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Abstract: Imitation Learning (IL) is a sample efficient paradigm for robot learn-
ing using expert demonstrations. However, policies learned through IL suffer from
state distribution shift at test time, due to compounding errors in action prediction
which lead to previously unseen states. Choosing an action representation for
the policy that minimizes this distribution shift is critical in imitation learning.
Prior work propose using temporal action abstractions to reduce compounding
errors, but they often sacrifice policy dexterity or require domain-specific knowl-
edge. To address these trade-offs, we introduce HYDRA, a method that leverages
a hybrid action space with two levels of action abstractions: sparse high-level
waypoints and dense low-level actions. HYDRA dynamically switches between
action abstractions at test time to enable both coarse and fine-grained control of
a robot. In addition, HYDRA employs action relabeling to increase the con-
sistency of actions in the dataset, further reducing distribution shift. HYDRA
outperforms prior imitation learning methods by 30-40% on seven challenging
simulation and real world environments, involving long-horizon tasks in the real
world like making coffee and toasting bread. Videos are found on our website:
https://tinyurl.com/3mc6793z

1 Introduction
In recent years, supervised learning methods have made remarkable advancements in computer vi-
sion (CV), natural language processing (NLP), and human-level game playing [1, 2, 3, 4, 5, 6, 7].
In robotics, imitation learning (IL) has emerged as a data-driven and sample efficient approach for
programming robots using expert demonstrations. More specifically, behavioral cloning (BC) meth-
ods treat IL as a supervised learning problem and directly train a policy to map states to actions. BC
methods are often favored in practice for their simplicity but suffer from the well-known distribu-
tion shift problem, where the test time state distribution deviates from the training state distribution,
primarily caused by the accumulation of errors in action predictions [8, 9, 10].

Broadly, prior work has explored reducing distribution shift by interactively adding new data [9],
incorporating large prior datasets [11, 12], choosing better state representations (inputs) [13, 14],
or altering model or loss structure [15, 16, 14]. A less explored but critical factor is the action
representation (outputs): action prediction error partially stems from how difficult it is for the policy
to capture the expert demonstrated actions, so action representations are a critical line of defense
against distribution shift. Prior work studying action representations generally fall into two camps:
(1) methods that use temporal abstractions to treat long action sequences as a single action (i.e.,
reducing the effective task horizon) and thus reduce the potential for compounding errors, and (2)
methods that make the action representation more expressive to minimize the single-step prediction
error [17, 18, 16, 19, 15]. However, both approaches come with a number of shortcomings.

Methods using temporal abstractions often come at the cost of either the dexterity of the robot
or the generality to new settings. One prior approach is for the robot to follow waypoints that
cover multiple time steps [17, 14]; however, waypoints alone are not reactive enough for dynamic,
dexterous action sequences (e.g., inserting a coffee pod). Other works use structured movement
primitives that can capture more dynamic behaviors like skewering food items or helping a person
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get dressed [20, 18, 21], but relying on pre-defined primitives often sacrifice generalizability to new
settings (e.g., new primitives beyond skewering for food manipulation). Today, we lack temporal
abstractions that reduce distribution shift without losing policy dexterity and generality.
Other methods design each action to be more expressive to capture the multi-modality present in
human behavior [19, 15, 16]; however, these expressive action spaces often lead to overfitting, high
training time, or complex learning objectives. Rather than making the policy more expressive, a
more robust approach is to make the actions in the dataset more consistent at a given state and easier
to learn (e.g., showing one consistent way to insert a coffee pod rather than many conflicting ways).
Prior work shows that more action consistency (e.g., consistent human demonstrators) with sufficient
state coverage lead to better policies [19, 14, 22], likely by reducing online policy errors [23].
To enable both a better temporal abstraction and more consistent actions in the dataset, our key
insight is to leverage the fact that most robotics tasks are hierarchical in nature – they can be divided
into two distinct modes of behaviors: reaching high-level waypoints (e.g., free-space motion) or
fine-grained manipulation (e.g., object interaction). Then, we can learn a policy that dynamically
switches between these modes – this is in fact similar to models of human decision making, where
it is widely believed that humans can discover action abstractions and switch between them during
a task [24, 25]. Capturing both waypoints and fine-grained actions enables us to compress action
sequences (i.e., reduce distribution shift) without sacrificing the dynamic parts of the task, thus
maintaining dexterity. In practice, this abstraction is general enough to represent most tasks in
robot manipulation. Another notable advantage of partitioning tasks into two modes is that, during
the waypoint reaching phase, we can relabel our actions with more consistent waypoint-following
behaviors, thus increasing action consistency in the dataset.
Leveraging this insight, we propose HYDRA, a method that dynamically switches between two ac-
tion representations: sparse waypoint actions for free-space linear motions and dense, single-step
delta actions for contact-rich manipulation. HYDRA learns to switch between these action modes
with human-labeled modes, which are provided after or during data collection with minimal ad-
ditional effort. In addition, HYDRA relabels low-level actions in the dataset during the waypoint
periods – where the robot is moving in free space (e.g., when reaching a coffee pod) to follow consis-
tent paths. These consistent actions simplify policy learning, which reduces action prediction error
in the dataset overall and thus reduces distribution shift. HYDRA outperforms baseline imitation
learning approaches across seven challenging, long-horizon manipulation tasks spanning both sim-
ulation and the real world. In addition, it is able to perform a complex coffee making task involving
many high precision stages with 80% success, 4x the performance of the best baseline, BC-RNN.

2 Related Work
Data Curation: Several prior works aim to curate data based on some notion of data quality, in
order to reduce distribution shift. Most works define quality as the state diversity present in a dataset,
To increase state diversity, Ross et al. [9] proposed to interactively collect on-policy demonstration
data, but this requires experts to label actions for newly visited states. To reduce expert supervision,
some methods use interventions to relabel on-policy data, where interventions can be automatically
or human generated [26, 27, 28, 29, 22, 30]. Laskey et al. [31] inject noise during data collection
to increase state diversity to achieve similar performance as interactive methods. Recent work has
sought to formalize a broader notion of data quality beyond just state diversity [23]. HYDRA takes
this broader definition into account, increasing data quality through action consistency.
Model and State Priors: Rather than changing the data, many prior works build in structure to the
model itself to address distribution shift. Object-centric state representations have been shown to
make policies more generalizable [13]. Similarly, pretrained state representations trained on multi-
task data have been shown to improve sample efficiency and robustness [12, 32]. Adding structure
into the model itself, for example using implicit representations or diffusion-based policies, has also
been shown to improve performance [16, 15]. The changes in HYDRA affect the action space and
thus are compatible with many of these prior approaches.
Action Representations: Another approach is to change the action representation to reduce com-
pounding errors. One category of prior works leverage temporal action abstractions to reduce the
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number of policy steps. Several works have learned skills from demonstrations, usually requiring
lots of data but struggling to generalize [33, 34, 14]. Others use parameterized action primitives
or motion primitives, but despite being more sample efficient, these often require privileged state
information or are not general enough for all scenes [20, 18, 21]. Waypoint action spaces have also
been shown to be a sample efficient temporal abstraction; however, they fail to capture dynamic and
dexterous tasks in the environment [35, 16, 36]. Sparse waypoint labeling has also been shown to
be easier for people than action labeling [36]. For more dexterity, Johns [37] proposes Coarse-to-
Fine Imitation Learning by modeling a single demonstrated trajectory as two parts: an approaching
trajectory followed by an interaction trajectory. Di Palo and Johns [38] extend this to allow multi-
stage tasks, but this approach still relies on fully known and fixed “stages” of the task along with
labeled bottleneck states. Also, due to the use of self-replay during interactions, these approaches
would struggle with scene variation or generalization. HYDRA builds on these works, combining
waypoints and low-level actions into one fully learned model to reduce compounding errors without
losing dexterity or generality. Another category of works seek to increase the expressivity of a single
action to reduce action prediction error, for example with Gaussian mixture models or energy mod-
els [19, 15, 16]. However, increasing expressivity often leads to overfitting, more complex learning
objectives, and increased training and evaluation time. Instead of increasing expressivity, HYDRA
takes a more robust approach by increasing action consistency in the data. Prior work shows the
importance of consistent actions for minimizing distribution shift [19, 23]. HYDRA relabels actions
in the dataset after data collection to increase consistency.

