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Abstract: Humans have the remarkable ability to navigate through unfamiliar
environments by solely relying on our prior knowledge and descriptions of the
environment. For robots to perform the same type of navigation, they need to
be able to associate natural language descriptions with their associated physical
environment with a limited amount of prior knowledge. Recently, Large Language
Models (LLMs) have been able to reason over billions of parameters and utilize
them in multi-modal chat-based natural language responses. However, LLMs lack
real-world awareness and their outputs are not always predictable. In this work,
we develop a low-bandwidth framework (NavCon) that solves this lack of real-
world generalization by creating an intermediate layer between an LLM and a
robot navigation framework in the form of Python code. Our intermediate layer
shoehorns the vast prior knowledge inherent in an LLM model into a series of
input and output API instructions that a mobile robot can understand. We evaluate
our method across four different environments and command classes on a mobile
robot and highlight our framework’s ability to interpret contextual commands.
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1 Introduction

Humans have the remarkable ability to navigate through unfamiliar environments, e.g., in a town or
through a building, by relying solely on our priors and descriptions of the environment [1]. Moti-
vated by the difficulties in directing robots in collaborative teams with humans such as those used
in search and rescue [2, 3, 4, 5] operations, we aim to develop a framework that allows humans to
provide high-bandwidth instructions to robots in the form of natural language.

Figure 1: Contextual navigation example for a firefighting situation. We see our compositional
framework generates code for the robot to both find and then plan to a fire extinguisher.

To achieve this, it is generally required that a robot associate natural language utterances to the
physical world using sensing modalities onboard the robot, a process known as grounding. However,
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unlike humans, robots are not currently capable of integrating prior experiences into a vast wealth
of priors to aid this association.

Recently, Large Language Models (LLMs) [6] have been able to reason over billions of parame-
ters and utilize the results in domains such as dialogue-based responses [7, 8, 9], code generation
[10, 11, 12], and multimodal visual question and answering (VQA) tasks [13]. This type of unsuper-
vised learning shows incredible potential for the generalization of prior knowledge but these models
lack real-world experience. A lack of physical experience is perhaps one reason why transitioning
techniques developed through research in VQA and view-based navigation into embodied agents
has not kept pace with the research in these fields.

Additionally, with the current generation of LLMs, it’s inherently challenging to interpret the ratio-
nale behind the outputs that are generated by the model. In this work, we address both the grounding
and transparency issues using a composable framework designed for robot navigation. Our pipeline
extends the reasoning framework for visual inference presented in [14] to an embodied robotic
agent. With our composable framework, we leverage LLM priors (GPT-3.5), state-of-the-art object
detectors [15], and classical robotic planning algorithms [16, 17, 18] to perform zero-shot natural
language based navigation in four unique environments.

Specifically, our contributions are as follows:

• We extend the concept of modular neural networks and define a new framework for com-
posable robot navigation which we call NavCon. Our framework requires a minimal uplink
for the robot since all of our planning, mapping, and localization is performed onboard.

• We evaluate different 2D input representations to determine an effective way to extract
spatial and conceptual knowledge from LLMs.

• We perform extensive real-world experiments in a variety of environments and show that
our framework is able to navigate to landmarks based on natural language. Furthermore, the
framework is able to deduce appropriate navigational goals from the context of a sentence.

2 Related Works

Grounding Language: Associating natural language with an embodied agent requires ground-
ing utterances to the physical world in which the robot operates. Various approaches have been
used to associate language with the physical domain ranging from probabilistic graph-based struc-
tures [19, 20, 21] to end-to-end learning-based methods [22]. Graph-based approaches have shown
promising results but their generalizability is limited to a fixed training corpus. On the other hand,
LLMs have proven to be adept at reasoning over large amounts of unsupervised training data [23, 24]
using transformer-based backends [25]. These models also known as foundation models due to their
comprehensive knowledge have recently been leveraged for task and motion planning using rein-
forcement learning on a set of skills [26], and in an end-to-end fashion [22] with object scene repre-
sentation transformers [27]. While these approaches have made remarkable strides they still suffer
from the explainability problem and further they don’t share any of the path planning guarantees
that traditional planning methods share [28].

Modular Neural Network Frameworks and Code Synthesis: Modular Neural Networks
[29, 30, 31] are remarkably adept at answering questions about images in a task commonly known as
VQA [32]. Until recently many of these methods were limited in their ability to generalize to other
domains due to the difficulty of generating interfaces between modules. In [14] this was addressed
by using recent code generation techniques [33] from LLMs to create these interface layers. Specif-
ically, these modular frameworks enable the generation of code that dictates the interaction between
robust object detectors [15, 34, 35, 36, 37], depth estimators [38, 39, 40]. What’s more remarkable is
that these LLMs can also utilize existing functions inside of the Python language such as sorting and
conditionals without any additional training [41, 42, 12, 24]. Based on these exceptional findings we
aim to extend the use of these modular concept-learning style frameworks to the robotic navigation
domain.
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(a) Courtyard (b) Lobby (c) Outdoor (d) Theater

Figure 2: Full volumetric maps and representative images from the four testing environments.

Path Planning for Robotic Navigation: Path planning for robotic navigation and exploration is
a long-studied research area [43, 44] with solutions ranging from sampling-based methods[16, 45]
to graph-based lattice structures [46]. Variations of these probabilistic approaches are being used
for self-driving cars [47], exploration [18, 4, 3, 5] in complex environments. These approaches
benefit from probabilistic guarantees on convergence and optimality [16] and adaptability to new
environments making them natural choices to utilize in language grounding framework.

Embodied Language-Based Navigation: Recently a few other works have leveraged foundation
models for embodied navigation. Clip on Wheels (CoW) is proposed in [48] which combines text
and image caption models [49] with frontier-based exploration algorithms [50] to perform object
exploration in simulation. In [51] landmark-based navigation is performed using pre-trained visual
[48], language, and navigation modules [52]. Visual Language Navigation Maps (VLMaps) [53]
learn a spatial language representation by combining RGB video feeds, code generation, and foun-
dation models. SayCan [54], and Palm-E [22] utilize the PALM [55] language model to perform
skill-based navigation and end-to-end navigation respectively. In general, these methods are not
tested on contextual examples, and some require the preprocessing of maps; in contrast, we test on
situated examples with an experimental platform and require no situated priors.

