereas, in a real-world setting, the robots may need to be incentivized
based on their contributions.

7 Conclusion and Future Work

We propose a framework to scale active learning algorithms to the multi-robot setting utilizing sub-
modular maximization. Our framework enables robots to determine their actions sequentially, taking
into account the actions of the previous robots. We show that when the objective function is submod-
ular and monotone, the proposed framework achieves 1/2 optimality bound to the optimal solution,
which is NP-hard to compute. Through experiments on real-world datasets, we confirm that such
an iterative algorithm will result in increased accuracy and objective function when compared to
the distributed setting. Our work is especially useful when the robots are operating in a resource-
constrained environment, where data sharing is costly, and collective actions need to be optimized
to reduce redundancy. We believe that our work is a step towards the development of a general
framework for active learning in multi-robot systems.

Future research directions include incorporating more realistic constraints. This involves incorpo-
rating asynchronous data collection rounds, where the robots can collect data at different times,
and incorporating privacy-preserving mechanisms to ensure confidentiality. Furthermore, we aim
to extend our formulation where robots collect data for multiple tasks, each with varying value and
importance.
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and Dave Bacon. Federated learning: Strategies for improving communication efficiency.
CoRR, abs/1610.05492, 2016. URL http://arxiv.org/abs/1610.05492.

[23] Yu Xianjia, Jorge Peña Queralta, Jukka Heikkonen, and Tomi Westerlund. Federated learn-
ing in robotic and autonomous systems. Procedia Computer Science, 191:135–142, 2021.
ISSN 1877-0509. doi:https://doi.org/10.1016/j.procs.2021.07.041. URL https:
//www.sciencedirect.com/science/article/pii/S187705092101437X. The
18th International Conference on Mobile Systems and Pervasive Computing (MobiSPC), The
16th International Conference on Future Networks and Communications (FNC), The 11th In-
ternational Conference on Sustainable Energy Information Technology.

[24] Elsa Rizk, Stefan Vlaski, and Ali H. Sayed. Optimal importance sampling for federated learn-
ing. In ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 3095–3099, 2021. doi:10.1109/ICASSP39728.2021.9413655.

[25] Aleksandar Armacki, Dragana Bajovic, Dusan Jakovetic, and Soummya Kar. Personalized
federated learning via convex clustering. arXiv preprint arXiv:2202.00718, 2022.

[26] Hong Xing, Osvaldo Simeone, and Suzhi Bi. Decentralized federated learning via sgd over
wireless d2d networks. In 2020 IEEE 21st International Workshop on Signal Processing
Advances in Wireless Communications (SPAWC), pages 1–5, 2020. doi:10.1109/SPAWC485
57.2020.9154332.

[27] Bin Gu, An Xu, Zhouyuan Huo, Cheng Deng, and Heng Huang. Privacy-preserving asyn-
chronous vertical federated learning algorithms for multiparty collaborative learning. IEEE
Transactions on Neural Networks and Learning Systems, pages 1–13, 2021. doi:10.1109/TN
NLS.2021.3072238.

[28] Solmaz Niknam, Harpreet S. Dhillon, and Jeffrey H. Reed. Federated learning for wire-
less communications: Motivation, opportunities, and challenges. IEEE Communications
Magazine, 58(6):46–51, 2020. doi:10.1109/MCOM.001.1900461.
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A Appendix

Code Availability: The code and related materials can be found in the following code repository:

https://github.com/UTAustin-SwarmLab/Fleet-Active-Learning.git

The organization of the appendix is as follows:

1. Subsection A.1 provides the necessary background and preliminary information required
for the proofs.

2. Subsection A.2 presents the proof of the optimality bound for the INTERACTIVE policy.

3. Subsection A.3 describes the details of the experimental setup.

4. Subsection A.4 contains additional results related to object detection experiments.

5. Subsection A.5 provides submodular objective results for experiments.

6. Subsection A.6 presents experimental analysis focusing on the diminishing return property.

7. Subsection A.7 reports the results of the experiments with non-submodular and non-
monotone objectives.

8. Subsection A.8 includes the function evaluation and runtime complexity analysis of the
algorithms.

9. Subsection A.9 presents numerical evaluations of the number of message exchanges and
the number of function evaluations for the DeepDrive dataset experiment.