3 Preliminaries

Imitation learning (IL) assumes access to a dataset D = {τ1, . . . , τn} of n expert demonstra-
tions. Each demonstration τi is a sequence of observation-action pairs of length Ni, τi =
{(o1, a1), . . . , (oNi

, aNi
)}, with observations o ∈ O and actions a ∈ A. O often consists of robot

proprioceptive data such as end effector poses and gripper widths, denoted sp ∈ P , as well as envi-
ronment observations such as images or object poses, denoted se ∈ E , such that O = P ⊕ E . The
true state of the environment is s ∈ S. In robotics, the action space usually consists of either torque,
velocity, or position commands for the robot. While velocity actions are most common, prior works
also use position actions in the form of target waypoints [14, 35]. The IL objective is to learn a
policy πθ : O → A mapping from observations to actions via the supervised loss:

L(θ) = −E(o,a)∼pD [log πθ(a|o)] (1)

At test time, the learned policy πθ is rolled out under environment dynamics f : S × A → S. Per
step, we observe ot, sample an action ãt ∼ π(·|ot), and obtain the next state st+1 = f(st, ãt).

Distribution Shift in IL. A fundamental challenge with imitation learning is state distribution shift
between training and test time. Considering training sample (. . . ot, at, ot+1 . . . ): if the learned
policy outputs ãt ∼ π(·|ot), which has a small action error ϵt = ãt − at, the next state following
this action will also deviate: s̃t+1 = f(st, at + ϵt), which in turn affects the policy output at the
next step. For real world dynamics, this change in next state can be highly disproportionate to ||ϵt||.
For example in the coffee task in Fig. 1, with a slight change in gripper position (small ϵt) the policy
can misgrasp the coffee pod (large change in st+1 and ot+1). Furthermore, noise in the dynamics
f can lead to even larger changes in ot+1. As we continue to execute for the next N − t steps, this
divergence from the training distribution can compound, often leading to task failure.

Therefore, reducing distribution shift requires reducing ϵt for all t ∈ {1, . . . , N} or increasing the
coverage of states st. One approach to reduce policy error is increasing action consistency, which
prior work defines as lowering the entropy of the expert policy πE at each state: HπE

(a|s) [23].
However, there is a trade-off between state coverage and action consistency during data collection,
since less consistent actions often lead to more diverse states [23, 19]. HYDRA reduces distribution
shift by using a temporal abstraction for the action space – which shortens the number of policy
steps N and thus reduces compounding errors – and by improving action consistency in offline data
– which reduces ||ϵt|| without reducing state coverage.
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Figure 1: Multi-headed architecture of HYDRA: During training, we learn to predict waypoints, low level
actions, and the mode label for each time step. One network (Dense Net) predicts the low level action at and
the mode mt; both the action and mode heads of Dense Net share an intermediate representation et. A separate
network (Sparse Net) predicts the high level waypoint wt. At test time, we sample mt and either servo to reach
a waypoint (mt = 0) without requerying the policy, or follow a dense action for one time step (mt = 1). An
example of how sparse and dense modes can be arbitrarily stitched together at test time is shown on the right.

4 HYDRA: A Hybrid Action Representation
To reduce distribution shift, our insight is that most robot manipulation tasks are a combination of
sparse waypoint-reaching, such as reaching for an object or lifting a mug towards a shelf, and dense
low-level actions, such as grasping an object or balancing a mug stably on a shelf. Waypoints capture
free-space motions but struggle to capture dexterous or precise behaviors. Conversely, low-level
actions capture these dynamic behaviors but are often redundant during long free-space motions.
Instead of learning from only velocities or waypoints, HYDRA learns a hybrid action representation
consisting of both high-level waypoints in the robot’s proprioceptive space w ∈ P and low-level ac-
tions a ∈ A. Additionally, we learn to dynamically switch between these modes by predicting which
mode m ∈ {0, 1}, sparse or dense, should be executed at each demonstrated state. Mode labels are
annotated with little extra cost by experts either during or after data collection. This flexible ab-
straction leads to (1) a compressed action space that reduces compounding errors without sacrificing
dexterity or generality, and (2) a more consistent, simple low-level action distribution through action
relabeling during the sparse periods. This section presents an overview of the approach, followed
by discussions on mode labeling, action relabeling, and training/testing procedures.
Overview: The multi-headed architecture of HYDRA is outlined in Fig. 1, with heads πM

θ : O →
{0, 1}, πA

θ : O → A, πW
θ : O → P , for mode, action, and waypoint respectively. One network,

Dense Net, predicts the low-level action at and the mode mt at each input ot = {set , s
p
t }. Another

network, Sparse Net, separately outputs the desired future waypoint wt for input ot. We assume
waypoints can be reached using a known controller T : O × P → A which converts the state
and desired waypoint into a low-level action (e.g. a linear controller, see the right side of Fig. 1). In
practice, Dense Net is recurrent since both the mode and action are highly history-dependent. Sparse
Net in contrast only uses the current observation, since waypoints are less multi-modal and history
dependent than actions. Then at test time, HYDRA predicts the mode mt and follows the controller
T until reaching the waypoint during predicted sparse periods, and follows low-level actions at each
step during predicted dense periods. See Appendix C for more details.

4.1 Data Processing: Mode Labeling and Action Consistency

To dynamically switch action abstractions, we need labeled modes mt, waypoints wt, and actions
at at each time step. We first obtain binary mode labels mt from humans, and then use the mode
labels to extract waypoints and to relabel low-level actions. Importantly, modes can be labeled either
during demonstration collection (e.g. with a simple button interface), or entirely after demonstra-
tion collection (e.g., labeling each frame with its mode). With modes labeled, we can segment each
demonstration into sparse waypoint and dense action phases. We provide the details of the labeling
and segmentation process in Appendix B. For each sparse phase, we can extract the desired future
waypoint wt at ot: if mt = 0 (sparse), the future waypoint is final proprioceptive state wt = pt′

in that sparse segment, where t′ > t. But if mt = 1 (dense), the waypoint is the next propriocep-
tive state wt = pt+1. This yields a dataset of D̂ of (o, a, w,m) tuples. Now the policy has full
supervision to learn the modes, waypoints, and actions.
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Mode Labeling Strategy: Since waypoints will be reached online with controller T, the main
requirement for labeling modes is that during sparse phases (mt = 0), the labeled waypoint wt