3 Methodology

We develop a framework for Navigation with Context (NavCon) that leverages the rich contextual
priors of LLMs and creates an executable code layer that interfaces with planning algorithms run-
ning on an embodied agent. Drawing on paradigms from modular neural networks [56, 57, 14], and
concept learning techniques [58], we define a modular system that takes inputs at various stages to
fully define a final navigational output for our system. This enables the use of arbitrary intermedi-
ate and substitutable layers which can also be executed on a distributed computing infrastructure.
Formally, we have a collection of inputs ψ composed of a visual input v ∈ V an RGB image or
multi-perspective collection of images, m ∈ M a volumetric map of the space to be navigated, and
c ∈ C a natural language navigation command. Our system takes initially as input a command c to
generate code γc. This code consumes v in order to resolve the grounding problem, i.e., to determine
which object is being referred to in c for navigational instructions, as well as m in order to emplace
the object into the world around the robot. This outputs i = θ(v,m|γc) ∈ R3, a 3D waypoint
to which navigation will commence in order to output P a robot trajectory which is a continuous
function in R3. A graphical overview of the framework can be found in Figure 3.

Input Representations: Our visual input v is in the form of an RGB image, either a semi-panoramic
view or three separately labeled spatial images (left, front, right). Typical inference methods over
RGB images [36, 35, 15] reason in 2D over the image. For embodied navigation, we need to reason
in 3D and associate different camera viewpoints with their associated 3D spatial relations. Embodied
navigation introduces spatial relations that are difficult to reason over in 2D such as “behind”, “in
front of”, or “on your right”. To determine an appropriate input representation we evaluate the
difference between sending in a concatenated image of all viewpoints (semi-panoramic) from the
agent or sending in each frame separately with a spatial definition, i.e., right, front, or left. We
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find that spatial reasoning is best performed on a concatenated image and we present the details in
Section 4.

Intermediate Layer: We generate θ using recent advances in code generation models [10, 42]. We
provide a functional set of navigation instructions in the form of a Python API for the code generation
model. The full prompt containing the API can be found in the Appendix. These instructions
include specifications for how to perform visual inference on the input v using a similar paradigm
found in [14]. These API instructions include directions for finding an object, checking if an object
has a certain property, etc. Additionally, we provide an API specification for interfacing with our
geometric planner, resulting in code generated based on the natural language prompt γc.

Planning: We use a graph-based planner first presented in [18, 4] where each sample is a robot
position parameterized by the robot’s width and length. During sampling, the collision checks are
performed by projecting the samples along the path to the ground on the map m below the sample.
The elevation change at the footprint of the sample is calculated and if these differences exceed a
given threshold or there are not enough sampled points (indicating a hole in the ground) the path
is marked invalid and not added to the graph. We create a navigational API that takes in the center
coordinate p of an object in image space and projects it as a landmark l on a 3D map. Using this
strategy, a graph of plans G is constructed by sampling points parameterized by the robot’s width
and length [16]. Additional semantic labels are added to the map for staircases as described in [59]
using normal estimation on point clouds. When a 3D waypoint is input to the planner we select the
best path P from G, for the robot to follow. If no path exists, we plan to the boundary of the graph
and resample until the goal is reached.

Waypoints are passed to the planner using the output i from the intermediate layer. Specifically,
image coordinates are translated into waypoints by executing θ and associating the result onto a 3D
map m [60] using ray casting. The map m is generated online using [61] and the translation layer θ
creates the necessary code to translate between the inputs c, v, m as and the output i. We then plan
to the waypoint by selecting the best path from P .

Figure 3: A graphical overview of the full system framework.

4 Experimental Results

We run two sets of experiments on a Boston Dynamics Spot equipped with a custom sensing suite
consisting of a 3D 64 beam Ouster lidar, an IMU, and 3 RGB cameras providing a semi-panoramic
view of the environment. Our first experiment is designed to determine the best input representation
for the visual layer and the second set tests the ability of our system to perform navigation in a wide
variety of real-world environments.

For all of our experiments, we leverage ideas from human concept learning as in [58] to categorize
our sentences into four categories: Generic, Specific, Relational, and Contextual. Generic sentences
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are simply sentences that imply “Go to something”, e.g. “Walk to the backpack.”. Specific sentences
include a distinguishing piece of language such as a color attribute that directs the robot to one
specific object in the scene. For example, if there are two backpacks, one red, and one black, then
a specific sentence would be “Drive to the black backpack.” Relational sentences are any sentences
that describe spatial relationships between objects in the scene such as, to the right of, on top of, etc.
An example in this category is “Move to the backpack on top of the chair.” Contextual examples,
require the robot to interpret the navigational goal based on background information. For instance,
the sentence “Find something that can carry water.” requires the robot to know that a cup or a bucket
can hold water.

We generated sentences by eliciting verbs for navigational policies from an LLM (GPT 3.5-0301).
Then objects in the scene were inventoried, and sentences were constructed based on verb-object
combinations as well as their properties and relationships to other objects in the environment. These
sentences were then diversified into contextual commands by providing reference to the objects’
attributes or affordance and our full list of sentences can be found in the Appendix.

We evaluate the success of the method based on the following criteria. The code generation step
is considered successful if the generated intermediate layer γC is both syntactically and logically
correct. In other words, if every component worked successfully then the generated code would
solve the navigation command. Object Detection (OD) is considered successful if the correct object
is extracted from the visual input in the intermediate layer as visualized by the bounding box. Simi-
larly for waypoint projection (WP) if the 3D projection is in the correct location on the map m this
step is considered a success. The planning and execution step is considered successful if the robot
plans and then traverses to within 0.2m of the target object. For all tables percentages are calculated
based on the total number of evaluated sentences.

Figure 4: Example sentences, visual detections, maps, and planned paths.

Encoding spatial relationships into a model without a concept of the physical world presents signif-
icant challenges. We determine an effective scheme for inputting three different viewpoints into the
framework through empirical evaluations. Take the sentence, “go to the chair on the right” implies
only the right half of the total FOV should be investigated but ”Go to the backpack that is to the
right of the chair.” could be in any image. To solve these limitations we use two different sets of
input representations, the first is all three images stitched together with padding in between frames
(A). In this case, we instruct the LLM on the order of the images (left, front, right) and let the model
handle the spatial reasoning. In the second case, we process the frames individually (B) and let the
model decide which frames to look at. We explicitly prompt the model with example code snippets
that solve the difference between “to your right” and “right of” styles of language. at configuration.
In this set of experiments, we evaluate the correctness of the generated code as well as if the code
produced the correct object in the map m. This scene was created in a classroom setting with good
lighting conditions as the emphasis was to evaluate the effect of the input representation. Results for
successful code generation and object detections for the two input schemas are summarized in Table
1.
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We also compare our results to OFA [62], a sequence-to-sequence multi-modal model finetuned on
RefCOCO [63] expressions for the object detection stage. An additional baseline is performed where
we utilize an LLM (GPT-3.5-0301) to convert a navigational command to a referring expression such
as the ones in RefCOCO. Our full prompt for this pipeline is provided in the Appendix.