10. Subsection A.10 provides additional results for federated learning experiments.

A.1 Preliminaries

Here, we provide basic definitions of submodular functions, monotone functions, and matroids that
we use in our proof.

Definition 2 (Submodular Function). A set function f : 2X → R is submodular if for all A ⊆ B ⊆
X and x ∈ X \B, we have

f(A ∪ {x})− f(A) ≥ f(B ∪ {x})− f(B).

Definition 3 (Monotone Function). A set function f : 2X → R is monotone if for all A ⊆ B ⊆ X ,
we have

f(A) ≤ f(B).

Based on the definitions of submodular and monotone functions, we can directly write the following:

Corollary 1. Let f be a monotone submodular function. Then, f is also subadditive, and we have
that:

∀A ⊂ X, B ⊂ X : f(B) ≤ f(A) +
∑

x∈B\A

fA(x).

Here, we denote the marginal gain of adding an element to set A as fA(x) = f(A ∪ {x}) − f(A),
which is also monotone and submodular.

Proof. This is a standard result in submodularity. See Corollary 5 in [72].

Definition 4 (Matroid). A matroid is a pair M = (E, I) where E is a finite set (called the ground
set) and I is a nonempty set of subsets of E (called the set of independent sets) with the following
conditions:

1. ∀B ∈ I : A ⊂ B ⇒ A ∈ I .

2. ∀A,B ∈ I : |A| < |B| ⇒ ∃x ∈ B \A : A ∪ {x} ∈ I .

Definition 5 (Basis of a Matroid). A basis of a matroid is an independent set of the matroid which
is not contained in any other independent set.
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Corollary 2. IfB1 andB2 are two bases of a matroidM , then there exists a bijection φ : B1\B2 →
B2 \B1 such that:

∀x ∈ B1 \B2 : B1 ∪ φ({x}) \ {x} ∈ I.

Proof. This is a standard result in matroid theory. See Proposition 11 in [72].

Definition 6 (Partition Matroid). A partition matroid is a matroid where the ground set E is parti-
tioned into l disjoint subsets E1, E2, . . . , El and the set of independent sets is defined as follows:

I = {B ⊆ E : |B ∩ Ei| ≤ ki,∀i ∈ {1, 2, . . . , l}}.

A.2 Proof of Optimality Bound for the Interactive Policy

First, we show that the robots’ feasible action spaces Ar and the union set of all observed data Xr

form a partition matroid.
Lemma 2 (Robots’ feasible action space and set of all observed images form Partition Matroid). The
robots’ feasible action space Ar and the union of all observed data Xr form a partition matroid
Mr = (Xr,Ar), where Xr =

⋃Nrobot

i=1 Xr
i and Xr

i ∩Xr
j = ∅ ∀i 6= j. The action space is defined

as Ar = {
⋃Nrobot

i=1 ari : ari ∈ Ari ∀i = 1, . . . , Nrobot}.

Proof. The proof follows directly from the definition of action and observed data points. For all
a ∈ Ar, if s ⊂ a, then we know that for all j, |s ∩ Xr

j | ≤ |a ∩ Xr
j | ≤ N cache

j meaning s ∈ Ar.
And we know that for all a, s ∈ Ar, if |s|< |a|, then there exists a subset Xr

j ⊂ Xr such that
|s ∩Xr

j | < |a ∩Xr
j | ≤ N cache

j and Xr
j ∩ a \ s 6= ∅. Then, for any element x ∈ Xr

j ∩ a \ s, it holds
that s ∪ {x} ∈ Ar.

Now we prove the main theorem of our paper. Our proof is similar to the proof given in [72], while
our proof involves sequential optimization methods, such as the one shown in Alg. 4.
Theorem. The algorithm given in Alg. 4 achieves a solution greater than 1/2 of the optimal solu-
tion.