should be reachable via T starting from ot (i.e., without collision): for example, if the demonstrator
starts in free space and labels a waypoint close to coffee K-pod, and if the policy uses a linear P-
controller as T, then the K-pod waypoint should be reachable from the initial pose in a straight-line
path. Otherwise, the learned policy might collide when it tries to reach similar waypoints. We do not
assume access to a collision-avoidance planner as T in this work, but if one has access to a planner
then T can always reach the desired waypoint, so this reachability requirement can be ignored. Other
considerations for mode labeling and a discussion of mode sensitivity is provided in Appendix B.
We specifically show that our method is not overly sensitive to mode labeling strategies outside of
the collision-free requirement above. Furthermore, we show that mode labels can be learned from
substantially fewer examples without a major effect on performance Appendix D.3.
Relabeling Low-Level Actions: As discussed in Section 3, action consistency can improve policy
performance by simplifying the BC objective in Eq. (1) and thus reducing ||ϵt||, provided the data
has enough state coverage. However, making actions consistent during data collection is challenging
and can often reduce state coverage [22], so instead HYDRA performs offline action relabeling, i.e.,
after collection. To relabel human actions at during the sparse periods, HYDRA uses waypoint
controller T to recompute a new action at each demonstrated robot state spt based on the waypoint
wt. We lack a consistent relabeling strategy for dense periods, so we leave this to future work.
However, a subtle challenge with offline relabeling is that changing the actions in the data can put the
policy out of distribution at test time, since new actions can lead to new states online. For example,
if an arc path was demonstrated to get to a waypoint, but a linear controller is used for relabeling, the
linear action will take us off that path. HYDRA avoids this problem by using a waypoint controller
T online during sparse periods, meaning relabeled actions will not be deployed online. Rather, this
action relabeling serves primarily to simplify the dense action learning objective of HYDRA and
increase action consistency in the overall dataset.
A natural question arises: since sparse actions will be executed with T online, could we instead
further simplify learning by avoiding training on dense actions during sparse periods? If HYDRA
mispredicts a sparse mode as dense, then the dense actions will still be executed online, so HYDRA
should still be trained on dense actions during sparse periods as a back-up. We show that reducing
the training weight of dense actions during sparse periods hurts performance in Appendix D.5.

4.2 Training and Evaluation

Training: HYDRA is trained to both imitate low-level actions a with policy πA
θ , high-level way-

points w with πW
θ , and the mode m with πM

θ at each time step. To balance the waypoint and action
losses, we use a mode-specific loss at each time step that weighs the current mode’s loss with (1−γ),
and the other mode’s loss with γ. Given a processed dataset D̂ consisting of tuples of (o, a, w,m),
we modify the loss in Eq. (1) with the new heads of HYDRA (mode, action, and waypoint):

La(θ) = −E(o,a,w,m)∼pD̂

[
(1− αm) log πA

θ (a|o) + αm log πW
θ (w|o)

]
(2)

Lm(θ) = −E(o,a,w,m)∼pD̂

[
m log πM

θ (m = 1|o) + (1−m) log πM
θ (m = 0|o)

]
(3)

La weighs the BC loss for waypoints and actions by the current mode: αm = mγ+(1−m)(1−γ)
is the mode-specific weight for the sparse waypoint part of La. If we are in sparse mode (m = 0),
then αm = 1− γ, but in dense mode, αm = γ. Thus, a low gamma encourages the model to fit the
loss for the current mode more than the loss for the other mode, and γ = 0.5 will be a mode-agnostic
weighting. See Appendix D.5 for results of ablating γ. Lm is the mode cross entropy classification
loss. Combining these terms with mode loss weight β, we get the full HYDRA objective:

L(θ) = La(θ) + βLm(θ) (4)

Evaluation: During evaluation, the policy chooses the mode using m̃t. If m̃t = 0, the model will
servo in a closed-loop fashion to the predicted waypoint w̃t using controller T. The policy is queried
at every step to continually update the policy hidden state, but importantly its outputs are ignored
until we reach the waypoint to avoid action prediction errors. If m̃t = 1, the model will execute just
the next step using the predicted dense action ãt.
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Figure 2: Simulation & Real-world environments, with task stages shown for real world tasks. Simulation: In
NutAssemblySquare, we pick up a square nut at various positions and orientations and insert it onto a vertical
square peg. In ToolHang, a hanging frame is inserted onto a fixed stand, followed by placing a tool on the
frame. Both the frame and tool poses are randomized. Frame insertion is challenging due to the small insertion
area. KitchenEnv involves turning on a stove, moving a pot onto the stove, putting an object in the pot, then
moving the pot to a serving area. Real World: PegInsertion involves inserting a peg with a hole in the center
onto a round insertion rod (top right); the peg location and geometry are varied. MakeCoffee is a 6-step task
(top middle row) involving picking up a K-pod, inserting it into a Keurig machine, closing the lid of the Keurig,
positioning a mug, and then pressing start on the Keurig; the K-pod location and mug orientations are varied.
Unlike prior work [13], we include a mug component. MakeToast has 7-steps (bottom middle row): a hinged
toaster oven is opened, a spatula is picked up, bread is placed in the toaster, the toaster is closed, and the dial is
turned to start. Bread and spatula initial poses vary. SortDishes (bottom row) has 6 stages: pick up spoon, place
spoon in rack, grasp plate and insert it into rack, and grasp mug and hang the mug. All objects poses vary.

5 Experiments
We evaluate the performance of HYDRA in 3 challenging simulation environments and 4 complex
real world tasks, shown in Fig. 2. These tasks cover a wide range of affordances and levels of
precision, from precisely inserting a coffee pod to picking up bread with a spatula. See Appendix C
for model hyperparameters, data collection, and training details. Videos can be found on our website.
Data Collection: We leverage proficient human demonstration data for simulated tasks from
robomimic [19]. Mode labels and waypoints were annotated offline for simulation datasets as de-
scribed in Appendix B. Demonstrations for real world tasks were collected by a proficient user using
VR teleoperation using an Oculus Quest 2. Mode labels and waypoints were provided during data
collection using the side button on the Quest VR controller with no added collection time. All
methods share the same underlying dataset.

Simulation: In Fig. 3 (top row), we compare our method to BC and BC-RNN for the NutAssem-
blySquare and ToolHang tasks (state-based), as well as the KitchenEnv task (vision-based) from
robosuite (see top row in Fig. 2). Our method improves performance on the NutAssemblySquare
task, where baselines are already quite strong. We also ablate the data size from 200 demos to 100
and 50 in Fig. 3, illustrating that HYDRA is more sample efficient than baselines, with the gap grow-
ing as data size decreases. HYDRA-NR in Fig. 3 removes action relabeling and drops performance
by 8%, which we attribute to high action multi-modality in non-relabeled sparse periods, but for 50
demos it performs similarly, likely due to high action consistency just from having less data.
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Figure 3: Sim Results for HYDRA vs. BC, BC-RNN, and VIOLA: best checkpoint success rate averaged
over three seeds. Left to Right: NutAssemblySquare (state), ToolHang (state), and KitchenEnv (vision) tasks.
HYDRA beats baselines on all of these tasks, and even beats VIOLA [13] on the kitchen task despite using
a much smaller and simpler model. We also show a comparison for BC-RNN and HYDRA with decreasing
data sizes for NutAssemblySquare, showing that our method is more sample efficient than BC-RNN. HYDRA
without action relabeling (HYDRA-NR, NutAssemblySquare and ToolHang) drops performance by 7-8%.

For Tool Hang (top middle in Fig. 3), which is long horizon, consisting of many waypoint / dense
periods and requiring much higher precision, the gap is even bigger from HYDRA to BC and BC-
RNN. While the best baseline gets 29%, our method reaches 63% with the same inputs. Again, no
action relabeling (HYDRA-NR) drops performance by 7% but is still much better than baseline.

For KitchenEnv (vision-based), we also compare to VIOLA [13], an image-based model that uses
bounding box features and a large transformer architecture to predict actions. Once again, HYDRA
is able to outperform BC-RNN by 35% on this long horizon task. HYDRA also outperforms VIOLA
by 9%, despite using a simpler and smaller model.