Category Count A (%) B (%) OFA (%) OFA+LLM
(%)

Generic 12 100 100 25.0 50.0
Specific 12 91.67 66.67 25.0 50.0
Relational 15 86.67 53.33 6.67 13.33
Contextual 11 81.82 45.45 0 36.37
Total 50 90 66 14 36

Table 1: Results showing the difference between the concatenated input representation A and the
sequential representation B.

From Table 1 we find that concatenating images significantly outperforms sending in the three
frames separately. As expected, in the generic navigation case we are able to achieve 100% suc-
cess in generating the intermediate layer and for object identification. We see that the individual
frame configuration (B) begins to break down when reasoning over specific objects. Specifically,
the model fails to reason over spatial relations and object ordering when objects appear in more than
one frame. For example, taking the sentence “Go to the middle outlet” only works when the three
outlets are present in the same camera frame. If the middle outlet is in the front frame but the right
outlet is in the right camera frame, this method fails. We explicitly see this in the generated code:

outlet_patches.sort(key=lambda x: x.horizontal_center)
middle_outlet = outlet_patches[len(outlet_patches) // 2]

where each detected outlet is ordered based on its horizontal coordinate in the image. Since all
outlets are merged into the same list the images have overlapping coordinates causing these failures.
Configuration B struggles with relational sentences between objects for similar reasons.

In our second set of experiments, we evaluate the ability of our framework to navigate in real-world
environments. The four environments shown in Figure 2 range from an indoor lobby setting to a dark
outdoor courtyard. We select these environments to highlight our framework’s ability to generalize
in multiple scenarios. In each environment, we test multiple sentences across the four categories
(see the Appendix for the full list of sentences). Sentences are primarily based on landmarks already
present in the environment but in some cases, we add additional artifacts to enable more extensive
testing.

Category Count Code(%) OD(%) WP(%) Path&
Exec(%)

OFA
(%)

OFA+
LLM
(%)

Generic 22 100 81.82 68.18 68.18 13.64 22.73
Specific 19 89.47 89.47 78.95 73.68 0 15.79
Relational 44 72.73 59.10 59.10 59.10 18.19 36.37
Contextual 29 65.52 41.38 41.38 41.38 6.90 24.14
Total 114 78.95 64.04 59.65 58.77 11.40 27.19

Table 2: Summary of category-wise success rate for each of the four command types.

We find that we are able to successfully generate code for navigational plans using a variety of verbs
e.g., walk, go, drive, run, etc by leveraging the rich vocabulary knowledge present in foundation
models. In fact, we can even say phrases like “sashay to the stop sign” which will be interpreted as
a “go to” style navigation command.

From Tables 2 and 3, we see that for generic objects our framework has a 100% success rate for
code generation. In this case, code is manually evaluated and deemed successful if the generated
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Scenes Count Code(%) OD(%) WP(%) Path&
Exec(%)

OFA
(%)

OFA+
LLM
(%)

Theater 30 90 70 66.67 63.33 3.33 13.33
Lobby 29 65.52 48.28 44.83 44.83 13.79 24.14
Outdoor 24 87.5 79.17 70.83 70.83 12.5 33.33
Courtyard 31 74.19 61.29 58.06 58.06 16.13 38.71
Total 114 78.95 64.04 59.65 58.77 11.40 27.19

Table 3: Summary of scene-wise success rate for each of the four command types.

code would produce the correct results assuming all the rest of the composed modules were executed
successfully. In both tables Code represents the success of the code generation step, OD represents
the success of the object detector (GLIP), WP is the success of the 3D waypoint projection and
Path&Exec is the success of the graph-based planning and navigation module. Our failures occurred
in the object detection module where either the wrong object was detected or the object was not
detected at all. However, since our framework is modular, the object detector can be substituted and
as state-of-the-art vision detectors improve our framework will improve in turn. Additional failures
occur in the waypoint projection step. These occurred for two reasons. In the first case, the vision
system detected further out than the map resulting in projections at the edge of the map rather than
the actual object. For the second case, projections missed the correct voxel on the map. This was
either due to a ray “clipping” a closer object in the projection process. For longer projections (10–
12m), the camera-to-lidar calibration caused enough error to make the projection inaccurate, which
could be resolved through mean point clustering. We also note that we observed a 100% success
rate in following all planned paths.

Figure 5: Results for the sentence “Find me somewhere to watch a movie.”

Selected Qualitative Examples:

Leveraging the vast knowledge base encoded into LLMs enables a degree of spatial reasoning and
the ability to infer navigation instructions based on the context of the sentence. For example, take
the sentence “Find me something to help a firefighter” as shown in Figure 1 requires the robot to
identify a list of objects that could help a firefighter and then look for them. From the snippet of
the generated code, we see that the robot successfully looks for fire extinguishers and fire hydrants,
both of which would aid a firefighter. Additionally, we are able to ask the robot to “Find something
to clean up a mess” and it will find a mop or a broom.

What’s more remarkable than simply interpreting correct navigation commands from context is our
framework’s ability to leverage foundation models to find more refined solutions to a task in some
instances. Take for example the sentence “Find me somewhere to watch a movie,” we would expect
the robot to go and find a TV or some kind of screen. Of course, the first object the robot looks for
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is the screen but more remarkably the robot also looks for a chair which is closest to the screen. We
can see this in Figure 5 where the generated layer θ explicitly looks for “TVs, screens” and then
looks for “chairs” and “couches.”