Proof. Assume that aOPT is the optimal solution for the problem 1. First, we show that aOPT and
aI are bases of the matroid (Xr,Ar). Since we assume that the objective function f is monotone
(Assmp. 2), it is trivial to see that |aOPT ∩ Xr

i | = N cache
i for all i ∈ {1, . . . , Nrobot}, making

aOPT a basis of matroid (Xr,Ar). aI is a basis as well, since in Alg. 4 we construct it such that
|aI ∩Xr

i | = N cache
i for all i. For matroids, there exists a bijection φ : aOPT → aI , which maps the

optimal solution to the solution of the INTERACTIVE policy. We can express these solution sets as
follows:

aOPT = {xOPT
1,1 , xOPT

1,2 , . . . , xOPT
Nrobot,Ncache

Nrobot

} and aI = {x1,1, x1,2, . . . , xNrobot,Ncache
Nrobot

}.

Here xi,j = φ(xOPT
i,j ) for all i, j. Let aIi,j = {x1,1, . . . , xi,j} and aIi,0 = {x1,1, . . . , xi−1,Ncache

i−1
}

denote the sets of actions taken up to the i-th robot and the j-th cache and actions taken up to the
i-th robot repectively. Then for fDr

c
(x) = f(Drc ∪ {x})− f(Drc), we can write the following:

fDr
c
(aOPT)− fDr

c
(aI) ≤

Nrobot∑
i=1

Ncache
i∑
j=1

fDr
c∪aI (xOPT

i,j )

≤
Nrobot∑
i=1

Ncache
i∑
j=1

fDr
c∪aIi,j−1

(xOPT
i,j )

≤
Nrobot∑
i=1

Ncache
i∑
j=1

fDr
c∪aIi,j−1

(xi,j)

=

Nrobot∑
i=1

Ncache
i∑
j=1

fDr
c
(aIi,j)− fDr

c
(aIi,j−1) = fDr

c
(aI).
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The first inequality is a result of Corollary 1, while the second inequality stems from the submodu-
larity of the function fDr

c
. In the third inequality, we utilize the fact that in each iteration of Alg. 4,

we select the element with the maximum marginal gain. Next, in the first equality, we use the fact
that aIi.j−1 ∪ {xi,j} = aIi,j . The last equality follows from the fact that for fDr

c
(∅) = 0, the sum of

the marginal gains equals to the value of fDr
c
(aI).

Therefore we have:

fDr
c
(aI) ≥ 1

2
fDr

c
(aOPT).

This concludes the proof, showing that the INTERACTIVE policy achieves at least half of the value
of the optimal solution.

A.3 Experiments

To demonstrate the effectiveness of our proposed policy, we conducted simulations in scenarios in-
volving multiple robots engaged in data collection from heterogeneous observation distributions. To
create these heterogenous environments, we sampled incoming class distributions from the Dirichlet
distribution, incorporating a skewness parameter denoted as α. This way, we ensure that environ-
ments have nonidentical incoming class distributions (non-i.i.d). Then, within each environment,
we simulated robots that observed the same data points.

Initially, an initial dataset denoted as D0
c was chosen from the training set to train the initial model

fDNN(.; θ0i ). The initial dataset was generated with uniform class distribution, employing the Dirich-
let distribution with a skewness parameter value of α = 5. In each subsequent round, the vision
model was retrained from the pre-trained vision model to ensure a fair evaluation of the performance
using the selected training set. To prevent overfitting, when identical data points were selected from
multiple devices, the redundant instances were filtered out, and only a single data point was added
to the training set.

A.3.1 Embedding Functions:

To generate embeddings for the data points, we utilized multiple vision and language models de-
pending on the datasets. Initially, we made use of the embeddings generated by the CLIP model
[4], which is trained to create outputs in the same embedding space for both language and vision
model inputs. However, we observed that when the embeddings generated by the CLIP model start
to perform poorly on the datasets when there is a mismatch of the targets of the CLIP model with our
classification output or the images are out-of-distribution for the CLIP model. For these datasets,
we instead employ the embeddings generated by BADGE [33]. BADGE embeddings essentially
correspond to the gradients of the final layer of the network with respect to the input.