In Appendix D, we discuss HYDRA-NR results, show a waypoint-only baseline, mode labeling
ablations, and a relabeling-only ablation where action consistency is improved but the waypoint
controller is not used online. In Appendix D.3, we show that mode labels can be learned with fewer
examples without large performance drops (using 25% of mode labels drops performance by 10%).

Real World: In Fig. 4, we compare our method to BC-RNN (vision-based) for four high precision
tasks: PegInsertion, MakeCoffee, MakeToast, and SortDishes. The latter three are long-horizon, and
Fig. 4 shows cumulative success per task stage. In PegInsertion, our method substantially outper-
forms BC-RNN at both peg grasping and precise insertion portions of the task, thanks to combining
precise waypoints with flexible low level actions where necessary.

For MakeCoffee, HYDRA once again beats BC-RNN and VIOLA by a substantial margin at all
task stages. All methods perform well in grasping the K-pod, but the performance of the baselines
declines rapidly in the following phases. While BC-RNN failed to do this task in prior work, we
see with a bit of parameter tuning, BC-RNN is a strong baseline, achieving 20% performance [13].
VIOLA’s reported performance in prior work for pod insertion and closing the lid is 60%, matching
what we observe for the corresponding stage of our coffee task. Our task adds two more stages
(picking up and placing a mug before pressing the button), interestingly causing the final success
rate of VIOLA to drop to 20%, the same as BC-RNN. Using the same parameters and model size as
BC-RNN, HYDRA achieves 80% final success at this task with the same underlying dataset.

For MakeToast and SortDishes, HYDRA performs better on all stages of the task as compared to
BC-RNN. We omit VIOLA in these tasks since, as seen in the coffee task, BC-RNN is a competitive
baseline (see Appendix A). Both tasks consists of several bottleneck stages where performance
drops sharply. In MakeToast, for picking up bread, the spatula must slide underneath a bread slice
– HYDRA passes this stage 70% of the time, beating BC-RNN by 30%. The last stage (turning
the toaster on) is particularly challenging for all methods (precise dial grasp, partial observability),
but HYDRA completes it 20% of the time compared to 0% for BC-RNN. In SortDishes, the final
hang-mug stage similarly requires high precision (small space between rack and mug hang point,
partial observability). Not including the challenging last stage, HYDRA beats BC-RNN by 40% on
this task. See Appendix D.1 for rollouts of each task for each model.
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Figure 4: Real Results for HYDRA vs. BC, BC-RNN, and VIOLA. The x-axis denotes each stage (right-most
value is the final success rate). Top Left: HYDRA vs. BC-RNN on the real PegInsertion task for 50 demos
under 32 rollouts across 4 different nuts. This task requires very precise grasping and insertion of multiple types
of nuts, which our method does with high success. While baseline is unable to perform insertion, HYDRA gets
41% success. Top Right: MakeCoffee long-horizon task for 100 demos under 10 rollouts. Our method beats
baseline by 60%. Bottom Left: MakeToast long-horizon task for 100 demos under 10 rollouts. While both
methods struggle to turn the toaster on, HYDRA is able to reach 50% success for 6/7 stages compared to 10%
for baseline. Bottom Right: SortDishes for 100 demos under 10 rollouts. Waypoints in HYDRA precisely
capture the diverse poses in this task, beating BC-RNN by 40% and 20% for the last two stages.

We observe that the performance gain for HYDRA in our real world experiments is notably higher
than in simulation. We hypothesize this is due to (1) higher variance in action playback on the
real robot setup, which HYDRA mitigates during sparse periods using the closed-loop waypoint
controller, and (2) increased potential for compounding errors in longer tasks. Overall, HYDRA is
well-suited to long horizon tasks even with many high-precision bottleneck stages, due to its ability
to switch between waypoints and dense actions and its ability to increase action consistency offline.
We also observed that in our real world tasks, HYDRA exhibits emergent retrying behavior, often
re-servoing to a consistent and in-distribution waypoint to retry a failed dense period.

6 Discussion
Summary: In this work, we propose HYDRA, which uses a flexible action abstraction to reduce
compounding errors, and improves action consistency while maintaining the state diversity present
in uncurated human demonstrations. HYDRA learns to dynamically switch between following way-
points and taking low level actions with a small amount of added mode label supervision that can be
provided either online or offline. HYDRA substantially outperforms baselines on three simulation
tasks and four real world tasks that involve long horizon manipulation with many bottleneck states.

Limitations & Future Work: While only a minor amount of added supervision, HYDRA relies on
having expert-collected mode labels. We show that mode labels can be learned from much less data
in Appendix D.3, but future work might consider using unsupervised methods for mode labeling,
e.g., skill segmentation [39] or automatically extracting “linear” portions of a demonstration. We
also hypothesize multi-task datasets can help learn a general mode-predictor that can be fine-tuned
or deployed zero-shot on novel tasks. Furthermore, when mode labels are collected online, mode
labeling can add a mental load for the demonstrator and might also influence the quality of the data
on its own. Future work might conduct more extensive user studies to better understand the effect
of providing mode labels for both the demonstrator and the final learning performance.
Despite these limitations, HYDRA is a simple and easy-to-implement method, and it is exciting that
it shows substantial improvement over state-of-the-art imitation learning techniques and significant
promise in solving challenging manipulation tasks in the real world.
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We provide a broader discussion of our method in this appendix. In Appendix A we list a set of
motivating questions that may arise during reading the main text of this work and provide our re-
sponse with links to additional details in corresponding sections in the Appendix. In Appendix B we
discuss how to collect mode labels, and considerations for how to define waypoint and dense seg-
ments. In Appendix C, we outline training procedures, model architectures, and hyperparameters.
In Appendix D, we provide ablation experiments for our method, including sensitivity to mode la-
bels, learning mode labels from less data, ablations to γ, and robustness of HYDRA to added system
noise.

A Motivating Questions

Intuitively, why does HYDRA help improve BC? Humans demonstrate manipulation tasks at an
abstraction level that is different from how the robot interprets the data. A BC agent interprets the
data literally as taking a specific action at an exact state while the human is noisely reaching for an
object. At the high level, HYDRA improves BC by realigning the task abstraction of the robot to
the human demonstrator during waypoint mode of the task. Concretely, HYDRA curates the dataset
in a way that improves action consistency and optimality without reducing state diversity and hence
allowing the learned policy to stay closer in distribution at test time.

What’s the relationship of HYDRA with works in hindsight relabeling? Hindsight relabel-
ing [40] is the idea of relabeling past experiences of goal-reaching trajectories with the final state it
reaches to reuse any sub-optimal data (especially for reinforcement learning settings). Recent work
of Zhang and Stadie [41] draws the connection between goal-conditioned imitation learning and
hindsight relabeling from a divergence-minimization perspective. The current implementation of
HYDRA operates in single-task imitation learning setting, and therefore is only remotely related to
the idea in hindsight relabeling. From this perspective, one can think of HYDRA as effectively re-
ducing divergence of the dataset’s action distribution by relabeling actions for the waypoint periods
of the trajectory.

Does mode labeling during collection change demonstrator behavior? We explain the mode
labeling process during collection in Appendix B. We acknowledge that asking the demonstrator
to provide mode labels during data collection adds additional cognitive load during demonstrating
the task, and at the same time may change their demonstration behavior. In practice, asking the
demonstrator to provide the two mode labels can communicate the structure the robot leverages to
learn tasks and may in turn allow the human to provide better demonstrations (such as consistent
waypoints etc.). However, we leave this user study to future work.

