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Abstract: Stealthy multi-agent active search is the problem of making efficient
sequential data-collection decisions to identify an unknown number of sparsely
located targets while adapting to new sensing information and concealing the
search agents’ location from the targets. This problem is applicable to recon-
naissance tasks wherein the safety of the search agents can be compromised as
the targets may be adversarial. Prior work usually focuses either on adversarial
search, where the risk of revealing the agents’ location to the targets is ignored
or evasion strategies where efficient search is ignored. We present the Stealthy
Terrain-Aware Reconnaissance (STAR) algorithm, a multi-objective parallelized
Thompson sampling-based algorithm that relies on a strong topographical prior
to reason over changing visibility risk over the course of the search. The STAR
algorithm outperforms existing state-of-the-art multi-agent active search methods
on both rate of recovery of targets as well as minimising risk even when subject to
noisy observations, communication failures and an unknown number of targets.
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1 Introduction
Search and reconnaissance tasks are distinguished from each other only by the adversarial nature
of the targets: they do not wish to be found and search agents must attempt to conceal their own
locations from the them. Despite this, these two problems share many common elements. Histori-
cally, both have been a largely human endeavour, but several factors may impede effective search by
human teams. The search region could be too vast to mobilise enough human resources effectively
or the personal safety of human searchers could be at risk. Multi-robot systems are increasingly
being deployed for search missions via tele-operation [1, 2, 3, 4]. While human operators can re-
motely control a small number of robotic platforms, they cannot efficiently coordinate larger teams
[5]. Consistent communication between the agents may not be possible either due to environmental
factors or hardware failures. Finally, search operations are often time-critical, hence decentralized
multi-robot teams capable of efficient asynchronous adversarial active search are crucial.

The problem of adversarial search has been theoretically studied as the pursuer-evader problem [6,
7]. Several approaches seek to maximise the worst-case performance of the pursuer and imbibe
the evader with extraordinary abilities like complete knowledge, infinite travel speed, and infinite
compute. However, these solutions are often prohibitively expensive to compute [8] in real-time or
too conservative to be applicable in the real-world settings [9].

We model the problem as one of stealthy target detection [10], with multiple pursuers and immobile
evaders that may be placed on the map adversarially. This is in contrast to target tracking [11,
12] where the targets can move. Target detection with static targets is a realistic choice as, in the
reconnaissance task, it is not uncommon that the search is being carried out for well-concealed static
objects like pieces of infrastructure or environmental features as this knowledge can be of strategic
importance; and, in search and rescue missions, stranded people could be immobile or mobile, but
until they are detected for the first time they can be treated as immobile and the problem formulation
remains the same.

The core idea of our approach is simple, during search and reconnaissance missions, a strong prior
on the number of targets or their locations is usually not available, however, satellite imagery and
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(a) Desert mountainous landscape in a
Unity simulation environment with two
full-size ground vehicles also pictured.

(b) Top-down view of the terrain in
(a) showing average visibility as a
colour gradient. Y - high; B - low.

(c) Traversal costmap of the
terrain in (a) and (b) and the
search zone (red polygon).

Figure 1: Terrain can inform search and evasion strategies. The grid size in Fig. 1b is 60m× 60m. This
region’s dimensions are 2305.5m× 1837.5m representing a total area of 4.236km2. In the costmap in Fig. 1c
the area inside the red polygon is 2.48km2. Magenta is non-traversable. Black to blue to red indicate increasing
topography-aware visibility risk. The green cross is the goal location provided to the OMPL [13] or A-star [14]
path planner and the green curve is the path computed to the goal location while minimizing the visibility risk.

by extension topographical information of the search region may be available. If the agent were
to search for sparsely located targets in the map shown in Fig. 1, the intuition is that it would be
beneficial to search in better hiding places.

