
PlayFusion: Skill Acquisition via Diffusion from
Language-Annotated Play

Lili Chen* Shikhar Bahl* Deepak Pathak
Carnegie Mellon University

Abstract: Learning from unstructured and uncurated data has become the dominant
paradigm for generative approaches in language and vision. Such unstructured
and unguided behavior data, commonly known as play, is also easier to collect in
robotics but much more difficult to learn from due to its inherently multimodal,
noisy, and suboptimal nature. In this paper, we study this problem of learning
goal-directed skill policies from unstructured play data which is labeled with
language in hindsight. Specifically, we leverage advances in diffusion models to
learn a multi-task diffusion model to extract robotic skills from play data. Using
a conditional denoising diffusion process in the space of states and actions, we
can gracefully handle the complexity and multimodality of play data and generate
diverse and interesting robot behaviors. To make diffusion models more useful
for skill learning, we encourage robotic agents to acquire a vocabulary of skills by
introducing discrete bottlenecks into the conditional behavior generation process.
In our experiments, we demonstrate the effectiveness of our approach across a
wide variety of environments in both simulation and the real world. Video results
available at https://play-fusion.github.io.

Keywords: Diffusion Models, Learning from Play, Language-Driven Robotics

*

1 Introduction

Humans reuse past experience via a broad repertoire of skills learned through experience that allows
us to quickly solve new tasks and adapt across environments. For example, if one knows how to
operate and load a dishwasher, many of the skills (e.g., opening the articulated door, adjusting the
rack, putting objects in) will transfer seamlessly. How to learn such skills for robots and from what
kind is a long-standing research question. Robotic skill abstraction has been studied as a way to
transfer knowledge between environments and tasks [1, 2, 3]. It has been common to use primitives
as actions in the options framework [4, 5], which are often hand-engineered [6, 7, 8, 9, 10, 11] or
learned via imitation [12, 13, 14]. These allow for much more sample-efficient control but require
knowledge of the task and need to be tuned for new settings. On the other hand, there have been
efforts to automatically discover skills using latent variable models [15, 16, 17, 18, 19, 20, 21, 22].
While they can work in any setting, such models are often extremely data-hungry and have difficulty
scaling to the real world due to the data quality at hand.

As a result, real-world paradigms are based on imitation or offline reinforcement learning (RL) but
both these require several assumptions about the datasets. In imitation learning, human teleoperators
must perform tasks near-perfectly, reset the robot to some initial state, perform the task near-perfectly
again, and repeat several times. In offline RL, data is assumed to contain reward labels, which is
impractical in many real-world setups where reward engineering is cumbersome. In contrast, it is
much easier to collect uncurated data from human teleoperators if they are instructed only to explore,
resulting in play data [21, 22, 23]. Learning from play (LfP) has emerged as a viable alternative to
traditional data collection methods for behavior generation. It offers several advantages: (1) it is
efficient because large datasets of play can be collected without the need for setting up and executing

*Equal contribution.

7th Conference on Robot Learning (CoRL 2023), Atlanta, USA.

https://play-fusion.github.io

Language-Annotated Play

use spatula

pour
open

place toast

pick up

open the BBQ
grill

remove bread
from toaster

pick up
the knife

Figure 1: Across multiple real-world and simulated robotic settings, we show that our model can extract
semantically meaningful skills from language-annotated play data. Such data is highly multimodal and offers no
optimality guarantees. Video results of PlayFusion are available at https://play-fusion.github.io.

perfect demonstrations, and (2) the data collected is rich and diverse because it contains a broad
distribution of behavior ranging from completions of complex tasks to random meandering around
the environment. An important quality of such data is that it is grounded with some semantic goal that
the ”player” is aiming to achieve. We believe a simple abstraction for this is language instructions,
which can describe almost any play trajectory.

A major challenge in learning from play is that the data is highly multimodal, i.e., there are many
different ways to achieve a specific goal, and given a sample from the play data, there are many
different goals that could have generated it. One popular way to handle highly multimodal data is
by modeling the full distribution via generative models. In recent years, there has been remarkable
progress in large generative models [24, 25, 26, 27], especially in the class of diffusion models [28, 29],
which have been shown to generate high-resolution images – a property well suited for vision-based
robotic control. In fact, diffusion models have shown to be effective in capturing complex, continuous
actions [30, 31, 29, 32, 33] in the context of robotics. However, these diffusion model-based
approaches have not been empirically shown yet to work on unstructured data. We argue that the
ability of diffusion models to fully capture complex data paired with their potential for text-driven
generation can make them good candidates to learn from language-annotated play data.