As powerful as the contextual engine (GPT-3.5) is in our framework, it still has limitations when
interpreting the physical world. In Figure 6 we tell the robot to “Run upstairs.” and to no surprise,
it will successfully generate code and plan up the stairs. However, when given the utterance “Go to
the second floor.” the following code is generated:

floor_patches = ImagePatch(image).find(’floor’)
floor_patches.sort(key=lambda x: x.vertical_center)
if len(floor_patches) < 2:

return {’function’: ’None’, ’error’: ’Image does not contain at least
two floors.’}

second_floor_patch = floor_patches[1]

This code is nonsensical to the actual task because it’s a literal interpretation of the sentence. Count-
ing floors has nothing to do with going to the second story of a building. Examples like these high-
light the need for additional methods of encoding 3D spatial reasoning into natural language-based
embodied navigation frameworks.

Figure 6: Scene used to tell the robot to “Run upstairs” and “Go to the second floor”. The second
sentence fails due to the code trying to “count floors”

5 Conclusion and Limitations

Our composable framework shows remarkable accuracy and performance in generating code that
fits the navigation task. In controlled experiments, we achieve 90% accuracy across 50 different
sentences. When taken to the real world the, model still performs exceptionally well with zero
additional input. This is highlighted by a 70% execution accuracy in large outdoor environments.

While this work makes significant strides toward embodied navigation, we observe many opportuni-
ties for future effort. Namely, operating in only 2D space creates challenges for spatial relationships
such as “behind” the robot or “to the right of.” Additionally, we are limited by the visual range of the
robot: therefore 3D projections need to be exponentially more accurate for both the smaller and fur-
ther away an object is in the given input image. Large multimodal foundation models are promising,
but promise uncertain runtime performance given their lack of availability and scalability. Finally,
the current implementation of the framework is limited to landmark-based aviation and future work
includes extending this framework to include more navigational inputs such as unbounded explo-
ration in a direction or, having the robot explore until a condition is met. We also wish to include a
module that operates on 3D maps and a module that supports sequential instructions.
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6 Appendix

6.1 Environment Descriptions

We test our framework on four different real-world environments. Further details about each of the
environments are listed below:

• Theater: an indoor environment simulating a stage-like environment during set construc-
tion.

• Lobby: an indoor environment, mostly occupied with chairs and tables, posing more chal-
lenges in distinguishing specific objects and planning

• Outdoor: a larger environment with objects such as trees, cars, bikes, and sporting areas.

• Courtyard: an outdoor environment tested at night to challenge the framework with low-
light images.

Along with the general objects present in the scene, we placed some additional items like back-
packs, shoes, and cones into the scene. All the prompts tested in these 4 different environments are
presented in Tables 5, 6, 7, and 8. For each of the prompts, we also highlighted whether each step
succeeded or not.

6.2 OFA Comparisions

The full prompt for the OFA [62]+LLM (GPT-3.5-0301) experiment is shown below:

You are a helpful assistant that turns sentences into referring expressions such as
those found in the RefCoco family of datasets. Turn the query into a referring
expression. If the sentence does not explicitly have a target object infer one from
the sentence’s context Only return a single object. Examples of this include: find
something to clean with on the left → broom on the left or Find me somewhere
to put my cup of coffee → coffee table. If a referring expression is not required
extract the object, e.g., Drive to the chair → “chair”. Assume all queries refer
to images that contain a semi-panoramic first-person view from an agent. Give
ONLY the referring expression as the output. Query: INSERT QUERY HERE

The resulting referring expressions from this prompt can be seen in Tables 5, 6, 7, 8, 4. We note that
in some instances the LLM failed to return a referring expression. Instead, we provide the result in
the OFA +LLM expression column.

6.3 Full Results

All the prompts used in the classroom environment for testing the two different input representations
A & B are presented in Table 4.

Table 4: Scene-05: Classroom

Category Sentence A B OFA OFA + LLM Ex-
pression

OFA+
LLM

Generic Go to the backpack Pass Pass Fail Backpack Fail
Generic Move towards the backpack Pass Pass Fail Backpack Fail
Generic Drive to the backpack Pass Pass Fail Backpack Fail
Generic Run towards the backpack Pass Pass Fail Backpack Fail
Generic Go to the cone Pass Pass Fail Cone Fail
Generic Go to the conical traffic delineator Pass Pass Fail Conical traffic delin-

eator
Pass

Generic Go to the trash can Pass Pass Fail Trash can Pass
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Generic Go to the whiteboard Pass Pass Pass Whiteboard Pass
Generic Proceed to the broom Pass Pass Pass Broom Pass
Generic Trek towards the wagon Pass Pass Pass Wagon Pass
Generic Find paper towels Pass Pass Fail Paper towels Fail
Generic Go to the outlet Pass Pass Fail Power outlet Pass
Specific Go to the red backpack Pass Pass Fail Red backpack Fail
Specific Go to the black backpack Pass Pass Pass Black backpack Pass
Specific Navigate to the backpack on the left Pass Pass Fail Backpack on the left Fail
Specific Drive to the backpack on the right Pass Pass Fail Backpack on the

right
Fail

Specific Go to the whiteboard in front of you Pass Pass Pass Whiteboard in front
of you

Pass

Specific Move to the whiteboard on your
right

Pass Pass Fail Whiteboard on your
right

Fail

Specific Move to the whiteboard on the right Pass Fail Fail Whiteboard on the
right

Fail

Specific Go to the backpack on your right Pass Pass Fail Backpack on your
right

Pass

Specific Walk to the backpack on the left Pass Fail Fail Backpack on the left Pass
Specific Go to the tv on the right Pass Fail Pass TV on the right Pass
Specific Go to the orange cone on your right Fail Pass Fail Orange cone on your

right
Pass

Specific Go to middle outlet Pass Fail Fail Middle outlet Fail
Relational Go to the backpack that is to the

right of the red backpack
Pass Pass Fail Backpack to the right

of the red backpack
Fail

Relational Drive to the backpack that is to the
left of the black backpack

Pass Fail Fail Backpack to the left
of the black back-
pack

Fail

Relational Walk to the bag that is next to the
black bag

Fail Fail Fail The bag next to the
black bag

Fail

Relational Move towards the backpack under
the whiteboard

Pass Pass Fail Backpack under
whiteboard

Pass

Relational Walk to the backpack on the chair Pass Pass Fail Backpack on the
chair

Fail

Relational Go to the chair with the backpack Pass Fail Fail Chair with the back-
pack