We present the Stealthy Terrain-Aware Reconnaissance (STAR)1 algorithm, a multi-objective opti-
misation algorithm that follows the Myopic Posterior Sampling (MPS) framework [15, 16, 17, 18]
which has been shown to be near optimal for adaptive goal-oriented tasks [19] such as in the multi-
agent asynchronous active search problem we have here. In MPS, we select the optimal action by
optimising a reward based on a single sample (known as the Thompson Sample) taken from the cur-
rent belief. This allows for a calculated randomness in the search decisions made by various agents
even if communication or hardware failures prevent coordination. As more observations are made,
the agents learn to take better actions that bring them closer to their search/risk objective.

We ablate the performance of STAR against existing methods varying the map type, availability
of communication, number of search agents and whether or not targets are placed adversarially in
simulation. In all cases, STAR outperforms existing methods. We have designed STAR to be de-
ployable on ground-based robotic platforms described in [18] in a search region that is 4km2 in
size. Our motivation for only presenting simulation results in this paper is to ablate and assess the
performance of the STAR algorithm in our realistic simulator against the state of the art from an al-
gorithmic standpoint as physical runs cannot usually be conducted in quantities that show statistical
significance.

To the best of our knowledge, STAR is the state-of-the-art in search efficiency for (adversarial)
multi-agent active search given a known terrain map that is also robust to communication failures,
operates without any human direction or explicit subdivision of the search region. Our contributions
may be summarized as follows:

• We propose the Stealthy Terrain-Aware Reconnaissance (STAR) algorithm, a multi-objective
search algorithm that combines the information-seeking reward term presented in Bakshi et al.
[18] with a novel stealth objective that uses a known terrain map to encourage concealment of the
search agent while improving search efficiency by searching in locations with greater likelihood
of recovery.

• We ablate this superior performance in communication-disabled scenarios with our proposed
terrain-aware noisy observation model, varying number of agents, map types, and in adversar-
ial and non-adversarial scenarios. In each case STAR outperforms all other methods.

• Finally, STAR has been deployed on our physical systems for search and/or reconnaissance mis-
sions. Appendix A contains details of the physical systems.

1https://github.com/bakshienator77/Stealthy-Terrain-Aware-Reconnaissance-and-Search.git
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2 Related Work

In pursuer-evader problems the primary objective of the search agent(s) is to trap or track the evader
with theoretical guarantees for a worst-case evader [20, 21, 22, 23]. However, these approaches
don’t consider the inverse adversarial problem of minimizing risk of detection by the adversary (as
it already has complete knowledge). Some approaches attempt to use approximate algorithms and
relax the requirement for guarantees [24], however none of these approaches can be extended to
have an unknown number of evaders and that limits their practical applications.

Probabilistic search methods seek to improve expected or average case performance. Bayesian learn-
ing provides an effective way to probabilistically model the world, inculcate prior information and
adapt to information over the course of the search [25, 26]. However, these approaches often rely on
perfect observation models (no noise, no false positives) and their examination of optimal behaviour
is usually confined to single pursuer or single evader cases [27, 28]. In a similar vein, modelling
the problem using Partially Observable Markov Decision Processes (POMDPs) [29] yields tractable
optimal solutions only with a single pursuer. An excellent survey on adversarial search by Chung
et. al. [30] covers an overview of the field and open research questions.

Decentralised adversarial multi-agent active search that is robust to communication failure is an
actively researched field. Though multi-robot teams may partition the search region for exploration
efficiency [31], generating such a partitioning is challenging with unreliable communication. Given
the success of the POMDP formulation in the single-agent case, researchers have attempted to apply
reinforcement learning to the problem [10, 32]; however, these approaches are extremely sample
inefficient and prone to overfit to the environment they are trained on. In our formulation with
known topography, it is not clear if these RL methods will generalize to different topographies and
therefore they aren’t a good candidate for realistic search missions.

Terrain-aware path planning with adversarial targets is well-studied in the context of military op-
erations [33, 34, 35] and in the context of stealth-based video games [36, 37]. However, these
approaches focus on path planning but not on a competing search objective, that is, they assume that
the adversary locations are known and need to be avoided, or are unknown and need to be evaded if
encountered en route to the goal.