A.3.2 Classification Experiments

In all classification experiments, we used the Adam optimizer with a learning rate of 0.001 with a
batch size of 1000. Additionally, the learning rate scheduler is used with a decay rate of 0.99. We
trained the DNNs in each round for 300 epochs. We did not apply any data augmentation to the
training set. To ensure robustness, we conducted these experiments for 25 different seeds. Now,
we provide additional explanations regarding the details and dataset-specific parameters used in the
simulations.

MNIST: In our paper, we used the MNIST dataset to show the efficacy of our algorithm in a simple
setting. The MNIST dataset is a collection of handwritten digits that contains 60,000 training images
and 10,000 test images. Each image is a 28× 28 grayscale image.

Simulation Parameters: In MNIST simulations, we used 5 heterogeneous environments, each
containing 4 robots that observe identical samples, resulting in a total system of 20 robots. To
create heterogenous incoming class distributions, we set the skewness parameter of the Dirichlet
distribution to α = 1.3. In each round, robots are observing 1000 data samples and collectN cache =
3 data samples from their observations. We started with an initial dataset of size 16 and collected
the data for 10 rounds. The final training dataset consists of 616 data points.
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DNN and Embedding Function: We used a simple DNN with 6 layers, with 4 convolutional
layers and 2 fully connected layers. Between each convolutional layer, we used the ReLU activation
function and applied dropout with a probability of 0.3. To create embeddings, we utilized BADGE
[33].

CIFAR-10: The CIFAR-10 dataset consists of 60,000 32× 32× 3 RGB images with ten different
classes. The dataset is split into training and testing datasets of size 50,000 and 10,000, respectively.
The classes in the dataset are truck, ship, horse, frog, dog, deer, cat, bird, automobile, and airplane.

Simulation Parameters: In CIFAR-10 simulations, we used 6 heterogeneous environments, each
containing 4 robots that observe identical samples, resulting in a total system of 24 robots. To
create heterogenous incoming class distributions, we set the skewness parameter of the Dirichlet
distribution to α = 1.6. In each round, robots are observing 1000 data samples and collectN cache =
1 data samples from observations. We started with an initial dataset of size 10 and collected the data
for 10 rounds. The final training dataset consists of 250 data points.

DNN and Embedding Function: We leveraged a pre-trained ResNet-50 model [68] as the back-
bone for our vision model. To adapt it for our task, we replaced the final layer of the ResNet-50 with
two fully connected layers, incorporating ReLU activation, and applied dropout with a probability of
0.3 to mitigate overfitting. Only these replaced layers were retrained, following the transfer learning
approach. This strategy significantly reduces training time while mitigating overfitting risks. To
create embeddings, we utilized embeddings created by the CLIP model [4].

Adverse-Weather Dataset The Adverse-Weather dataset comprises numerous RGB image se-
quences, each with dimensions of 720 × 1280 × 3. These sequences were collected from moving
vehicles around the University of Michigan campus, capturing diverse weather conditions. While
most sequences exhibit dynamic scenes, some of them include static recordings. The dataset in-
cludes two metadata classes: weather and time of day. The weather class consists of labels such as
rain, fog, snow, sleet, overcast, sunny, and cloudy. The time of day class includes labels for Sunset,
Afternoon, and Dusk. By combining these weather and time of day labels, we established a total of
11 classes to train our model on. To avoid redundancy, we subsampled the images from the video
sequences, selecting one image every 10 frames. Consequently, we constructed a dataset comprising
36,230 images, which we divided into a training set of 31,701 images and a test set of 4,529 images.

Simulation Parameters: In Adverse-Weather simulations, we used 6 heterogeneous environ-
ments, each containing 4 robots that observe identical samples, resulting in a total system of 24
robots. To create heterogenous incoming class distributions, we set the skewness parameter of the
Dirichlet distribution to α = 1.2. In each round, robots are observing 1000 data samples and col-
lect N cache = 1 data samples from observations. We started with an initial dataset of size 10 and
collected the data for 10 rounds. The final training dataset consists of 250 data points.