Fail

Relational Walk to the backpack on top of the
chair

Pass Fail Fail Backpack on top of
the chair

Fail

Relational Run to the rightmost backpack Pass Pass Fail Rightmost backpack Fail
Relational Walk to the leftmost backpack Pass Pass Fail Leftmost backpack Fail
Relational Go to the middle chair Pass Fail Fail Middle chair Fail
Relational Go to the leftmost backpack on

your right
Fail Pass Pass Leftmost backpack

on your right
Pass

Relational Go to the middle chair in the row of
chairs

Pass Pass Fail Middle chair row of
chairs

Fail

Relational Go to the backpack on the left of the
cone

Pass Fail Fail Backpack on the left
of the cone

Fail

Relational Go to the cone to the left of the
backpack

Pass Pass Fail Cone to the left of the
backpack

Fail

Relational Go to the second chair from the left Pass Fail Fail Second chair from
the left

Fail

Contextual Go to somewhere I can sit down Pass Pass Fail Chair Pass
Contextual Find a place for me to rest Pass Fail Fail Couch Fail
Contextual Go to somewhere I can speak from Pass Fail Fail Podium Pass
Contextual Find a place to store cleaning sup-

plies
Pass Fail Fail Storage area Fail

Contextual Find me something to write on Pass Pass Fail Piece of paper Pass
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Contextual My friend has a question. Go to
somewhere you can explain the an-
swer to him

Fail Fail Fail My friend Fail

Contextual I spilled a lot of sand. Go find me
something to pick up my mess

Pass Pass Fail Something to pick up
my mess → dustpan

Fail

Contextual Walk to something where I can put
my laptop in

Fail Fail Fail Table to put laptop in Fail

Contextual I spilled water. Find me something
to clean this up

Pass Fail Fail Towel Fail

Contextual Go to somewhere I can google
something

Pass Pass Fail Computer on the left Fail

Contextual Go to somewhere I can charge my
phone

Pass Pass Fail Charging outlet Pass
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Full results for the real-world experiments are shown in Tables 5, 6, 7, 8.

Table 5: Scene-01: Theater
Category Scene Code OD WP Path&

Exec
OFA OFA Expression OFA+

LLM
Generic Drive to the helmet Pass Pass Pass Pass Fail Helmet Fail
Generic Navigate to the mop Pass Pass Pass Pass Fail Mop Fail
Generic Go to the vacuum Pass Fail Fail Fail Fail Vaccum Fail
Generic Walk to the table Pass Pass Pass Pass Fail Table Pass
Generic Go to the fire extinguisher Pass Pass Pass Pass Fail Fire extinguisher Fail
Generic Walk to the saw Pass Fail Fail Fail Fail Saw Fail
Specific Go to the red backpack Pass Pass Pass Pass Fail Red backpack Fail
Specific Move to the orange bucket Pass Pass Pass Pass Fail Orange bucket Fail
Specific Drive to the chair on the right Pass Pass Pass Fail Fail Chair on the right Fail
Specific Walk to the white fan Pass Pass Pass Pass Fail White fan Fail
Specific Navigate to the black fan Pass Pass Pass Pass Fail Black fan Fail
Specific Navigate to the black speaker Pass Pass Pass Pass Fail Black speaker Pass
Specific Run to the red bag Pass Pass Fail Fail Fail Red bag Fail
Specific Move to the black chair infront of

you
Pass Pass Pass Pass Fail Black chair in-

front of you
Fail

Specific Walk to the blue chair Pass Pass Pass Pass Fail Blue chair Fail
Relational Go to the chair with the black back-

pack on it
Pass Pass Pass Pass Pass Chair with black

backpack
Pass

Relational Go to the chair with the helmet on
it

Pass Pass Pass Pass Fail Helmet Chair Fail

Relational Go to the backpack next to the chair Pass Fail Fail Fail Fail Backpack next to
the chair

Fail

Relational Go to the backpack infront of the
ladder

Pass Pass Pass Pass Fail Backpack infront
of ladder

Fail

Relational Run to the person on the ladder Pass Pass Pass Pass Fail Person on the
ladder

Fail

Relational Drive to the man sitting on the table Pass Pass Pass Pass Fail Man sitting on
table

Fail

Relational Go to the third chair from the left Pass Pass Pass Pass Fail Third chair from
left

Fail

Contextual Go to something that can carry wa-
ter

Pass Pass Pass Pass Fail Water container Fail

Contextual Navigate to something that can
wash the floor

Fail Fail Fail Fail Fail Mop Fail

Contextual My floor is dirty. Go to something
that can fix this

Fail Fail Fail Fail Fail Mop Fail

Contextual Go somewhere that I can throw
something away in

Pass Pass Pass Pass Fail Trash can Pass

Contextual Walk to something that put out a fire Pass Fail Fail Fail Fail Fire extinguisher Fail
Contextual Go to something that can cool me

down
Pass Fail Fail Fail Fail Fan Fail

Contextual Go to something white that will
cool me down

Fail Fail Fail Fail Fail Fan Fail

Contextual I am in the mood to listen to music.
Go to something that can do that

Pass Fail Fail Fail Fail Speaker with a
music player

Fail
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Table 6: Scene-02: Lobby
Category Scene Code OD WP Path&

Exec
OFA OFA + LLM Ex-

pression
OFA+
LLM

Generic Run to the trash bag Pass Pass Pass Pass Pass Trash bag Pass
Generic Navigate to the water fountain Pass Fail Fail Fail Fail Water fountain Fail
Generic Drive to the broom Pass Pass Pass Pass Fail Broom Fail
Generic Walk to the monitor Pass Pass Fail Fail Fail Monitor Fail
Specific Walk to the tiny monitor Fail Fail Fail Fail Fail Tiny monitor Fail
Specific Walk to the smallest monitor Pass Pass Pass Pass Fail Smallest monitor Fail
Relational Walk to the right most cone Pass Pass Pass Pass Fail Rightmost cone Fail
Relational Walk to the table with a can on it Pass Fail Fail Fail Fail Can on the table Pass
Relational Walk to the table next to the red

backpack
Pass Pass Pass Pass Fail Table next to red

backpack
Pass

Relational Go to the blue chair with the back-
pack on it

Pass Pass Pass Pass Pass Blue chair with
backpack

Pass

Relational Walk to the leftmost table Pass Fail Fail Fail Fail Leftmost table Fail
Relational Go to the backpack closest to the

shoes
Pass Pass Pass Pass Pass Backpack closest

to shoes
Pass

Relational Walk to the shoe next to the red
backpack

Pass Pass Pass Pass Fail Shoes next to red
backpack

Fail

Relational Remove the trash bag from the floor Fail Fail Fail Fail Fail Trash bag on the
floor