Adversarial search has some implementations on real-hardware and there are approaches that at-
tempt to validate their results in simulation [27, 38, 39]. However, these approaches are usu-
ally single-agent [40, 41]. If they are multi-agent then they rely on strong coordination between
agents [42, 43]. This motivates that an efficient solution to multi-agent reconnaissance problems
that can be deployed on real systems remains an open question.

GUTS [18] is a non-adversarial multi-agent active search algorithm that has been shown to out-
perform state-of-the-art algorithms on recovery rate of targets and has been deployed on physical
hardware. It is the state-of-the-art for robust multi-agent active search and it can handle intermittent
communication and observation uncertainties, but it is not suitable for the reconnaissance task.

3 Problem Formulation

We model the search region as a grid with a cell size of 60m x 60m. Fig 1c shows an overhead view of
the costmap for one of the maps we test on. Due to the ubiquity of satellite imagery, it is reasonable
to assume such approximate map information of the search region is available. Some parts of the
map may be different during deployment on physical systems, but our on-robot sensing and mapping
system can recognize changes and dynamically update the prior map. For our experiments, however,
we assume the map to be fixed. We model the stealthy active search problem as follows:

• We give the same search region to all robots, for example, see red polygon in Fig. 1c.
• The targets are sparsely placed and static. They need to be recovered quickly with high certainty.
• The robots must minimise their exposure to the targets which are considered hostile.
• Each robot must plan its next data collection action on-board, i.e., no central planner exists.
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(a) (b) (c) (d)
Figure 2: A simple illustration of the viewable
regions of the (a) robot given its coordinates and
direction of facing, and (b) target given its co-
ordinates. Lighter the shade greater the noise.
Black cells are obstructions.

Figure 3: A realistic illustration of the viewable region of
the target when (c) unbounded if it were located at the red
dot; (d) discretized (60m× 60m cell size grid) and subject
to viewing limits (200m−300m) superimposed on the topo-
graphical map. Further details in Appendix A.4

• The robots may communicate their locations and observations with each other; however, the al-
gorithm’s performance should improve with increasing number of search agents anywhere in the
spectrum of total absence of communication to perfect communication.

Formally, we represent the locations of targets in our 2D grid representation using a sparse matrix
B ∈ RM1×M2 . Let β ∈ RM be the flattened version of matrix B, where M = M1M2. This is a sparse
vector, with 1s corresponding to target locations and 0s elsewhere. The objective is to recover the
true β through search. We model the terrain-aware noisy observations through Eqn. 1 and Eqn. 2.

y j
t = clip(X j

t β ±b j
t ,0,1) (1) bt = nt/vt (2) P(L j

t ) =
Q′

∑
q

∑
k

XkL j
t (3)

where, X j
t ∈ RQ×M describes the sensing matrix such that each row in X j

t is a one-hot vector indi-
cating one of the grid cells in view of the robot j at timestep t, and Q is the total number of grid cells
the robot can view. y j

t ∈RQ×1 is the resultant observation including the additive terrain-aware noise
vector b j

t ∈RQ×1. The observation yt is clipped to be within 0 and 1 as the additive noise can cause
the resultant quantity to exceed those bounds. Going forward, we assume that these quantities are
defined on a per-robot basis and drop the superscript j for ease of notation. The topography-aware
noise bt has two components; firstly, it encodes the intuition that observation uncertainty increases
with distance to the robots; secondly, it encodes the intuition that observation uncertainty increases
with occlusions in the line of sight from the robot.

In Eqn. 2, / denotes element wise division, nt ∼ N +(0,Σt) with diagonal elements of the noise
covariance matrix Σt monotonically increasing with the square of the distance of the observed cell
from the robot. vt ∈ RQ×1 where each entry represents the square of the fractional visibility (ac-
counting for occlusions) of each of the Q cells visible in Xt . The noise is sampled from a positive
half-Gaussian distribution N +(0,Σt) and is added for cells without targets and subtracted for cells
with targets. Similarly, we have an observation model for the targets albeit with some relaxations,
namely, only accounting for occlusions but no depth-aware noise. Fig. 2 shows simple examples of
the modelled viewable regions of the robots and targets, and Fig. 3 shows a realistic example for a
target viewable region.