One additional consideration is that in reality, humans only deal with a few skills. Almost every task
manipulation task involves some grasping and some post-grasp movement. We believe that learning
discrete skills will not only make the whole process more efficient but will also allow interpolation
between skills and generalizations to new tasks. To address this, we propose PlayFusion, a diffusion
model which can learn from language-annotated play data via discrete bottlenecks. We maintain the
multimodal properties of our current system while allowing for a more discrete representation of
skills. Empirically, we show that our method outperforms state-of-the-art approaches on six different
environments: three challenging real-world manipulation settings as well as the CALVIN [34], Franka
Kitchen [22], and Ravens [35, 36] simulation benchmarks.

2 Related Work

Goal and Language Conditioned Skill Learning One method of specifying the task is via goal-
conditioned learning, often by using the actual achieved last state as the goal [37, 38, 39, 40]. There is
also recent work on using rewards to condition robot behavior [41], but this requires a reward-labeled
dataset, which makes stronger assumptions than play data. Furthermore, there is a large body of
work on language-conditioned learning [42, 36, 43, 44, 45, 46, 47], which specifies the task through
language instructions. Instead of conditioning the policy on fully labeled and curated data, we take
advantage of unstructured play data which is annotated with language in hindsight.

2

https://play-fusion.github.io

x x1p(xk-1|xk , g, s)

similarity
score

xk

s: Diffusion Model

g: place the bread
on the sandwich

codebook

...xK ... xk-1xxK-1
robot

execution

+

Figure 2: Overview of how PlayFusion extracts useful skills from language-annotated play by leveraging
discrete bottlenecks in both the language embedding and diffusion model U-Net. We generate robot trajectories
via an iterative denoising process conditioned on language and current state.

Learning from Play Unlike demonstrations, play data is not assumed to be optimal for any specific
task as it is collected by human teleoperators who are instructed only to explore. Play-LMP and
MCIL [21, 48] generate behaviors by learning motor primitives from play data using a VAE [49, 50].
RIL [22] is a hierarchical imitation learning approach and C-BeT [23] generates behaviors using
a transformer-based policy and leverages action discretization to handle multimodality. LAD [51]
incorporates diffusion for learning from play, but keeps several components of VAE-based approaches
for encoding latent plans; we forgo those elements completely.

Behavior Modeling with Generative Models A promising architecture for behavior modeling
with generative models is the diffusion probabilistic model [28, 52, 53, 54]. Diffuser [30], Decision
Diffuser [31], Diffusion-QL [29] and IDQL [32] apply diffusion models to the offline reinforcement
learning (RL) problem. In real-world robotic applications, Diffusion Policy [33] demonstrated strong
results in visuomotor policy learning from demonstrations. Different from these works, we learn
from play data containing semantic labels instead of offline RL datasets or expert demonstrations.
Some approaches [55, 56] incorporate diffusion in robotics but not for generating low-level actions.

Discrete control A key challenge in robot learning is the exponentially large, continuous action
space. Option or skill-based learning is appealing as it can circumvent this problem and allow the agent
to learn in a structured, countable action space [57, 58, 59, 60]. Learned action discretization [52, 23]
has allowed approaches to scale to complex tasks. C-BeT [23] applies real-world robotic control
with transformers [41, 61, 62] to the goal-conditioned setting; [63] train a dynamics model over
discrete latent states. We leverage the discrete properties of VQ-VAEs and their natural connection to
language-labeled skills.