Pass

Relational Walk to the table with the monitor
on it

Fail Fail Fail Fail Pass Table with moni-
tor

Pass

Relational Drive to the closest monitor to the
table

Pass Pass Pass Pass Fail Closest monitor
to the table

Fail

Relational Go to the table with the bottle on it Fail Fail Fail Fail Fail Table with the
bottle

Fail

Relational Go to the bottle on top of the table Pass Pass Pass Pass Fail Bottle on top of
the table

Fail

Relational Go to the tv closest to the person Pass Pass Pass Pass Fail TV closet to per-
son

Fail

Relational Go to the person with the blue shirt Pass Fail Fail Fail Fail Person with the
blue shirt

Fail

Relational Run to the chair with the blue coat
on it

Pass Fail Fail Fail Fail Run to the chair
with the blue
coat

Fail

Relational Move to the backpack on the chair Fail Fail Fail Fail Fail Backpack on
chair

Fail

Relational Move to the black backpack on the
chair

Fail Fail Fail Fail Fail Black backpack
on the chair

Fail

Relational Drive to the chair with the backpack
on it that is not red

Fail Fail Fail Fail Fail Backpack on the
chair

Fail

Contextual Find something that can help a fire-
fighter

Pass Pass Pass Pass Fail Fire extinguisher Fail

Contextual Go to something that can clean a
dirty floor

Fail Fail Fail Fail Fail Mop Fail

Contextual Go get a drink of water Fail Fail Fail Fail Fail Water bottle Fail
Contextual Go to a place where I can watch a

movie
Pass Pass Pass Pass Fail Movie theater Fail

Contextual Drive to a place where I can watch
a video

Fail Fail Fail Fail Fail TV or screen Fail
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Table 7: Scene-03: Outdoor
Category Scene Code OD WP Path&

Exec
OFA OFA + LLM Ex-

pression
OFA+
LLM

Generic Wander to the fire hydrant Pass Pass Pass Pass Fail Fire hydrant Fail
Generic Step towards the gril Pass Fail Fail Fail Pass Grill Pass
Generic Walk to the skateboard Pass Pass Pass Pass Fail Skateboard Fail
Generic Walk to the bike Pass Pass Fail Fail Fail Bike Fail
Generic Walk to the bike Pass Pass Pass Pass Fail Bike Fail
Generic Go to the bike rack Pass Pass Pass Pass Fail Bike rack Fail
Generic Go to the sign Pass Pass Fail Fail Fail The sign Fail
Generic Go to the bench Pass Pass Pass Pass Fail Bench Fail
Specific Sashay to the stop sign Pass Pass Pass Pass Fail Stop sign Fail
Specific Go to the basketball hoop Pass Pass Pass Pass Fail Basketball hoop Pass
Specific Roam towards the blue car Pass Pass Pass Pass Fail Blue car Pass
Specific Trot towards the red bag Pass Pass Pass Pass Fail Red bag Fail
Specific Go to the red object Fail Fail Fail Fail Fail Red object Fail
Relational Proceed to the middle cone Pass Pass Pass Pass Pass Middle cone Pass
Relational Journey to the tree next to the back-

pack
Fail Fail Fail Fail Fail Tree next to the

backpack
Pass

Relational Trek to the backpack by the tree Pass Pass Pass Pass Fail Backpack by the
tree

Fail

Contextual A firefighter needs water. Walk to a
source of water

Pass Fail Fail Fail Fail Source of water Fail

Contextual Head towards something that can
help firefighters

Pass Pass Pass Pass Fail Fire hydrant Pass

Contextual You are a dog that needs to mark its
territory. Go find a place to do this

Pass Pass Pass Pass Fail Fire hydrant Fail

Contextual You are carrying trash, Find some-
where to dump it

Pass Pass Pass Pass Fail Dumpster Pass

Contextual Find me something to do a kickflip
on

Pass Pass Pass Pass Fail Skateboard Fail

Contextual I want to shoot some hoops. Take
me there

Fail Fail Fail Fail Fail Basketball court Fail

Contextual Move towards a faster mode of
transportation

Pass Pass Pass Pass Fail Sorry I can’t gen-
erate a referring
expression

Fail

Contextual Head to the fastest mode of trans-
portation

Pass Pass Pass Pass Pass Fastest mode of
transportation

Pass
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Table 8: Scene-04: Courtyard
Category Scene Code OD WP Path&

Exec
OFA OFA + LLM Ex-

pression
OFA+
LLM

Generic Run to the door Pass Pass Pass Pass Fail Door Fail
Generic Run towards the backpack Pass Pass Pass Pass Fail Backpack Fail
Generic Drive to the wagon Pass Pass Pass Pass Fail Wagon Pass
Generic Navigate to the stairs Pass Pass Pass Pass Pass Stairs Pass
Specific Proceed towards the garbage can on

the right
Pass Pass Pass Pass Fail Garbage can on

the right
Fail

Specific Stroll to the recycle bin on the left Pass Pass Fail Fail Fail Recycle bin on
the left

Fail

Specific Sprint to the picnic table Pass Pass Pass Pass Fail Picnic table Fail
Relational Go to the bench with water con-

tainer on it
Pass Pass Pass Pass Pass Bench with water

container
Pass

Relational Walk to the bench with nothing on
it

Pass Pass Pass Pass Fail Bench with noth-
ing on it

Pass

Relational Proceed to the bench with most ob-
jects

Fail Fail Fail Fail Fail Bench with the
most objects

Pass

Relational Move towards the backpack farthest
from a bench

Pass Fail Fail Fail Fail Backpack far-
thest away from
bench

Fail

Relational Head towards the middle cone Fail Fail Fail Fail Fail Middle cone in
row of cones

Fail

Relational Head towards the middle cone in
the row of cones

Pass Pass Pass Pass Fail Middle cone in
row of cones

Fail

Relational Go to the table with only one chair Fail Fail Fail Fail Pass Table with only
one chair

Pass

Relational Go to the table with only one chair.
There are multiple groups of chairs
around multiple tables

Pass Pass Pass Pass Pass Table with only
one chair

Pass

Relational Step towards the column closest to
the cart

Pass Pass Pass Pass Fail Column closest
to the cart

Pass

Relational Move to the largest group of
benches

Pass Pass Pass Pass Fail Largest group of
benches

Fail

Relational Walk towards the table with the um-
brella

Pass Pass Pass Pass Fail Umbrella on the
table

Pass

Relational Walk towards the table with the yel-
low umbrella

Pass Pass Pass Pass Fail Table with yel-
low umbrella

Fail

Relational Drive to a table without any chairs Pass Pass Pass Pass Fail Table without
chairs