Let the robot trajectory for robot j until timestep t be denoted L j
t ∈ RM such that each entry in L j

t
is the integer count of the number of times robot j has visited that cell in the whole space M. In
Eqn. 3, we define a penalty function P(L j

t ), which penalizes the robot for showing itself to any of
the targets. Similar to above, Xk ∈ RQ′×M is the sensing matrix for the kth target, note that it is not
dependent on the timestep t as targets are static. The second summation is to reduce the value to a
single real number. The stealth penalty can be thought of as a scaled discretized representation of
the time spent in the viewable region of the target(s).

Let D j
t be the set of observations available to robot j at timestep t. D j

t comprises of (Xt ,yt) pairs
collected by robot j as well as those communicated to robot j by other robots. Let the total number
of sensing actions by all agents be T . Our main objective is to sequentially optimize the next sensing
action Xt+1 based on D j

t at each timestep t to recover the sparse signal β with as few measurements
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T as possible while minimizing the stealth penalty over all robots ∑ j P(L
j
t ). Each robot optimizes

this objective based on its own partial dataset D j
t in a decentralized manner.

4 STAR: Stealthy Terrain-Aware Reconnaissance
This section presents the STAR algorithm. Each robot j asynchronously estimates the posterior
distribution over target locations based on its partial dataset D j

t . During the action selection stage,
each robot generates a sample from this posterior and simultaneously optimizes a reward function
and a stealth penalty for this sampled set of target locations. The reward function represents potential
information gain for the sensing action in consideration, while the stealth penalty represents the
potential information leakage based on the partial dataset D j

t available.

4.1 Calculating Posterior

Following Bakshi et al. [18], each robot assumes a zero-mean gaussian prior per entry of the vector β

s.t. p0(βm) =N (0,γm). The variances Γ = diag([γ1...γM]) are hidden variables which are estimated
using data. Bakshi et al. [18] follows Tipping [44] and Wipf and Rao [45] and uses a conjugate in-
verse gamma prior on γm to enforce sparsity s.t. p(γm) = IG(am,bm) =

bam
m

Γ(am)
γ
(−am−1)
m e−(bm/γm)∀m∈

{1...M}. The salient feature of the inverse gamma distribution IG(.) is that it selects a small
number of variances γm to be significantly greater than zero, while the rest will be nearly zero,
this enforces sparsity. We estimate the posterior distribution on β given data D j

t for robot j us-
ing Expectation Maximisation [46]. We can write analytic expressions for the E-step (estimating
β̂ = p(β |D j

t ,Γ) = N(µ,V)) and M-step (computing maxΓ p(D j
t |β ,Γ)) respectively:

V = (Γ−1 +XT
ΣX)−1; µ = VXT

Σy (4) γm = ([V]mm +[µ]2m +2bm)/(1+2am) (5)

where X and y are created by vertically stacking all measurements (Xt ,yt) in D j
t , and Σ is a diagonal

matrix composed of their corresponding terrain-aware noise variances.

Each robot estimates p(β |D j
t ) = N(µ,V) on-board using its partial dataset D j

t . We set the values
of am = 0.1 and bm = 1 as these were found to be effective in Ghods et al. [16]. Finally, agent j
samples from the posterior β̃ ∼ p(β |D j

t ).

4.2 Choosing Next Sensing Action

Each robot chooses the next sensing action Xt+1 by assuming that the sampled set of target locations
β̃ is correct. Specifically, let β̂ (D j

t ∪(Xt+1,yt+1)) be our expected estimate of the parameter β using
all available measurements D j

t and the next candidate measurement (Xt+1,yt+1). Then, following
Bakshi et al. [18] the reward function is defined as:

R(β̃ ,D j
t ,Xt) =−||β̃ − β̂ (D j

t ∪ (Xt ,yt))||22−λ × I(β̃ , β̂ ) (6)