DNN and Embedding Function: We adopted a pre-trained Vit-H14 model [67] as the backbone
for our vision model. To adapt it to our specific task, we replaced the final layer of the Vit-H14
with two fully connected layers, employing ReLU activation, and incorporated dropout with a prob-
ability of 0.3 to mitigate overfitting. Only these replaced layers were subjected to retraining. This
methodology significantly reduces training time while effectively preventing overfitting. To create
embeddings, we have utilized BADGE [33].

DeepDrive Dataset: The DeepDrive data following the transfer learning approach, only encom-
passes 100,000 images taken from driving videos in diverse cities and weather conditions. It com-
prises 70,000 training images, 10,000 validation images, and 20,000 testing images. However, the
testing images are not publicly accessible, so our analysis focused solely on the original training and
validation datasets. The classification model was designed to predict weather labels, including rainy,
snowy, clear, overcast, partly cloudy, and foggy. However, due to a limited number of foggy images
(only 181), the foggy class was excluded from the simulations. Consequently, the classification
model was trained on a subset of five classes.

Simulation Parameters: In DeepDrive simulations, we used 5 heterogeneous environments, each
containing 6 robots that observe identical samples, resulting in a total system of 30 robots. To
create heterogenous incoming class distributions, we set the skewness parameter of the Dirichlet
distribution to α = 3.3. In each round, robots observe 1000 data samples and collect N cache = 20
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data samples from observations. We started with an initial dataset of size 50 and collected the data
for 20 rounds. The final training dataset consists of 12,050 data points.

DNN and Embedding Function: We used a pre-trained Vit-H14[67] model and replaced the final
layer of the vision model with 2 fully connected layers with the ReLU activation layer and applied
dropout with a probability of 0.3. We only retrained the replaced layers of the network. This
approach, known as transfer learning, reduces training time and helps to prevent overfitting. To
create embeddings, we utilized BADGE [33].

A.3.3 Object Detection Experiments

We ran object detection experiments on the DeepDrive dataset. As in the classification case, we
used the training and validation images to train our model and report the final mean average precision
(mAP) scores. We used an SGD optimizer with a learning rate of 0.01 in this experiment. We trained
the DNNs at the start and end of the data collection rounds. We applied all data augmentations
detailed in [69].

Simulation Parameters: In object detection experiments, we used 5 heterogeneous environments,
each containing 5 robots that observe identical samples, resulting in a total system of 25 robots.
We set skewness parameter α = 1. In each round, robots observe 1000 data samples and collect
N cache = 50 data samples from observations. We started with an initial dataset of size 5000 and
collected the data for 20 rounds. The final training dataset consists of 30,000 data points.

DNN and Embedding Function: We used a pretrained YOLOv8-small model [69] and retrained all
model weights in each training. Since we are dealing with the objects, we utilized the CLIP model
[4] to create embeddings.

A.4 Object Detection Experiments Metrics

In the object detection experiments, we used several metrics to evaluate the performance of the poli-
cies. These metrics include mAP50, representing the mean of average precision at the intersection
over union with a threshold of 50%; mAP50-95, denoting the mean of the average precision at the in-
tersection over union for thresholds ranging from 50% to 95%; precision, and recall. We conducted
the experiments with 25 different seeds and averaged the metrics across the seeds. We present re-
sults in Table 2. Our INTERACTIVE policy shows a similar performance to the CENTRALIZED policy
while outperforming the DISTRIBUTED policy. In mAP50 results, the INTERACTIVE policy shows
an improvement of 9.2%, whereas, in mAP50-95 results, the INTERACTIVE policy demonstrates a
development of 6.1%. Furthermore, our INTERACTIVE policy surpasses the DISTRIBUTED policy
in precision and recall results by 11.6% and 6.5%, respectively.