3 Background

Denoising Diffusion Probabilistic Models (DDPMs) DDPMs [28] model the output generation
process as a denoising process, which is often referred to as Stochastic Langevin Dynamics. To
generate the output, the DDPM starts by sampling xK from a Gaussian noise distribution. It then
performs a series of denoising iterations, totaling K iterations, to generate a sequence of intermediate
outputs, xk, xk−1, · · · , x0. This iterative process continues until a noise-free output x0 is produced.
The denoising process is governed by the following equation:

xk−1 = α(xk − γϵθ(x
k, k) +N(0, σ2I)) (1)

Here, ϵθ represents the noise prediction network with a learnable parameter θ, andN(0, σ2I)) denotes
the Gaussian noise added at each iteration. This equation is used to generate intermediate outputs
with gradually decreasing noise levels until a noise-free output is obtained. To train the DDPM,
the process begins by randomly selecting x0 from the training dataset. For each selected sample, a

3

denoising iteration k is randomly chosen, and a noise ϵk is sampled with the appropriate variance for
the selected iteration. The noise prediction network is then trained to predict the noise by minimizing:

L = ||ϵk − ϵθ(x
0 + ϵk, k)||2 (2)

Discrete Representations We utilize VQ-VAE [64] inspired models in PlayFusion as they can
provide a way to discretize the skill space. Given an input x, a VQ-VAE trains an encoder E to
predict latent E(x) = z and maintains a codebook of discrete latent codes e. The VQ layer selects j
as argmini ||z − ei||, finding the closest code to the embedding, which is used to reconstruct x. The
training loss is

LVQVAE = Lrecon(x,D(ej)) + ||z − sg(ej)||2 + ||sg(z)− ej ||2 (3)

where D is the VQ-VAE decoder. The reconstruction loss is augmented with a quantization loss,
bringing chosen codebook embedding vectors ej toward the encoder outputs in order to train the
codebook, as well a loss to encourage the encoder to ”commit” to one of the embeddings.

Learning from Play Data (LfP) In the LfP setting, we are given a dataset {(s, a)} ∈ S×A. There
are no assumptions about tasks performed in these sequences or the optimality of the data collection
method. Similar to the formulation of [23], the goal is to learn a policy π = S × S → A where the
input is the current state st and goal g = sT . In some cases, (including ours), the goals are instead
described via language annotations.

4 PlayFusion: Discrete Diffusion for Language-Annotated Play

Humans do not think about low-level control when performing everyday tasks. Our understanding
of skills like door opening or picking up objects has already been grounded in countless prior
experiences, and we can comfortably perform these in new settings. Skills are acquired through our
prior experiences – successes, failures, and everything in between. PlayFusion focuses on learning
these skills through language-annotated play data.

However, learning from play data is still difficult as continuous control skills are not easy to identify
due to several challenges: (1) data can come from multiple modalities as there are many actions that
the robot could have taken at any point, (2) we want the model to acquire a vocabulary of meaningful
skillsm and (3) we want to generalize beyond the training data and have the model transfer skills to
new settings. To address the challenges, we leverage recent advances in diffusion-model large-scale
text-to-image generation. Such models [33, 30, 29] can inherently model multimodality via their
iterative denoising process. To effectively transfer skills to new settings, we propose a modified
diffusion model with the ability to discretize learned behavior from language-annotated data. Figure
2 shows an overview of our method.

4.1 Language Conditioned Play Data

Our setup consists of language conditioned play data [21] Dplay = {(s(i)t , a
(i)
t)}Ni=1: long sequences

of robot behavior data containing many kinds of behaviors, collected by human operators instructed
to perform interesting tasks. In this setting, we assume that there is some optimality to the data,
i.e. at ∼ F(st, zg), where zg is a latent variable that models the intention of the operator. We
thus leverage language labels to estimate zg. Given a sequence τ = {si, ai}Ht=k, label τ with an
instruction l which is passed into a language model [65], glang, referring to it as zl throughout the
paper. One can also use goal images, but we might not have access to these at test time. While our
method can use any zg as conditioning, assume that the play data has access to language annotations l.
Our policy π(at|st, zl) contains a few simple components. We use a ResNet[66]-based visual encoder
ϕv to encode st (a sequence of images) and an MLP based langauge encoder ϕl to downproject the
language embedding zl. The policy uses g = [ϕl(zl), ϕv(st)] as conditioning to the action decoder
fact. Previous approaches [21, 34] use latent variable models to deal with multimodality. We find that
modelling fact as a diffusion process enables us to circumvent this.