Where, λ (= 0.01) is a hyperparameter that reduces the reward for a search location if the estimated
β̂ does not have high likelihood entries in common with the sample at the current step β̃ . Let k̂ and
k̃ be the number of non-zero entries in β̂ and β̃ , then the indicator function I(.) is defined as:

I(β̃ , β̂ ) =

{
0, if any matches between top k̂

2 entries in β̂ and top k̃
2 entries in β̃

1, otherwise

The reward function is stochastic due to the sampling of β̃ and this ensures that the search actions
selected by the robots are diverse. The intuition behind this reward term is that those search de-
cisions are preferred that can confirm the locations of suspected (but not confident) targets as per
the sample. This reward function was shown to improve search recovery rate in robotic search and
rescue missions over existing methods [18] which tend to be more explorative.

The reward in Eqn. 6 must be balanced against the risk quantitified by the stealth penalty term
(Eqn. 3). Since it is computationally infeasible to compute the risk over all possible trajectories,
we calculate the penalty for every possible goal location l j

t of each robot j. l j
t ∈ RM is a one hot
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(a) (b) (c) (d)
Figure 4: Depth Elevation Map (DEM) of (a) the
natural mountainous search region from Fig. 1,
and (b) a grid of perpendicular corridors. DEMs
are heightmaps, when represented as an image
the brighter the region, the greater the elevation.

Figure 5: Experimental Results in the Grid Map (Fig. 4-b).
STAR (red) outperforms existing methods (c) narrowly on
Search Efficiency, and (d) significantly on Visibility Risk
due to the novel multi-objective function. RSI’s efficiency
remains flat as it is an information-greedy method.

vector indicating the location of the robot corresponding to the potential measurement X j
t in the

reward defined in Eqn. 6. This will yield a risk landscape over the entire map that is used for
action selection and path planning. Since we only have the posterior β̂ over target locations and
not ground truths, in Eqn. 7 we use the folded normal distribution to determine a separate posterior
mean µ̂vis ∈ RM for visibility risk that accounts for the mean and variance of the posterior β̂ . The
final risk objective is defined in Eqn. 8:

µ̂
i
vis =

√
2Vii

π
exp

(
−µ2

i
2Vii

)
+µ i

(
1−2φ

(
−µ i√

Vii

))
(7) P(l j

t ) =
M

∑
i

µ̂
i
vis

Q′

∑
q

Xil j
t (8)

where, in Eqn. 7 V and µ are the variance and mean of the posterior defined in Eqn. 4, φ is the error
function φ(z) = 2√

π

∫ z
0 e−t2

dt and i indexes into the M length vector. In Eqn. 8, µ̂
i
vis behaves as a

weighting scalar for each location i in the map where a threat may be located. When the posterior
variance for a location i is close to zero then µ̂

i
vis will tend to the posterior mean µ i, and when the

variance is high but the mean is zero (as it is at the beginning of the run) the weighting factor will
still be non-zero as it will be governed by the variance. The overall optimisation objective can then
be thought of as two competing objectives as follows:

Xt , lt = argmax
X̃,l̃

(
R(β ∗,D j

t , X̃)− γP(l̃)
)

from (6) and (8) (9)

where, γ is a hyperparameter controls the tradeoff between goal selection to satisfy the stealth
penalty and the reward term. We found that the best value for γ is 1 combined with normalising
both the reward and stealth penalty terms between 0 and 1.

5 Experiments and Results

Our experiments demonstrate the superior search efficiency of our proposed algorithm STAR com-
pared to existing search methods: GUTS, RSI, coverage-based search and random search. The
GUTS algorithm [18] is a parallelized Thompson sampling based algorithm that prioritises recovery
rate in multi-agent active search missions with realistically modelled noise. It has been optimised to
run on real robots and to the best of our knowledge it is the state-of-the-art in decentralised multi-
agent active search methods. Region Sensing Index (RSI) [47] is an active search algorithm that
locates sparse targets while taking into account realistic sensing constraints based on greedy max-
imisation of information gain. The coverage baseline myopically chooses the next waypoint in an
unvisited part of the search region while the random search policy randomly selects a cell to visit.