How sensitive is HYDRA to mode labeling? In our experiments, we (experts in this task) provided
the mode labels for different tasks. We found HYDRA to be robust to the labeling strategies across
the two labelers. For simulated environments, we use existing datasets and labeled the modes using
an interface that shows the robot view of the task and the human annotator marks whether a frame is
waypoint or dense mode. For real robot tasks, the human demonstrator provides the mode labels as
they provide the demonstration using a button on the teleoperation controller. We provide guidelines
for how to perform mode labeling in Appendix B.

How were baselines chosen? BC was not included in Kitchen or the real world tasks since it
was substantially lower performing than BC-RNN, both in our state-based simulated results and in
some initial testing on visual domains. For VIOLA, as noted in the text, BC-RNN was shown to
be a strong baseline in the MakeCoffee task, nearly matching VIOLA’s performance despite using
a much smaller network architecture. Secondly, VIOLA takes longer to both train and perform
inference due to the use of a region proposal network and a large transformer architecture. Thirdly,
VIOLA changes the input and encoding structure on top of an approach like BC-RNN, whereas
HYDRA changes the output. Thus these methods are actually compatible with each other, and
the point of including VIOLA was not as a primary baseline but to show that designing intelligent
*output action* spaces can be as or more beneficial than large changes in the input features or
encoding structure. This is on top of the fact that HYDRA also uses substantially fewer parameters
than VIOLA, and thus BC-RNN is a more directly comparable approach. Given these limitations,
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and our strong BC-RNN baselines, we argue the addition of VIOLA does not provide any essential
signal about HYDRA.

B Labeling Modes in HYDRA

B.1 Providing Mode Labels

The primary assumption made in HYDRA is the availability of mode labels for sparse and dense
periods. Here we provide a discussion of how mode labels can be collected via a simple binary
“click” interface, either during demonstration collection or after collection. In either case, we can
label dense periods and exact waypoints using a single binary “click” variable via an external button:
to label a waypoint at the end of a sparse period, we provide a single click at the waypoint state; to
label a dense period, we sustain the click until the end of the dense period (see left image in Fig. 5).
Once clicks are labeled, we demarcate periods in between clicks as sparse modes, and periods with
sustained clicks as dense modes (see right image in Fig. 5).

Figure 5: Mode labeling example for peg-insertion task. For each demo a human labels binary click signals
at each time step (labeled during or after collection) to segment trajectories into arbitrary sequences of sparse
waypoint phases and dense action phases. Left: Uncurated demo, with single clicks and sustained clicks shown.
Right: Relabeled demo, with waypoint and dense segments overlayed in green and orange, respectively. We
also relabel actions for the states in sparse segments with the optimal waypoint reaching action shown in white.
For sparse segments, the waypoint head of HYDRA is trained to output the final waypoint at each state along
the trajectory.

With the trajectories segmented into sparse and dense modes, we can extract the desired future
waypoint wt for each ot: if mt = 0 (sparse), the future waypoint is the next labeled “single click”
proprioceptive state wt = pt′ where t′ > t (for example, states ot with t1 ≤ t < t2 in Fig. 5 will use
wt = pt2 ). But if mt = 1 (dense), the waypoint is the next proprioceptive state wt = pt+1. Thus we
construct a dataset of D̂ of (ot, at, wt,mt) tuples. Now the policy has full supervision to learn both
the action and waypoint as well as the mode of operation. In Algorithm 1, we outline this process of
turning a click-labeled dataset into per-step waypoints and mode labels.

B.2 Waypoint Controller

For all experiments in the main text, we use a linear controller Tlinear for reaching waypoints online.
This means that when HYDRA predicts a waypoint period (m̃t = 0), it will servo closed loop until
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Algorithm 1 Labeling Modes
1: Given click-labeled dataset: D = {(ot, at, ct) . . . }
2: D̂ = {}
3: for all t do
4: mt = ct & (ct−1 | ct+1) ▷ Sustained click for dense
5: // Mark single click as waypoint
6: isolated = ¬ct−1 & ct & ¬ct+1

7: // Mark start of dense period as waypoint
8: start dense = ¬ct−1 & mt

9: if isolated or start dense then
10: wtp:t−1 = pt ▷ Set previous waypoints
11: tp = t ▷ start of next sparse phase
12: else if mt = 1 then
13: // During dense mode the next state is a waypoint
14: wt = pt+1

15: tp = t

16: Add (ot, at, wt,mt) to D̂

it reaches the predicted w̃t or times out after N seconds. In all of our experiments, the waypoint
follower times out after N = 5 seconds if it has not reached the waypoint.

For this closed loop servoing during test time, the policy will still be called, but its outputs will
be ignored. This is important for recurrent models specifically (e.g., Dense Net), since the hidden
state for the policy should be updated similarly to how it was trained (on all states, even during
the sparse period). While this mitigates the changes in the hidden state, this might still induce a
different hidden state than was produced offline, since the human policy followed a non-optimal
path to reach waypoint w from state st, as compared to the optimal online trajectory generated by
T. For example, if the demonstrator follows an arc-like trajectory to pick up a coffee pod and marks
the waypoint right before picking up the coffee pod, then online the policy with Tlinear will servo
to that waypoint directly; the hidden state for these two paths will likely be different. This problem
is difficult to observe in practice, and did not empirically show up in practice (as evidenced by the
improved performance of our method compared to baselines).

In theory, one could bypass this issue by “skipping” the hidden state of the policy over entire sparse
segments during training. Then during test time, if the policy outputs m̃t = 0, the policy would not
be called again until reaching the output wt. However, this requires loading entire sparse segments
and more in the training batches, which is computationally expensive and less simple then loading
batches of fixed horizon as is commonly done. We leave a broader analysis of the hidden state
problem for future work.

Additionally, we experimented with several controller gains and did not notice any effect on perfor-
mance. Therefore we choose a fast controller to reach waypoints. These gains are constant for all
experiments.

For all experiments, we use Polymetis for control [42], with 10Hz policy frequency and 1kHz con-
troller frequency. We use a Hybrid Joint Impedance controller to follow end effector waypoint and
velocity commands, but our method is not tied to any one underlying controller. End effector pose
interpolation follows the shortest position and orientation path in SO(3).

B.3 Mode Labeling Sensitivity

In our experiments, we noticed that mode labeling was quite robust to different labeling strategies
provided that the labeling strategy satisfies the following guidelines.

Waypoint Following Behaviors: Waypoint following behaviors should be labeled for free-space
motions in the environment, when the robot is “in transit” (e.g., reaching). As described in Sec-
tion 4.1, a key consideration for mode labeling is making sure labels for sparse periods are compat-
ible with the waypoint controller T. For example, if we are following a linear controller, waypoint
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segments should be reproducible with straight line segments from any start state along the waypoint
segment. For a given (mt, wt, st), then if mt = 0, we should be able to reach waypoint wt from st
with T (i.e. without timing out). As mentioned in the main text, if T includes collision avoidance as
part of the controller, then we no longer have any requirements on waypoint following behaviors.

An important yet subtle point here is that even though a linear controller requires that the path be-
tween any two waypoints is collision free, we can always arbitrarily add more waypoints to avoid
collision. Since SparseNet in our framework is visually aware policy that is learned on each transi-
tion in the data (i.e. a closed loop policy), it can learn to sequence together multiple waypoints in
a row without any additional cost. We show that multiple waypoints can be sequenced in a row in
Appendix D.2, and several of our experiments involve “pre-grasp” waypoints to avoid collision in
the scene (e.g. NutAssemblySquare to avoid collision between the nut and the peg).