Method mAP@50 mAP@50-95 Precision Recall
INITIAL 33.2± 0.012 17.7± 0.007 51.5± 0.048 32.7± 0.01

DISTRIBUTED 37.2± 0.009 20.2± 0.006 56.3± 0.046 35.5± 0.008
CENTRALIZED 46.5± 0.003 26.3± 0.007 67.6± 0.007 42.4± 0.004
INTERACTIVE 46.4± 0.002 26.3± 0.002 67.9± 0.007 42.0± 0.003

Table 2: Additional metrics for object detection experiments

A.5 Comparison of Submodular Objective Function Values among Policies

In addition to the accuracy values presented in Fig. 3, we show the values of the submodular objec-
tive function across different data collection rounds for the same experiments in Fig. 5. Consistent
with the trends observed in accuracy values, our proposed INTERACTIVE policy outperforms the
DISTRIBUTED policy and achieves similar performance to the CENTRALIZED policy on all four
datasets.

The performance gains of 29.8%, 19.7%, 41.2%, and 48.5% for each dataset are achieved because,
in the INTERACTIVE policy, a robot makes selections while considering all other robots before
it, effectively reducing redundancy., as shown in Fig. 4. These emprical results align with the
theoretical analysis presented for the lower-bound in Theorem 1.
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Figure 5: Evaluating the submodular objective performance of INTERACTIVE , DISTRIBUTED , and
CENTRALIZED policies. This figure illustrates the submodular objective values for the cloud dataset across
multiple rounds. Notably, both the CENTRALIZED and INTERACTIVE policies achieve similar objective values,
while the DISTRIBUTED policy fails to reach the same level of performance.

Figure 6: Accuracy shows diminishing returns to training dataset size. Each line represents the accuracy
of the classification models on a different dataset. The x-axis represents the percentage of datasets used for
training the model, while the y-axis represents accuracy. The left figure provides a closer view of the right
figure, specifically focusing on training percentages ranging from 0 to 0.5. Across all datasets, we observe
a consistent improvement in accuracy as the percentage of training data increases. However, as the dataset
size grows, the slope of the curve gradually decreases, indicating diminishing returns where the incremental
contributions of new data samples become smaller. This observation supports our assumption of dataset quality
function being submodular and monotone.

A.6 Diminishing Returns between Accuracy and the Percentage of Training Data

To support our claim about dataset quality being submodular in Assumption 3, and monotone 2.
We conducted 5 experiments training classification models on four datasets of varying sizes. In
Fig. 6, we show the accuracy of the classification models accuracy across the different percentages
of the datasets. We can see in the general plot (Fig. 6-right) and zoomed-in version to smaller
percentages (Fig. 6-left) accuracy shows a diminishing returns property in terms of accuracy as the
training dataset size increases. This indicates that the incremental improvement gained from adding
new samples decreases with a larger dataset. Additionally, the accuracy of the models consistently
increases as the dataset size grows, providing evidence for the monotonicity of dataset quality. These
observations align with our assumption about dataset quality being submodular (Assmp. 3) and
monotone (Assmp. 2).
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Figure 7: Comparison of performance under non-monotone and non-submodular objective. We con-
ducted the same experiments as in Fig. 3 but with a non-submodular and non-monotone objective function,
described in A.7. Similar to Fig. 3, we observe that both the INTERACTIVE and CENTRALIZED policies out-
perform the DISTRIBUTED policy by a significant margin. This demonstrates the robustness and effectiveness
of the INTERACTIVE and CENTRALIZED policies under non-submodular and non-monotone objectives.

A.7 Accuracy When Objective Function is Non-submodular, Non-monotone

In this section, we investigate the performance of our INTERACTIVE policy when the objective
function f is not monotone or submodular through experiments. Instead of the submodular facility
location function, we employed a variant called the maximin facility location function. This function
aims to maximize the minimum distance between any two points in a set. Formally, we can define
the maximin facility location function as follows:

fmaximin(S) = max
si∈S

min
sj∈S\{si}

‖si − sj‖

where si is the ith point in the set S and ‖si−sj‖ is a distance function. We used the same simulation
parameters and models as we did with the facility location objective function. The accuracy results
of the simulations are presented in Fig. 7. Similar to the previous case, our INTERACTIVE policy
exhibits equivalent performance to the CENTRALIZED policy and outperforms the DISTRIBUTED
policy in all simulations.