5.1 Testing Setup

Each search run is initialized by specifying the same search region for each robot (see Fig. 1c).
All robots start at the same location. We evaluate the various search algorithms under two target
sampling paradigms: uniform and adversarial. In uniform sampling the targets are placed uniformly
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Table 1: Simplified Simulator Results. STAR (red) outperforms existing state-of-the-art methods on both
metrics (lower is better) regardless of how targets are placed, and even with total communication breakdown.

at random in the search region. In adversarial sampling the targets are placed stealthily, i.e., they
are placed in locations with lower average visibility within the search region. We control for the
locations of the targets using these two paradigms. We utilize two possible maps, a mountainous
desert landscape (See Fig. 1a and Fig. 4a) and a grid of corridors (see Fig. 4b). There are always 5
targets (K) but this is not known apriori. We run experiments varying number of search agents (J)
which may or may not be able to communicate with each other to showcase the robustness of STAR.

5.2 Evaluation Metrics

Our primary evaluation metric is the recovery rate, which is defined as the fraction of targets the
search method has located against the number of search decisions made within the time budget. Our
secondary metric is the stealth penalty incurred by the team of search agents.

We evaluate the algorithm on the basis of decision steps, i.e. one search decision is one time step.
This is equivalent to assessing an algorithm’s sample complexity while abstracting away environ-
ment/hardware specific factors like terrain conditions or particular compute specifications that might
affect wall clock time. That being said, when evaluating in the realistic simulator each algorithm is
given the same runtime budget of 1 hr and 15 min, this is short enough to be a realistic duration for a
search operation and long enough that robots with a max speed of 5 m/s may complete exploration.

The stealth penalty is a scaled and discretized representation of the time spent in the viewable region
of the target(s). Eqn. 3 describes the stealth penalty as the dot product between the viewable region
of the targets and the path(s) taken by the robot(s). Given the cell size of the grid and speed of the
robots, we may calculate time spent by the agents in view of the targets using the stealth penalty.
Similar to search efficiency, we choose to abstract away physical quantities like speed and report
performance on the stealth penalty directly.

5.3 Simple Simulator Results

Our simple simulator accurately simulates the robots’ sensing and trajectory planning while using a
very simple physics model for robot traversal in order to speed up simulation time. Fig. 5c-d shows
the performance the results in the simple simulator on the grid of corridors (Fig. 4b) with adver-
sarially placed targets. STAR wins out on both metrics, maximising recovery rate of targets and
minimising risk. Table 1 shows the results on the simple simulator for the mountainous desert land-
scape (Fig. 4a) and ablates it against communication failures and non-adversarial target placement.
Across the board, STAR (marked in red) outperforms existing methods. When communication fail-
ures exist, coverage based planners suffer the most as their search efficiency relies on coordination.
RSI remains unaffected as it is an information greedy algorithm and more agents doesn’t translate
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1-Robot Realistic Simulator Runs 2-Robot Realistic Simulator Runs
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Table 2: Realistic Simulation Results. STAR (red) has greater search efficiency (targets found F / total targets
K) and lower stealth penalty incurred regardless of target placement strategy. In the top-left, RSI (purple) is
able to achieve a lower penalty than STAR as it fails to locate all targets in most runs. The end of each curve is
the end of the runtime budget, hence the penalty at the end of each curve is the final penalty for that run.

to greater efficiency either. GUTS, the current state-of-the-art in decentralised multi-agent active
search, performs fairly well on recovery targets but clearly loses out on the stealth metric to STAR.

5.4 Realistic Simulator Results

We have designed STAR such that it runs in real-time on the multi-robot team presented in [18].
We simulate field tests in a desert mountainous environment with a search area of ∼ 2.5km2 with a
realistic physics model and present those results here. We compare the search efficiency of STAR,
with GUTS, RSI, random search and coverage-based search in Table 2. We plot results varying
team size and target placement strategy with five targets. Results are aggregated across 10-12 runs
for each line on the graph. We can see that STAR outperforms our baselines: GUTS, RSI, coverage-
based search and random search on the recovery rate (odd columns) as well as in terms of the stealth
penalty (even columns) regardless if the targets are placed adversarially or uniformly.