Dense Object Interaction: Dense periods should include (but is not limited to) all object interac-
tions in the scene where “collision” with the scene is necessary (e.g., grasping a coffee pod, inserting
the coffee pod into the coffee machine, picking up toast with a spatula). Humans excel at identify-
ing these types of interactions, so these segments are quite easy to label. The exact amount of time
“padded” onto these dense periods did not seem to affect learning in our experiments. Note that if
each entire demo is treated as a dense period, our algorithm reduces to BC.

Labeling Strategy Consistency: The final consideration is for the consistency of the mode labeling
strategy between different demonstrations. Variation in the exact boundaries / choices for waypoints
and dense segments is inevitable with human labeling. While the effects of certain types of variation
can be quite difficult to quantify in general, we believe that is important to minimize this variation
without adding additional burden on the user. In our experiments, for each task and dataset, we
have only one user provide the mode labels, according to a single strategy. For example, in the
NutAssemblySquare task, where to goal is to insert a square nut onto a peg, a user might define the
following strategy:

1. Reach waypoint above the square nut (sparse)

2. Go down, grasp, pick up (dense)

3. Move the nut up (sparse)

4. Move the nut above the insertion point (sparse)

5. precisely insert the nut on the peg (dense)

In general our method is quite robust to variations within a single mode labeling strategy (for a
single labeler), and we do no additional post-processing on mode labels or waypoints in any of our
experiments.

B.4 Training on Mode Labels

With labeled modes and waypoints, HYDRA learns to predict the mode, the waypoint, and the low-
level action at every time step according to the loss in Eqn. 4. However, due to training a higher
dimensional action space (e.g. for robot poses: |A| = 7 + 7 + 1) with a supervised objective, over-
fitting can be a key concern during training. For all vision-based experiments, we perform random
cropping to 90% the image size. However, there are several interesting mode-specific augmentations
that can be done using mode labels and waypoints to mitigate this problem:

Mode Smoothing: While the simple binary cross entropy mode loss in Eqn. 3 suffices for learning
to predict modes, sometimes the hard boundary between segments can lead to mode oscillation or
cycling when evaluating at test time. For example, model might predict a dense mode, then predict
a sparse mode at the next step that brings it back to the previous state, and repeat. In these cases
(which are rare in practice) it can be beneficial to smooth the mode labels to extract continuous
probabilities for the mode label at each step: p(τm) = convolve(τm, [ 1n , ...

1
n ]), where n is the kernel

size. This yields the following loss:

Lm(θ) = −E(o,a,w,m)∈D̂

[
p(m) log πM

θ (m = 1|o) + (1− p(m)) log πM
θ (m = 0|o)

]
(5)
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With this smoothing of the mode labels, we are effectively removing the hard boundary between
sparse and dense periods, which can help generalization for the mode prediction head of HYDRA
at test time.

Waypoint Period Augmentation: It is common in the literature to add small amounts of proprio-
ceptive state noise (increasing state diversity) to demonstrations. However, during object interaction
(i.e. dense periods), this noise can make policy learning more difficult since minor variations in
the state can have large changes in the action space. However, with knowledge of sparse and dense
modes in HYDRA, we could add diverse state augmentations to the proprioceptive state during only
the sparse periods. This waypoint period augmentation can help reduce overfitting in SparseNet,
since we will learn to reach the same waypoint (action) from many different robot poses (state).
Both mode smoothing and waypoint augmentation, while not utilized in our experiments, illustrate
the potential for new augmentation strategies that arise with access to mode labels.

Environment Method # Demos B H lr γ βm |i| |D| |S| |πA
θ | |πM

θ | GMM

NutAssemblySquare
BC 200 256 – 1e-4 – – – 400 – – – 0

BC-RNN 200 256 10 1e-4 – – – 400 – – – 0
HYDRA 200 256 10 1e-4 0.5 0.01 – 400 200 200 200 0

ToolHang
BC 200 256 – 1e-4 – – – 400 – – – 5

BC-RNN 200 256 10 1e-4 – – – 1000 – – – 5
HYDRA 200 256 20 1e-4 0.5 0.1 – 1000 400 400 400 0

KitchenEnv
BC-RNN 100 16 10 1e-4 – – 64 1000 – – – 5
HYDRA 100 16 10 1e-4 0.5 0.01 64 1000 400 400 400 5

PegInsertion
BC-RNN 75 8 10 1e-4 – – 64 1000 – – – 0
HYDRA 75 8 10 1e-4 0.5 0.01 64 1000 1000 1000 1000 0

MakeCoffee
BC-RNN 100 8 10 1e-4 – – 64 1000 – – – 0
HYDRA 100 8 10 1e-4 0.5 0.01 64 1000 1000 1000 1000 0

MakeToast
BC-RNN 80 8 10 1e-4 – – 64 1000 – – – 0
HYDRA 80 8 10 1e-4 0.5 0.01 64 1000 1000 1000 1000 0

Table 1: Hyperparameters for each environment, from left to right: B is batch size, H is the horizon length
for training, lr is the learning rate, γ is the per time step weighting of the current mode, βm is the weighting
of the mode loss, |i| is the image encoding size (for each image), |D| is the hidden-size for recurrent dense
networks (DenseNet, BC-RNN) or the MLP width (BC), |S| is the width of the SparseNet MLP (3 layers),
|πA

θ | is the width of the action head (2 layers), |πM
θ | is the width of the mode head (2 layers), and finally GMM

is the number of Gaussian mixtures (or 0 if deterministic) used for the dense action space. The top 3 rows
are sim environments, where the first two are state only. The bottom three rows are vision-based real-world
experiments. Hyperparameters stay mostly constant for HYDRA between experiments, with larger policy sizes
for harder tasks. In almost all cases, BC-RNN, BC, and HYDRA share the same hyperparameters.

C Model Architectures & Training
To train HYDRA, we use a similar procedure as in prior work [19, 14]. For each input of shape
D1×. . . DN , we load sequential batches of size B×H×D1×. . . DN , where H is the horizon length.
Next we outline the network design for HYDRA, and hyperparameters used in each environment.

C.1 Network Design

As described in Section 4, HYDRA consists of SparseNet, which predicts the waypoint trajectory
τw, and DenseNet, which predicts the mode trajectory τm and low level action trajectory τa. Both
networks condition on the same input observation space (proprioceptive state trajectory τsp and
environment state τse ). For vision based experiments, sp consists of both wrist mounted and external
camera observations. Each image is encoded via a ResNet18 architecture encoder (two encoders,
Eext

θ , Ewrist
θ , with separate parameters) which is trained end-to-end. Next, the image encodings are

concatenated along with the proprioceptive trajectory τsp .

C.2 Model & Training Details

Visual encoders use a ResNet-18 architecture trained end-to-end on both external images and end-
effector images. We train all methods for 500k training steps over 3 random seeds, and like prior
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Algorithm 2 Training HYDRA
1: Given N (number of training steps)
2: Given mode-labeled dataset: D̂ = {(τo, τa, τw, τm) . . . }
3: Networks Eext

θ , Ewrist
θ , πW

θ , πA
θ , πM

θ
4: for i in range(N ) do
5: τo, τa, τw, τm ∼ D̂ ▷ Load (B ×H × . . . )
6: τi = Ewrist

θ (τo)⊕ Eext
θ (τo)⊕ τsp ▷ Encode

7: τw = πW
θ (τi) ▷ waypoint (SparseNet)

8: τm = πM
θ (τe) ▷ mode (DenseNet)

9: τa = πA
θ (τe) ▷ action (DenseNet)

10: Compute L(θ) in Eqn. 4 and update θ

Figure 6: Specific instantiation of HYDRA for vision based experiments.

work we report the average over the best performing checkpoints per run [19]. We found that BC
policy performance fluctuates significantly even for neighboring checkpoints. However, unlike prior
work we use a fixed evaluation set of 50 episodes in simulation to choose the best checkpoint. This
reduces the likelihood of choosing the checkpoint that was evaluated on favorable environments
(i.e., rejection sampling of harder environment initialization).
For all experiments, our method uses an RNN (LSTM) for Dense Net (predicting the mode and the
dense action), and uses a separate MLP with the same inputs for the Sparse Net (predicting sparse
waypoints), as shown in Fig. 1.
The input embedding is then passed into SparseNet (MLP) which outputs the waypoint as a robot
pose (position and quaternion). DenseNet can be any sequential model (RNN, Transformer, etc) that
produces some temporal embedding τe (RNN in our case). This architecture is shown in Fig. 6, and
the training cycle is shown in Algorithm 2.