4

CookingDining TableSink

CALVIN Franka Kitchen Ravens

Figure 3: Simulated (top row) and real-world (bottom row) environments used for our evaluations. In each
real-world setup, the robot is tasked with picking up one of the objects (e.g., plate, cup, carrot, bread, corn) and
relocating it to a specified location (e.g., drying rack, plate, toaster, grill, pot).

4.2 Multi-modal Behavior Generation via Diffusion

With fact, we aim to predict robot actions given the current state, using a DDPM to approximate the
conditional distribution P (at|st). In our setting, we additionally condition on the goal g. Formally,
we train the model to generate robot actions at conditioned on goal g and current state st, so we
modify Equations 1 and 6 to obtain:

ak−1
t = α(akt − γϵθ(g, st, a

k
t , k) +N(0, σ2I)) (4)

L = ||ϵk − ϵθ(g, st, a
0
t + ϵk, k)||2 (5)

We use the notation above for simplicity, but in practice, we predict a sequence of Ta future actions
at, · · · , at+Ta

instead of only the most immediate action, a technique known as action chunking.
This is done in some recent works [33, 67] and is shown to improve temporal consistency.

4.3 Discrete Diffusion for Control

Moreover, humans often break down tasks into smaller skills, which are often repeatable. In fact,
most tasks can be achieved with a relatively small set. On the other hand, both the latent goals that we
learn as well as the action diffusion process are continuous. Making sure learnt skills are discrete can
not only allow for better performance but also better generalization to new settings. However, naively
enforcing discretization can lead to suboptimal behavior. We want to ensure that conditioned on a
latent goal, g, action predictions from fact are both multimodal and yet only represent a few modes.
Thus, we propose a discrete bottleneck instead.

For the action generation process to represent a useful skill space, we want to enforce discreteness
where the actions interact with latent goal. PlayFusion adds a vector quantization bottleneck in
the diffusion process, specifically in the network ϵθ(x) = ϵθ(g, st, a

0
t + ϵk, k). ϵθ is U-Net which

fuses the language conditioning into the action denoising. We modify the U-Net architecture with
a codebook of discrete latent codes eu, a discrete bottleneck for the diffusion model. Given an
input x the U-Net encoder produces a latent ψϵ(x), which is passed into the decoder to produce
ϵθ(x) = γϵ(ψϵ(x)). This bottleneck layer selects j as argmini ||ψϵ(x) − ei||, finding the closest
code to the embedding, which is used to reconstruct x. To account for this, we augment the training
procedure with the quantization and commitment losses, similar to VQ-VAE.

Generalization via discrete language conditioning Consider an agent that has learnt skills formed
from the atomic units A, B, C and C, of the form A + B, B + C and C + D. To truly extend its

5

capabilities beyond the initial training data, the agent must learn to interpolate and extrapolate from
these existing skills, being able to perform tasks like A + D that it hasn’t explicitly been trained on.
Given that the action generation in the diffusion process is already quantized, our hypothesis is that
a discrete goal space will be synergestic and allow the policy to compose skills better. Thus, we
maintain a codebook of discrete latent codes el for the language embeddings output by the language
goal network ϕl(zl), selecting el,j which is closest to ϕl(zl). The full loss function that we use to
train PlayFusion is as follows:

LPlayFusion =||ϵk − ϵθ(x
0 + ϵk, k)||2 + β1 ||sg(ψϵ(x)− eu,j)||2︸ ︷︷ ︸

U-Net quantization loss

+β1 ||ψϵ(x)− sg(eu,j)||2︸ ︷︷ ︸
U-Net commitment loss

+ β2 ||sg(ϕl(zl))− el,j ||2︸ ︷︷ ︸
lang. quantization loss

+β2 ||ϕl(zl)− sg(el,j)||2︸ ︷︷ ︸
lang. commitment loss

(6)

where β1 and β2 are coefficients to determine the tradeoff between covering a diversity of possible
behaviors and encouraging behaviors belonging to similar skills to be brought close to each other.

Sampling from PlayFusion Given a novel language instruction at test time z′, we obtain the
quantized encoding ϕl(z′), combining it with the visual encoding to get conditioning g′. We sample
a set of actions at:t+k ∼ N (0, 1), pass them through the discrete denoising process in Equation 4.