5.5 Discussion

Despite optimising to reduce the stealth penalty, a competing objective, STAR still outperforms
the other algorithms on recovery rate, including GUTS, the the previous best algorithm in terms of
search efficiency. This indicates that the terrain-aware stealth penalty term improves the discrimina-
tory power of the reward function.

The results shown in this work demonstrate that fully autonomous robots can effectively search in
complicated natural terrains in a time efficient manner. We believe the algorithm presented here
paves the way for more ubiquitous application of autonomous robotics in multi-agent search for dis-
aster response and reconnaissance and will save human effort and human lives with greater adoption.

6 Limitations
This work tackles a gap in current literature wherein, prior work in adversarial search ignores visi-
bility risk when solving for efficient search or ignores efficient search when designing stealth algo-
rithms. We utilize Depth Elevation Maps since our primary use case is open outdoor environments.
3-D structures that breakdown the 2-D assumption like caves or cliff overhangs are failure cases. We
assume a symmetric sensing model for the targets and the agents, while this is realistic as it requires
no special knowledge, it can be improved by incorporating a directionality to the assumed target
sensing model, possibly by incorporating a movement model since STAR currently assumes static
targets.
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A Appendix

A.1 Glossary of Notations

Notation Description
B ∈ RM1×M2 Sparse matrix representing the locations of targets in a 2D grid

β ∈ RM Flattened version of B, sparsely populated vector
M = M1M2 Total number of cells in the grid

y j
t Observation vector for robot j at timestep t

X j
t Sensing matrix for robot j at timestep t

Q Total number of grid cells visible to a robot
b j

t Terrain and depth-aware noise vector for robot j at timestep t
P(L j

t ) Penalty function penalizing robot j for showing itself to targets given a path of traversal
l j
t One-hot vector indicating the location of a robot j

R(β ∗,D j
t , X̃) The reward term in the optimization objective

P(l̃) The stealth penalty term in the optimization objective given the potential location of the robot
Xk Sensing matrix for the kth target
D j

t Set of observations available to robot j at timestep t
T Total number of sensing actions by all agents
D j

t Set of observations available to robot j at timestep t
β̃ Sampled set of target locations
Γ Diagonal matrix of hidden variables, estimated using data
γm Variance for the mth entry of β

am Parameter of the inverse gamma prior on γm
bm Parameter of the inverse gamma prior on γm

µ Mean of the posterior distribution p(β |D j
t ,Γ)

V Variance of the posterior distribution p(β |D j
t ,Γ)

X Matrix formed by stacking all sensing actions in D j
t

Σ Diagonal matrix of terrain-aware noise variances
λ Hyperparameter for the reward function

β̂ (D j
t ∪ (Xt+1,yt+1)) Expected estimate of β using all available measurements and the next candidate measurement

k̂ Number of non-zero entries in β̂

k̃ Number of non-zero entries in β̃

I(β̃ , β̂ ) Indicator function for comparing entries in β̂ and β̃

γ Hyperparameter controlling the tradeoff between goal selection and the stealth penalty
µ̂

i
vis Posterior mean for visibility risk

φ(z) Error function
K The number of targets in a search run
J The number of search agents participating in a search run
F The number of targets found during a run

A.2 Algorithm Pseudo-code

The algorithm has been summarized in Alg. 1

A.3 Real Hardware Performance

The STAR algorithm has been tested on the physical systems as shown in the demo video2. In the
main paper we ablated and assessed the performance of the STAR algorithm against the state of the
art from an algorithmic standpoint to show statistical significant superiority. Here, we provide some
statistics from running the algorithm on physical systems.