C.3 Evaluation Details

During evaluation (see Algorithm 3), the policy chooses the mode using m̃t. If m̃t = 0, the
model will servo in a closed-loop fashion to the predicted waypoint w̃t (Line 7) using controller
T (Line 10). The policy is queried at every step to continually update the policy hidden state, but
importantly its outputs are ignored until we reach the waypoint to avoid action prediction errors.
(Line 4). If m̃t = 1, the model will execute one step using the predicted dense action ãt (Line 14).

C.4 HYDRA Hyperparameters

The hyperparameters used in the main text for all six environments are shown in Table 1, for BC,
BC-RNN, and HYDRA. Hyperparameters stay mostly constant for HYDRA across all of the ex-
periments, with larger policy sizes for harder tasks. Additionally, in almost all cases, BC-RNN,
BC, and HYDRA share the same hyperparameters where possible. In the real world experiments,
hyperparameters are exactly the same both across methods and across environments.
We chose parameters through extensive parameter sweeps (for each column in Table 1 except the
number of demos and batch size) and picking the best performing model for all methods. For
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Algorithm 3 Test Time Execution
1: Given env, π(m, a,w|o), initial state o0, controller T
2: t = 0, w = None
3: while not done do
4: m̃t, ãt, w̃t ∼ π(·|ot) ▷ Sample policy
5: // Check for new sparse mode
6: if w is not set and m̃t = 0 then
7: w = w̃t ▷ Set a new waypoint
8: // Compute the waypoint-optimal action (sparse)
9: if w is set but not reached and not timed-out then

10: ãt ← T(ot, w) ▷ Compute waypoint-optimal action
11: else
12: w = None ▷ Unset waypoint if reached
13: // Step the environment
14: ot+1 = env.step(ãt)
15: t = t+ 1

ToolHang, we found BC-RNN with a horizon of 20 was overfitting due to the high dimensional
input space, while HYDRA seemed more robust to that, potentially since more consistent actions
leads to a simpler objective (see Section 4.1). For BC, using an MLP size of 1000 for ToolHang
also seems to overfit and perform worse than an MLP size of 400, while the reverse was true for
BC-RNN and HYDRA. We find that all methods are sensitive to these hyperparameters, which is an
open problem for the community.

D Additional Results & Analysis
In this section we show rollouts of our method and baselines, and then perform ablations of our
method and analyze the results, including mode labeling sensitivity, mode label learning from less
data, choices in action space design, different loss weightings, and robustness experiments. All
ablations are performed on the NutAssemblySquare task unless otherwise stated.

D.1 Rollouts for Real Environments

Fig. 7 shows example rollouts from the uncurated demonstration, the learned BC-RNN policy, and
HYDRA. Qualitatively, in the top row of Fig. 7 we see that HYDRA produces more consistent and
optimal trajectories at evaluation time that help the policy to stay within the narrow “band” of the
successful state distribution at test time, thus improving performance.
For the long horizon MakeToast task, the performance of HYDRA is much better than BC-RNN,
but lower overall than in MakeCoffee. We hypothesize that the difference between this task and
MakeCoffee is primarily in the consistency of demonstrated actions (see demonstration rollouts in
Fig. 7), with significant variation in the behaviors for nearby states especially during dense periods.
This leads to BC-RNN having highly noisy and sub-optimal actions, which manifest quite notice-
ably in Fig. 7. However, HYDRA yields much more consistent and optimal motions, reducing the
distribution-shift problem.

D.2 Mode Sensitivity

Next, we consider the sensitivity of HYDRA to mode labels, specifically in terms of the number of
labeled waypoints in each episode. In Table 2, we ablate the number of waypoints by introducing N
intermediate waypoints in every sparse segment, for N = 1 and N = 2. Since there are at least 3
sparse segments labeled in each demo in NutAssemblySquare, this corresponds to adding at least 3 or
6 more waypoints to each demonstration, respectively. We see that performance drops are relatively
minor in both cases, showing that HYDRA is robust to different waypoint choices. We hypothesize
that the reason for the minor performance change when adding more waypoints is that SparseNet
must learn a more complex waypoint space that is more multi-modal.
To understand the sensitivity to consistency of mode labels, we also show the results for an aggre-
gated dataset consisting of two mode labelers in Table 2. We find that using multiple labelers does
not result in a huge drop in performance, however there is still some sensitivity to having different
mode labeling strategies amongst the two labelers.

18



Figure 7: MakeCoffee (top) and MakeToast (bottom) rollouts, with the demos (left), HYDRA rollouts (middle),
and BC-RNN rollouts (right). Our method produces more consistent and optimal actions compared to both
BC-RNN and the demonstrations, and thus is able to stay within the narrow success “band” of the state dis-
tribution. BC-RNN has many sub-optimal behaviors, leading to less completed trajectories in middle column.
The demonstrations for MakeToast are even noisier than those in MakeCoffee, leading to even more notice-
able distribution shift for BC-RNN in the MakeToast task. In contrast, HYDRA curates the demonstrations in
MakeToast using sparse and dense periods to follow more consistent paths, thus leading to higher success.

Base Add-1 Add-2 Two-Labelers
90.0 86.0 80.0 86.0

Table 2: Success rates for HYDRA when artificially more waypoints are added to sparse periods (left) and for
an aggregated dataset with two labelers (right). Adding intermediate waypoints to sparse segments has only
a minor effect on performance despite the increase in complexity of the pose action space. Likewise using
multiple labelers has a minor drop in performance.

D.3 Learning Mode Labels from Less Data

Providing mode labels can be an additional overhead when training HYDRA. To reduce overhead,
we might want to learn the mode labels from a few labeled examples, and use this to relabel the rest
of the dataset. To show the promise of such an approach, we learn to predict the “click state” at
each time step (same as in Fig. 5) using a simple RNN architecture with the same parameters as the
model used for training. This model outputs two logits, one for the mode itself (mt), and one that
represents a switching criteria between segments (st). This allows us to predict not only the sparse
or dense label, but also the waypoint label for each sparse segment. We additionally smooth both
mt and st as is commonly done in binary sequence prediction tasks. In Table 3, we demonstrate that
we can learn mode labels from 25% of the data with only a 10% drop in performance for the square
task, and even less of a drop when training on 50% or 75% of the data.

90% 75% 50% 25%
92 88 86 82

Table 3: Success rates for HYDRA for NutAssemblySquare when the mode labels are learned (predicting “click
state” in Fig. 5).

With this preliminary evidence, we believe the sample efficiency of this mode learning procedure can
be improved by incorporating prior data from a wide range of tasks, potentially even using labeled
internet data. To address the multi-modality of mode labels that might occur when having multiple
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people provide labels, future work might leverage few-shot or in-context learning approaches to
adapt to a particular style of mode labeling.