5 Experiments

In this section, we investigate PlayFusion and its ability to scale to complex tasks, as well as
generalization to new settings. We ask the following questions: (1) Can PlayFusion allow for learning
complex manipulation tasks from language annotated play data? (2) Can our method perform
efficiently in the real-world setup beyond the simulated environment? (3) How well can PlayFusion
generalize to out of distribution settings? (4) Can PlayFusion in fact learn discrete skills? (5) How do
various design choices, such as quantization, language conditioning, etc., affect PlayFusion? We aim
to answer these through experiments in three different simulation and real world settings.

Environmental Setup We test our approach across a wide variety of environments in both simula-
tions as well as the real world. For simulation, we evaluate three benchmarks: (a) CALVIN [34], (b)
Franka Kitchen [22], and (c) Language-Conditioned Ravens [35, 36]. For the real-world setup, we
create three different environments: cooking, dining table and sink, shown in Figure 3. More
details of the environment setup are in the supplementary.

Baselines We handle task conditioning in the same way for our method as well as all baselines,
using the same visual and language encoders. We compare our method with the following baselines:
(a) Learning Motor Primitives from Play (Play-LMP): Play-LMP [21] generates behaviors by learning
motor primitives from play data using a VAE, which encodes action sequences into latents and then
decodes them into actions. (b) Conditional Behavior Transformer (C-BeT): C-BeT [23] generates
behaviors using a transformer-based policy and leverages action discretization to handle multimodality.
(c) Goal-Conditioned Behavior Cloning (GCBC): GCBC [21, 68] is conditional behavior cloning.

5.1 Results in Simulation and Real World

PlayFusion in simulation Table 1 shows success rates for PlayFusion, Play-LMP, C-BeT, and
GCBC on the simulation benchmarks. On both CALVIN setups, we outperform the baselines by a
wide margin, which demonstrates the effectiveness of our method in large-scale language-conditioned
policy learning from complex, multimodal play data. The baselines perform comparatively better
on the Franka Kitchen environments, where the training datasets are smaller and the data covers a
more narrow behavior distribution and the benefit of handling multimodality is smaller; however,

6

Simulation Real World
CALVIN A CALVIN B Kitchen A Kitchen B Ravens Dining Table Cooking Sink

C-BeT [23] 26.3± 0.8 23.4± 0.9 45.6 ± 2.3 24.4 ± 2.3 13.4 20.0 0.0 10.0
Play-LMP [21] 19.9± 1.0 22.0± 0.4 1.9± 1.5 0.0± 0.0 0.2 0.0 0.0 0.0
GCBC [21] 23.2± 2.0 30.4± 1.4 38.0± 3.3 15.5± 4.5 1.6 5.0 0.0 5.0

Ours 45.2 ± 1.2 58.7 ± 0.7 47.5 ± 2.0 27.7 ± 0.9 35.8 45.0 30.0 20.0

Table 1: Success rates for PlayFusion and the baselines on simulation and real-world settings.
PlayFusion consistently outperforms all of the baselines.

PlayFusion still outperforms or matches all baselines. PlayFusion also achieves significantly higher
success rate than the baselines on Ravens (see appendix for per-task results), which is not as large-
scale as CALVIN but covers a large portion of the state space due to the diversity of instructions.

No. of Instructions
Av. Seq Len 1 2 3 4 5

CALVIN A :
C-BeT 0.262 25.2 1.0 0.0 0.0 0.0
Play-LMP 0.175 16.5 1.0 0.0 0.0 0.0
GCBC 0.194 19.4 0.0 0.0 0.0 0.0

CALVIN B :
C-BeT 0.272 27.2 0.0 0.0 0.0 0.0
Play-LMP 0.117 11.7 0.0 0.0 0.0 0.0
GCBC 0.291 27.2 1.9 0.0 0.0 0.0

Ours (A) 0.417 37.1 2.9 1.0 0.0 0.0
Ours (B) 0.611 54.4 6.0 0.0 0.0 0.0

Table 2: Average sequence length on Long Horizon
CALVIN and success rate for the n-th instructions.