2https://youtu.be/Fs1lv4y6Nq8
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Algorithm 1 STAR Algorithm

Assume: Sensing model (1), sparse signal β , J agents
Set: D j

0← /0 , L j
0←{x j,y j} ∀ j ∈ {1, ...,J}, γm = 1 ∀m ∈ {1, ...,M}

for t = 1, ....,T do
Wait for an agent to finish; for the free agent j:
Sample β̃ ∼ p(β |D j

t ,Γ) = N (µ,V) from (4)
Xt , lt = argmaxX̃,l̃

(
R(β̃ ,D j

t , X̃)− γP(l̃)
)

from (6) and (8)
Observe yt given action Xt

Update D j
t+1 = D j

t ∪ (Xt ,yt) (robot observations)
Update L j

t+1 = L j
t ∪ (lt) (robot path)

Share (Xt ,yt) Estimate Γ = diag([γ1, ...,γM]) using (5)
end for

Figure 6: Planning time vs Search region Size

The Fig. 6 shows a plot of the planning time for one decision of the STAR algorithm against the size
of the search space. The planning time in search regions under a sq km is around 10-15 secs. At
2.5 sq. km (search region size in the paper), it rises to over a minute. The compute on the robot is
a Nuvo-8108GC with Intel Xeon E-2278GEL (Coffee Lake R) 2.0 GHz Processor. In practice the
robot may start planning its next decision slightly before it expects to arrive at its next goal location
so this planning time doesn’t impact search performance. To isolate such engineering optimisations
from algorithmic assessment we evaluated the algorithms on their sample complexity rather than
wall clock time.

A.4 Terrain Visibility Prior

Since our use case is outdoor spaces we use Depth Elevation Maps (DEMs) to represent the terrain
(See Fig. 4) since it is more memory efficient than voxels.

To determine what portion of the map is visible given location and direction of facing we use a
reference plane-based approach [48] which can compute the viewable region in the map given any
point in constant time as opposed to ray casting methods [49, 50, 51, 52, 53] which takes variable
time. We assume that the topography remains unchanged over the course of the run; however, our
physical systems are capable of dynamically updating the topography using point clouds generated
by stereo cameras. Hence, having a constant time algorithm for viewshed computation allows for
efficient onboard updating of the visibility map if there are differences between the terrain prior and
the dynamic observations made by the robot on the ground.

Once we have the viewable region from a given point on the map we discretise it and apply viewa-
bility limits on in accordance with our physical system as shown in Fig. 3 and described ahead.
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A.5 UGV Sensing Action model

We use a array of 5MP RGB cameras with an effective lateral field-of-view (FOV) of 193◦ for the
ground vehicles. This allows the perception system to pick up detections several hundred metres
out.

We model the sensing action model in the grid representation as a trapezium of fifteen cells along
the bearing of the UGV as shown in Fig. 2a. Its full extent is upto 210m−300m in front of the robot
subject to occlusions. The motivation behind this is that beyond a certain distance even if the terrain
is in line of sight, it is not possible to make accurate detections of targets as they are just a few pixels
in the image.

A.6 Target Sensing Action Model

Fig. 2b shows a representative example of the viewshed of the targets. Since we don’t have informa-
tion on the direction of facing of the targets, we model the FOV such that targets see in all directions
subject to the topography and the 210m−300m viewing limit but without depth aware noise. Fig. 3
shows an example of the viewshed computed at an example location in the map desert mountainous
map (Fig. 1) assuming a 360◦ FOV.

A.7 Visibility Risk Aware Path Planning

Since our robot and target viewing models are symmetric, it implies that detecting a target is ac-
companied by the target detecting the search agent, however being identified once does not mean
the task is over, there could be more targets to locate and known targets should be avoided for the
remainder of the search. We expect to minimize the stealth penalty over the course of the run but
don’t expect it to be zero. As an aside, were we to employ asymmetric viewing models such that
viewing targets without being viewed was possible, we might aim to have zero risk policies but we
outline this for future work.

In order for the search agents to respect the visibility risk map when path planning (See Fig. 1c), we
use the OMPL planner [13] on the physical system and for the realistic simulation and the A-star
planner [14] for our simplified simulations. Both planners can plan paths within time constraints
and subject to state costs, which in our case is the visibility risk map, and an occupancy map of
obstacles.
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