D.4 Variations in the Action Space

Why do we need the dense period at all? In Table 4, we compare HYDRA’s hybrid action space
to waypoint only ablations, both with and without the test-time controller Tlinear. With Tlinear, the
model outputs a waypoint and the robot reaches that waypoint using Tlinear without querying the
policy (“open loop”), and without Tlinear, the model outputs a new waypoint every step which gets
converted to action a using Tlinear (“close loop”).
First we show results for WP-Next{N} in Table 4, where waypoints are the pose of the robot N steps
in the future at each state (hindsight relabeling). Second, we compare to WP-Mode, which uses
the same mode labels in HYDRA to get more intelligent future waypoints during sparse segments.
No pose-based models see any success, which we hypothesize is due to the mismatch between
the human action a and the online action Tlinear(o, w), which can lead to out of distribution states.
Even in the open loop case, the waypoint only models are unable to perform the task, with failures
involving imprecise behaviors during dense periods where exact velocities truly matter.
We additionally compare our method with and without the use of Tlinear online (first row in Table 4).
We see that HYDRA greatly benefits from the online waypoint controller, since Tlinear follows an
optimal path while the policy-in-the-loop approach leaves room for compounding errors in both
the mode, action, and waypoint prediction. This once again illustrates that HYDRA yields more
consistent and optimal actions by employing a hybrid action abstraction.

Ours WP-Next1 WP-Next2 WP-Next5 WP-Mode
w/ T 90.0 0.0 0.0 2.0 0.0
w/o T 58.0 0.0 0.0 0.0 0.0

Table 4: Success rates for different action spaces. HYDRA uses a hybrid action space, while the the rest use a
pose-based action space. Top row: waypoints are reached using Tlinear before calling the policy again (“open”
loop). Bottom row: waypoint actions are computed at every step and instead of reaching the action, the policy
will convert a waypoint w to dense action a using Tlinear (“closed” loop). WP-Next{N} uses the proprioceptive
state N steps in the future as the waypoint for each state. WP-Mode uses the same mode labels as in HYDRA
to get the waypoints, but does not implement a hybrid action space. None of the pose-based action spaces get
reasonable performance, showing the importance of both dense actions and waypoint phases.

D.5 Ablating Mode Weighting (γ)

We also show the effect of different values of γ, the weight of the current mode loss. If for a given
step in training mode mt = 0 (sparse), then we weight the sparse waypoint loss for wt with 1−γ and
the dense action loss for at with γ. Lower γ thus corresponds to fitting the current mode action loss
more than the other mode’s loss. Therefore, γ also controls the contribution of the relabeled actions
during sparse periods to the overall objective in Eq. (2). We use γ = 0.5 in most experiments,
meaning both action (waypoint and dense action) losses are weighted equally during training. We
provide a sweep over γ in Table 5 for NutAssemblySquare and ToolHang, and we see that choosing
γ only has a minor effect. Nonetheless, γ = 0.5 is consistently the best. This illustrates that (1)
HYDRA is fairly robust to γ, (2) learning relabeled dense actions during sparse periods and sparse
actions during dense periods is beneficial to performance – this supports the claim in Section 4.1
that training on relabeled dense actions outperforms uncurated dense actions.

γ = 0.1 γ = 0.2 γ = 0.4 γ = 0.5

Square 80.0 84.0 88.0 90.0
ToolHang 60.0 62.0 58.0 64.0

Table 5: Success rates for different values of γ for both NutAssemblySquare and ToolHang. For both Nu-
tAssemblySquare amd ToolHang, γ does not have a large effect. We saw even less of a change for vision based
experiments. Thus for real world experiments, we fix γ = 0.5 (no mode-specific weighting).

One issue with our framework is the impact of false negative mode predictions, due to the use of
the waypoint controller online; however, we mitigate the effect of this by training SparseNet even
during dense periods (waypoint is the next state). Thus HYDRA is often able to overcome false
negatives and still continue on the correct trajectory, providing another chance at the next step to
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predict the correct mode label. On first glance, it is strange that γ = 0.5 consistently works the
best in practice. We speculate that the choice in gamma actually helps control the issue with false
negatives. Specifically, γ = 0.5 means that SparseNet will be trained equally during dense periods,
and vice versa for DenseNet. We believe this helps overcome challenges of both false negatives or
false positives.

D.6 Transformer-based architecture

In Table 6 we show the performance of a purely transformer-based BC implementation on the Kitch-
enEnv task. We see in this long horizon task that BC-RNN notably outperforms BC-Transformer in
this single-task imitation learning setting, and we found similar drops in performance for the state-
based simulation experiments. Thus, we did not include BC-Transformer as a baseline in our real
world experiments. We note that VIOLA, which uses a similar underlying transformer but with a
object-centric input representation, performs notably better on KitchenEnv than BC-Transformer.

BC-RNN BC-Transformer VIOLA HYDRA
Square 84 78.0 – 90.0
Kitchen 52.0 24.0 78.0 87.0

Table 6: Success rates for different values of BC architectures on NutAssemblySquare (state-based) and Kitch-
enEnv (vision-based). For NutAssemblySquare, we see that using BC-Transformer minorly reduces perfor-
mance. In KitchenEnv, we see a larger performance drop for BC-Transformer compared to BC-RNN. VIOLA
proves a superior transformer based architecture compared to simple BC-Transformer for KitchenEnv. In all
cases, HYDRA beats both RNN and Transformer-based baselines. All models share the same visual encoder
structure and action spaces as described in Table 1.

D.7 Robustness of HYDRA to system noise

In Section 3 we noted the fundamental trade-off between consistent actions and state diversity. HY-
DRA breaks this tradeoff by relabeling actions in offline data, encouraging action consistency with-
out reducing the state coverage of the data. To show that HYDRA still benefits from the state
diversity in human data, in Table 7 we analyze the effect of system noise on HYDRA and BC. We
find that HYDRA only drops from 90% to 86% (4% drop) under the same system noise as used
with BC. This shows that not only does HYDRA capture the state diversity in human data, but it is
able to be even more robust to distribution shift than BC. We attribute this boost in part to the use
of a closed loop waypoint controller, which consistently reaches the waypoint under system noise.
This also supports the claim made in Section 6 that the gap in performance between HYDRA and
baselines in real compared to simulation experiments can in part be attributed to the added system
noise found in the real world.

Base Noise=0.1 Noise=0.3
BC-RNN 84 76.0 60.0
HYDRA 90 92.0 86.0

Table 7: The effect of increasing system noise (columns left to right) on BC-RNN (top row) and HYDRA
(bottom row) trained on human data for NutAssemblySquare. While BC-RNN drops 24% under the max system
noise, HYDRA only drops 4%, illustrating the ability of HYDRA to capture state diversity and thus be robust
to distribution shift.

D.8 HYDRA-NR Analysis

In Section 5 we see that HYDRA without action relabeling (HYDRA-NR) often performs worse
than HYDRA, due to less action consistency in the dataset. However, we see in Fig. 3 that for
the 50 episode domain, performance is actually similar for HYDRA and HYDRA-NR. We suspect
this is because there is so little state coverage that the action variability is artificially low, and thus
the benefit to relabeling is minor. In the kitchen environment, we also do not see much change
for HYDRA-NR, which we speculate is due to higher action consistency in the demonstrations in
the dataset. Qualitatively we observed that the kitchen environment demonstrations are much higher
quality than other environments, and also involve a much smaller action space (only position control,
no orientation, consistent with prior work).
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