Long horizon tasks Using the Long Horizon
CALVIN evaluation suite, we test the ability
of agents to stitch together different tasks, with
transitioning between tasks being particularly
difficult. One such long horizon chain might be
”turn on the led” → ”open drawer” → ”push
the blue block” → ”pick up the blue block”
→ ”place in slider”. We rollout 128 different
long horizon chains containing five instructions
each and record the number of instructions suc-
cessfully completed. As shown in Table 2, we
find that PlayFusion significantly outperforms
the baselines in both CALVIN A and CALVIN
B. The diffusion process gracefully handles the
multimodality of not only each individual task
in the chain but also of the highly varied data
the agent has seen of transitions between tasks.

Generalization in the real world Table 1 shows results for PlayFusion and the baselines in our
real world evaluation setups. These setups are particularly challenging for two reasons: (1) inherent
challenges with real-world robotics such as noisier data and constantly changing environment
conditions such as lighting, and (2) they are designed to test skill-level compositional generalization.
Specifically, the agents are required to compose skills A + B and C + D into A + D; for example,
they might be trained on ”pick up the carrot and place it in the pan” and ”pick up the bread and put
it in the toaster” and must generalize to ”pick up the carrot and put it in the toaster”. Our method
significantly outperforms the baselines in these settings, showcasing the ability of the diffusion model
in modeling complex distributions and the emergence of learned skills via the discrete bottleneck.
Video results are at https://play-fusion.github.io.

5.2 Analysis of Discrete Representations
Bread
in Pan

Pineapple
in Pan

Carrot
in Oven

Carrot
in Grill

Figure 4: Visualization of the codebook em-
beddings for various real-world skills.

Learning discrete skills Table 3 studies the impact of
our discrete bottlenecks (for Ravens results, see the ap-
pendix). The success rate is, on average, worsened with the
removal of either the U-Net discretization and the language
embedding discretization. We also qualitatively study
whether semantically similar skills are actually mapped to
similar areas of the latent space and should therefore be
brought together by the discrete bottleneck. In Figure 4,
we show that skills involving similar locations (e.g., pan)
or objects (e.g., carrot) are encoded into similar embeddings. In Figure 4, we show the embeddings

7

https://play-fusion.github.io

of different trajectories. The top two rows share the first skill (which is to remove the lid from the
pan) and place an object in the pan. The bottom two rows share the second skill (grasping the carrot).
Embeddings that contain the same skill have a similar pattern, which further indicates that the latent
skill space being learned is somewhat discretized.

Methods CALVIN A CALVIN B

Ours 45.2 ± 1.2 58.7 ± 0.7
No U-Net discretiz. 45.3 ± 2.1 55.1± 1.4
No lang discretiz. 40.3± 1.6 54.1± 1.2

Table 3: Effect of discrete bottlenecks.

Balancing the discrete bottlenecks In Table 4, we study
the effects of different β1 and β2 values on CALVIN A
performance, i.e., the relative weightings for the additional
terms in the loss function corresponding to the U-Net
discretization and language embedding discretization. We
find that β1 = β2 = 0.5 results in the best performance.
In general, equally weighing the four additional losses
(two for U-Net and two for language) leads to improved performance over imbalanced weightings.
β1 = β2 = 0.5 is also better than β1 = β2 = 1, indicating that over-incentivizing discretization can
be detrimental to diffusion model learning. Further analyses can be found in the appendix.

5.3 Ablations of Design Choices

Success Rate
Effect of conditioning:
Global 54.1
Conditional Noise 40.2
Visual Pre-training 38.1

Effect of language model:
all-MiniLM-L6-v2 47.1
all-distilroberta-v1 48.4
all-mpnet-base-v2 48.8
BERT 48.8
CLIP (ResNet50) 35.2
CLIP (ViTB32) 43.9

Loss weights (U-Net & Language) :
0.5 & 0.5 47.1
1 & 1 45.1
0.1 & 1 45.5
1 & 0.1 43.4
0.25 & 0.75 37.7
0.75 & 0.25 43.4

Table 4: Effects of conditioning,
language model, and loss weights.