Fail

Relational Walk to black table with six chairs Fail Fail Fail Fail Fail Black table with
six chairs

Fail

Relational Walk to the table with the most
chairs

Pass Pass Pass Pass Fail Table with the
most chairs

Fail

Relational Navigate to the table with the back-
pack

Fail Fail Fail Fail Fail Backpack on the
table

Fail

Contextual Go to the nearest entrance to the
building

Fail Fail Fail Fail Fail Nearest entrance
to the building

Fail

Contextual Go to something that you would
hold open for someone elderly

Pass Fail Fail Fail Fail Door Fail

Contextual Go to something that will make it
easier to carry heavy luggage

Pass Fail Fail Fail Pass Cart Pass

Contextual Go to somewhere I can eat my
lunch

Pass Fail Fail Fail Fail Lunch table Pass

Contextual Go up to the second floor Fail Fail Fail Fail Fail Second floor Fail
Contextual Go find something to climb Fail Fail Fail Fail Fail Rock wall Fail
Contextual Run upstairs Pass Pass Pass Pass Fail Stairs Fail
Contextual Find me somewhere to park my

bike
Pass Pass Pass Pass Fail Bike rack Pass
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6.4 Code Prompt

Navigation Prompt for the concatenated single image input. We leverage the original prompts pre-
sented in [14].

import math

class ImagePatch:
"""A Python class containing a crop of an image centered around a

particular object, as well as relevant information.
Attributes
----------
cropped_image : array_like

An array-like of the cropped image taken from the original image.
left, lower, right, upper : int

An int describing the position of the (left/lower/right/upper)
border of the crop’s bounding box in the original image.

frame: name of camera frame

Methods
-------
find(object_name: str)->List[ImagePatch]

Returns a list of new ImagePatch objects containing crops of the
image centered around any objects found in the

image matching the object_name.
exists(object_name: str)->bool

Returns True if the object specified by object_name is found in the
image, and False otherwise.

verify_property(property: str)->bool
Returns True if the property is met, and False otherwise.

best_text_match(option_list: List[str], prefix: str)->str
Returns the string that best matches the image.

simple_query(question: str=None)->str
Returns the answer to a basic question asked about the image. If no

question is provided, returns the answer to "What is this?".
llm_query(question: str, long_answer: bool)->str

References a large language model (e.g., GPT) to produce a response
to the given question. Default is short-form answers, can be
made long-form responses with the long_answer flag.

compute_depth()->float
Returns the median depth of the image crop.

crop(left: int, lower: int, right: int, upper: int)->ImagePatch
Returns a new ImagePatch object containing a crop of the image at

the given coordinates.
"""

def __init__(self, image, left: int = None, lower: int = None, right:
int = None, upper: int = None, frame = None):
"""Initializes an ImagePatch object by cropping the image at the

given coordinates and stores the coordinates as
attributes. If no coordinates are provided, the image is left

unmodified, and the coordinates are set to the
dimensions of the image.
Parameters
-------
image : array_like

An array-like of the original image.
left, lower, right, upper : int
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An int describing the position of the (left/lower/right/upper)
border of the crop’s bounding box in the original image.

"""
if left is None and right is None and upper is None and lower is

None:
self.cropped_image = image
self.left = 0
self.lower = 0
self.right = image.shape[2] # width
self.upper = image.shape[1] # height

else:
self.cropped_image = image[:, lower:upper, left:right]
self.left = left
self.upper = upper
self.right = right
self.lower = lower

self.width = self.cropped_image.shape[2]
self.height = self.cropped_image.shape[1]

self.horizontal_center = (self.left + self.right) / 2
self.vertical_center = (self.lower + self.upper) / 2

self.frame = frame

def find(self, object_name: str) -> List[ImagePatch]:
"""Returns a list of ImagePatch objects matching object_name

contained in the crop if any are found.
Otherwise, returns an empty list.
Parameters
----------
object_name : str

the name of the object to be found

Returns
-------
List[ImagePatch]

a list of ImagePatch objects matching object_name contained in
the crop

Examples
--------
>>> # return the foo
>>> def execute_command(image) -> List[ImagePatch]:
>>> image_patch = ImagePatch(image)
>>> foo_patches = image_patch.find("foo")
>>> return foo_patches
"""
return find_in_image(self.cropped_image, object_name)

def exists(self, object_name: str) -> bool:
"""Returns True if the object specified by object_name is found in

the image, and False otherwise.
Parameters
-------
object_name : str

A string describing the name of the object to be found in the
image.
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Examples
-------
>>> # Are there both foos and garply bars in the photo?
>>> def execute_command(image)->str:
>>> image_patch = ImagePatch(image)
>>> is_foo = image_patch.exists("foo")
>>> is_garply_bar = image_patch.exists("garply bar")
>>> return bool_to_yesno(is_foo and is_garply_bar)
"""
return len(self.find(object_name)) > 0

def verify_property(self, object_name: str, visual_property: str) ->
bool:
"""Returns True if the object possesses the visual property, and

False otherwise.
Differs from ’exists’ in that it presupposes the existence of the

object specified by object_name, instead checking whether the
object possesses the property.

Parameters
-------
object_name : str

A string describing the name of the object to be found in the
image.

visual_property : str
A string describing the simple visual property (e.g., color,

shape, material) to be checked.

Examples
-------
>>> # Do the letters have blue color?
>>> def execute_command(image) -> str:
>>> image_patch = ImagePatch(image)
>>> letters_patches = image_patch.find("letters")
>>> # Question assumes only one letter patch
>>> return bool_to_yesno(letters_patches[0].verify_property("letters

", "blue"))
"""
return verify_property(self.cropped_image, object_name, property)

def best_text_match(self, option_list: List[str]) -> str:
"""Returns the string that best matches the image.
Parameters
-------
option_list : str

A list with the names of the different options
prefix : str

A string with the prefixes to append to the options

Examples
-------
>>> # Is the foo gold or white?
>>> def execute_command(image)->str:
>>> image_patch = ImagePatch(image)
>>> foo_patches = image_patch.find("foo")
>>> # Question assumes one foo patch
>>> return foo_patches[0].best_text_match(["gold", "white"])
"""
return best_text_match(self.cropped_image, option_list)
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def simple_query(self, question: str = None) -> str:
"""Returns the answer to a basic question asked about the image. If

no question is provided, returns the answer
to "What is this?". The questions are about basic perception, and

are not meant to be used for complex reasoning
or external knowledge.
Parameters
-------
question : str

A string describing the question to be asked.