A.8 Complexity Analysis

For all algorithms, suppose that there are Nrobot robots, each robot i observes samples Xr
i in each

data collection round, and in each round at most N cache
i samples have to be chosen from samples

Xr
i for each robot i.

It is a known result that the total number of function evaluations of the greedy algorithm that is used
for submodular maximization is O(|V |k), where V is the ground set for observations and k is the
number of data points that need to be selected [54].

The CENTRALIZED Algorithm: In the CENTRALIZED algorithm, a central server carries out all
the computation required in a data collection round to choose the samples that are going to be added
to the cloud dataset. That is, the central server has access to all the observations made by the robots
and has to selectN cache

i samples from the observation setXr
i of each robot i. Therefore, our ground

set is ∪Nrobot
i=1 Xr

i , and the number of points that need to be selected is
∑Nrobot

i=1 N cache
i . Because

the observed sets Xr
i of the robots are disjoint, the total number of elements in our ground set is

| ∪Nrobot
i=1 Xr

i | =
∑Nrobot

i=1 |Xr
i |. This makes the computational complexity of the CENTRALIZED

algorithm in terms of total number of function evaluations O(
∑Nrobot

i=1 |Xr
i | ×

∑Nrobot

i=1 N cache
i ).

The DISTRIBUTED Algorithm: In the DISTRIBUTED algorithm, all robots carry out the data selec-
tion process themselves. Therefore, for each robot i, the ground set is Xr

i and the number of points
that have to be selected is N cache

i . Summing the number of function evaluations over all robots, the
total complexity of the DISTRIBUTED algorithm is O(

∑Nrobot

i=1 |Xr
i | ×N cache

i ).
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The INTERACTIVE Algorithm: In our INTERACTIVE algorithm, just like the DISTRIBUTED al-
gorithm, the robots select data points in the confines of their observation sets. Thus, the ground
sets and the number of points to be selected from each ground set is again Xr

i and N cache
i , re-

spectively. Summing again over all robots, the total complexity of our INTERACTIVE algorithm is
O(

∑Nrobot

i=1 |Xr
i | ×N cache

i ), which is the same as the DISTRIBUTED algorithm.

Number of Message Exchanges: Since our problem is distributed in nature, we should also ana-
lyze the total number of messages passed between robots. The CENTRALIZED algorithm requires∑Nrobot

i=1 N cache
i iterations over all robots, resulting in total of O(Nrobot

∑Nrobot

i=1 N cache
i ) message

exchanges. On the other hand, our INTERACTIVE policy requires only one iteration over all robots,
leading to a significantly lower number of message exchanges, specifically O(Nrobot). Lastly, since
the DISTRIBUTED policy is executed without any interaction between robots, there are no message
exchanges involved.

Method Number of Message Exchanges Number of Function Evaluations

DISTRIBUTED - O(
∑Nrobot

i=1 |Xr
i | ×N cache

i )

CENTRALIZED O(Nrobot

∑Nrobot

i=1 N cache
i ) O(

∑Nrobot

i=1 |Xr
i | ×

∑Nrobot

i=1 N cache
i )

INTERACTIVE O(Nrobot) O(
∑Nrobot

i=1 |Xr
i | ×N cache

i )
Table 3: Computational Complexities of Different Policies

A.9 Numerical Evaluation of Policy Performance Metrics

To provide a quantitative example of the analysis conducted in Section A.8, we offer numerical
instances from experiments carried out on the DeepDrive dataset, detailed in Table 4. As evidenced
in the table, there are noteworthy distinctions in terms of computation and communication metrics
among the compared policies.