Examples
-------

>>> # Which kind of baz is not fredding?
>>> def execute_command(image) -> str:
>>> image_patch = ImagePatch(image)
>>> baz_patches = image_patch.find("baz")
>>> for baz_patch in baz_patches:
>>> if not baz_patch.verify_property("baz", "fredding"):
>>> return baz_patch.simple_query("What is this baz?")

>>> # What color is the foo?
>>> def execute_command(image) -> str:
>>> image_patch = ImagePatch(image)
>>> foo_patches = image_patch.find("foo")
>>> foo_patch = foo_patches[0]
>>> return foo_patch.simple_query("What is the color?")

>>> # Is the second bar from the left quuxy?
>>> def execute_command(image) -> str:
>>> image_patch = ImagePatch(image)
>>> bar_patches = image_patch.find("bar")
>>> bar_patches.sort(key=lambda x: x.horizontal_center)
>>> bar_patch = bar_patches[1]
>>> return bar_patch.simple_query("Is the bar quuxy?")
"""
return simple_query(self.cropped_image, question)

def compute_depth(self):
"""Returns the median depth of the image crop
Parameters
----------
Returns
-------
float

the median depth of the image crop

Examples
--------
>>> # the bar furthest away
>>> def execute_command(image)->ImagePatch:
>>> image_patch = ImagePatch(image)
>>> bar_patches = image_patch.find("bar")
>>> bar_patches.sort(key=lambda bar: bar.compute_depth())
>>> return bar_patches[-1]
"""
depth_map = compute_depth(self.cropped_image)
return depth_map.median()
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def crop(self, left: int, lower: int, right: int, upper: int) ->
ImagePatch:
"""Returns a new ImagePatch cropped from the current ImagePatch.
Parameters
-------
left, lower, right, upper : int

The (left/lower/right/upper)most pixel of the cropped image.
-------
"""
return ImagePatch(self.cropped_image, left, lower, right, upper,

self.frame)

def overlaps_with(self, left, lower, right, upper):
"""Returns True if a crop with the given coordinates overlaps with

this one,
else False.
Parameters
----------
left, lower, right, upper : int

the (left/lower/right/upper) border of the crop to be checked

Returns
-------
bool

True if a crop with the given coordinates overlaps with this one
, else False

Examples
--------
>>> # black foo on top of the qux
>>> def execute_command(image) -> ImagePatch:
>>> image_patch = ImagePatch(image)
>>> qux_patches = image_patch.find("qux")
>>> qux_patch = qux_patches[0]
>>> foo_patches = image_patch.find("black foo")
>>> for foo in foo_patches:
>>> if foo.vertical_center > qux_patch.vertical_center
>>> return foo
"""
return self.left <= right and self.right >= left and self.lower <=

upper and self.upper >= lower

def best_image_match(list_patches: List[ImagePatch], content: List[str],
return_index=False) -> Union[ImagePatch, int]:
"""Returns the patch most likely to contain the content.
Parameters
----------
list_patches : List[ImagePatch]
content : List[str]

the object of interest
return_index : bool

if True, returns the index of the patch most likely to contain the
object

Returns
-------
int

Patch most likely to contain the object
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"""
return best_image_match(list_patches, content, return_index)

def distance(patch_a: ImagePatch, patch_b: ImagePatch) -> float:
"""
Returns the distance between the edges of two ImagePatches. If the

patches overlap, it returns a negative distance
corresponding to the negative intersection over union.

Parameters
----------
patch_a : ImagePatch
patch_b : ImagePatch

Examples
--------
# Return the qux that is closest to the foo
>>> def execute_command(image):
>>> image_patch = ImagePatch(image)
>>> qux_patches = image_patch.find(’qux’)
>>> foo_patches = image_patch.find(’foo’)
>>> foo_patch = foo_patches[0]
>>> qux_patches.sort(key=lambda x: distance(x, foo_patch))
>>> return qux_patches[0]
"""
return distance(patch_a, patch_b)

def bool_to_yesno(bool_answer: bool) -> str:
return "yes" if bool_answer else "no"

def coerce_to_numeric(string):
"""
This function takes a string as input and returns a float after removing

any non-numeric characters.
If the input string contains a range (e.g. "10-15"), it returns the

first value in the range.
"""
return coerce_to_numeric(string)

### Nav Client
"""
Navigates an agent to an object in an imgae given its center coordinates
Parameters

----------
x : x coordinate of the center of the object
y : y coordinate of the center of the object

"""
Examples

-------
>>> # Go to the blue foo.
>>> def execute_command(image)
>>> image_patch = ImagePatch(image)
>>> foo_patches = image_patch.find("foo")
>>> # Verify visual property
>>> blue_color_patches = []
>>> for foo_patch in foo_patches:
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>>> if verify_property(blue, "color")
>>> blue_color_patches.append(foo_patch)
>>> inputs = (blue_color_patches[0].horizontal_center,

blue_color_patches[0].vertical_center)
>>> return {’function’: ’nav_function’, ’inputs’: inputs, ’box’: [

blue_color_patches[0].left, blue_color_patches[0].lower,
blue_color_patches[0].right, blue_color_patches.upper]}

"""
def navigate_to_object(double x, double y):

"""

Write a function using Python and/or the ImagePatch class (above) that
could be executed to provide an answer to the query by calling one of
the functions in the Nav Client (navigate_to_object).

Note using the ImagePatch is not required for all queries. If the query is
not relevant to navigation, return None for the function and a string
describing the problem.

Consider the following guidelines:
- Use base Python (comparison, sorting) for basic logical operations, left/

right/up/down, math, etc.
- Use the llm_query function to access external information and answer

informational questions not concerning the image.
- All properties such as color should be verified using the verify_property

function. "go to the blue foo" implies "go to foo if foo is blue"
- The output of this function should be a dict {function: ’function in the

nav client’, inputs: ’inputs to the chosen nav client function’, box: [
left, lower, right, upper]}, or for an error {function: ’None’, error:
’message describing the problem’}

- If more than one object is found pick the best match

Query: INSERT_QUERY_HERE
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