Specifically, in terms of message exchanges, our proposed INTERACTIVE policy showcases excep-
tional efficiency, outperforming the CENTRALIZED policy by a factor of 600×. Moreover, in relation
to function evaluations, both the INTERACTIVE and DISTRIBUTED policies demonstrate efficiency
improvements of 20× compared to the CENTRALIZED policy.

With regards to accuracy, an improvement of 9.4% is achieved by both the CENTRALIZED and IN-
TERACTIVE policies. This signifies that our proposed INTERACTIVE policy attains accuracy levels
akin to those of the CENTRALIZED policy, with the addition of only 30 additional message ex-
changes among robots, compared to the DISTRIBUTED policy. This, in turn, positions our proposed
policy as significantly more scalable than the CENTRALIZED policy.

Method No. of Message Exchanges No. of Function Evaluations Accuracy
DISTRIBUTED - 600,000 0.65
CENTRALIZED 18,000 12,000,000 0.75
INTERACTIVE 30 600,000 0.75

Table 4: Performance Metrics for DeepDrive experiments

A.10 Federated Learning Experiments and Comparative Analysis

Federated learning (FL) is a commonly used method to train machine learning models in decentral-
ized settings [73]. In FL, models are trained in a distributed fashion, where individual robots train
models locally and transmit only gradient updates to a central cloud. These gradient updates are then
aggregated, producing an averaged gradient that, in turn, updates the global model. FL preserves the
privacy of local data, as only gradient updates are shared with the cloud, followed by their averaging.

To compare our method against FL methods, we trained FL models using the local data from each
robot. We simulated scenarios where each robot had labels for randomly selected subsets of local
observations, corresponding to 1×, 2×, 5×, 10×, 20×, and 50× the cache size in the active learning
counterpart. In all experiments, each robot independently trained its local model for 20 epochs
using the same optimization parameters outlined in Section A.3. Subsequently, each robot shared
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Figure 8: Comparison of our INTERACTIVE policy versus Federated Learning. In addition to the active
learning benchmarks, we have compared our INTERACTIVE policy against a federated learning scheme. The
different shades of purple illustrate the FL experiments, where the local training of the ML model employs
1×, 2×, 5×, 10×, 20×, and 50×, the amount of data used in our active learning scheme. Darker shades indi-
cate larger data amounts in the FL experiments. Across all experiments, the results consistently demonstrate
the superior performance of our proposed INTERACTIVE policy when the same number of data points is used in
FL. Remarkably, the FL approach requires up to 50×, 20×, and 50× more data to attain performance compa-
rable to our policy on the MNIST, CIFAR-10, and Adverse-Weather datasets, respectively. This underscores
the remarkable data efficiency of our approach.

gradients with the cloud. At the end of each round, the cloud averaged these gradients to update the
global model. This updated global model was then sent back to each robot in the network.

The results for the FL experiments and our proposed policy are presented in Fig. 8. Across all the
experiments, when our proposed policy and FL have access to the same amount of data, our policy
consistently outperforms the FL counterparts by 42.1%, 43.9%, 41.0%, and 18.9%. In addition, to
achieve the same accuracy as our policy, FL needs 50×, 20×, and 50× more labeled data samples
for the MNIST, CIFAR-10, and Adverse-Weather datasets, respectively. However, in the more
challenging DeepDrive dataset, FL is not able to achieve a comparable result even when 50× more
labeled data samples - all of the local observations - are used in the training. This observation further
underlines the efficiency of our active learning-based approach relative to FL.

Several factors contribute to this performance divergence. In the context of active learning, the
selection of data points for each robot is limited to a maximum of 20 across all simulations. As a
result, when FL is trained on the same number of samples, the local models tend to overfit, thereby
compromising the performance of the global model. Moreover, for more challenging ML tasks,
the local dataset size within FL falls short of achieving high accuracy, even when all observed data
points are utilized. In contrast, our proposed INTERACTIVE policy mitigates these issues by pooling
the data in a centralized cloud, enhancing the training dataset size of the global model. As rounds
progress, the shared data pool expands, leading to improved overall model performance. In this
light, our INTERACTIVE policy complements traditional FL methods.
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