Effect of language model Although our method is orthogonal to
the language model used, we test its sensitivity to this. As shown in
Table 4, we find that common models such as MiniLM [65], Distil-
roberta [69], MPNet [70], and BERT [71] have similar performance,
showing that PlayFusion is mostly robust to this design choice. We
hypothesize that the discrete bottleneck applied to the language em-
beddings helps to achieve this robustness. CLIP [72] embeddings
result in much lower success rates, most likely due the fact that
Internet images may not contain similar ”play data” instructions.

Effect of conditioning Table 4 studies various different possibil-
ities for conditioning the diffusion model generations on language
and vision in CALVIN A. When working with diffusion models there
are multiple different ways we can approach how to feed it goals,
images of the scene etc. We found that PlayFusion is mostly robust
to this, with global conditioning providing benefits for smaller mod-
els (such as those in the real world). We also attempted to condition
the diffusion model noise on the goal but found that this negatively
impacted performance. For the visual conditioning, we studied the
effect of initializing the image encoder with large-scale pre-trained models [73]), finding that it does
not help, and PlayFusion can learn the visual encoder end-to-end from scratch.

For data scaling curves and more analyses on design choices, see the appendix.

6 Limitations and Discussion
In this paper, we introduced a novel approach for learning a multi-task robotic control policy using
a denoising diffusion process on trajectories, conditioned on language instructions. Our method
exploits the effectiveness of diffusion models in handling multimodality and introduces two discrete
bottlenecks in the diffusion model in order to incentivize the model to learn semantically meaningful
skills. PlayFusion does require the collection of teleoperated play data paired with after-the-fact
language annotations, which still require human effort despite being already less expensive and
time-consuming to collect than demonstrations. It would be interesting to label the play data with a
captioning model or other autonomous method. Furthermore, there is room for improvement in our
performance on our real-world setups. Additionally, our real-world experiments could be expanded
to even more complex household settings such as study rooms, bed rooms, and living rooms. Overall,
our approach can significantly enhance the ability of robots to operate autonomously in complex and
dynamic environments, making them more useful in a wide range of applications.

8

References

[1] R. S. Sutton, D. Precup, and S. Singh. Between mdps and semi-mdps: A framework for temporal
abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–211, 1999.

[2] S. Thrun, C. Faloutsos, T. Mitchell, and L. Wasserman. Automated learning and discovery
state-of-the-art and research topics in a rapidly growing field. Ai Magazine, 20(3):78–78, 1999.

[3] M. Pickett and A. G. Barto. Policyblocks: An algorithm for creating useful macro-actions in
reinforcement learning. In ICML, volume 19, pages 506–513, 2002.

[4] P.-L. Bacon, J. Harb, and D. Precup. The option-critic architecture. In AAAI, 2017.

[5] R. S. Sutton, D. Precup, and S. Singh. Between mdps and semi-mdps: A framework for temporal
abstraction in reinforcement learning. Artificial Intelligence, 1999.

[6] C. Daniel, G. Neumann, O. Kroemer, and J. Peters. Hierarchical relative entropy policy search.
Journal of Machine Learning Research, 2016.

[7] F. Stulp, E. A. Theodorou, and S. Schaal. Reinforcement learning with sequences of motion
primitives for robust manipulation. Transactions on Robotics, 2012.

[8] J. Kober and J. Peters. Learning motor primitives for robotics. In ICRA, 2009.

[9] P. Pastor, M. Kalakrishnan, S. Chitta, E. Theodorou, and S. Schaal. Skill learning and task
outcome prediction for manipulation. In ICRA, 2011.

[10] M. Dalal, D. Pathak, and R. R. Salakhutdinov. Accelerating robotic reinforcement learning via
parameterized action primitives. NeurIPS, 2021.

[11] S. Nasiriany, H. Liu, and Y. Zhu. Augmenting reinforcement learning with behavior primitives
for diverse manipulation tasks. In ICRA, 2022.

[12] K. Pertsch, Y. Lee, and J. Lim. Accelerating reinforcement learning with learned skill priors. In
Conference on robot learning, pages 188–204. PMLR, 2021.

[13] S. Bahl, A. Gupta, and D. Pathak. Hierarchical neural dynamic policies. RSS, 2021.

[14] K. Pertsch, R. Desai, V. Kumar, F. Meier, J. J. Lim, D. Batra, and A. Rai. Cross-domain transfer
via semantic skill imitation. arXiv preprint arXiv:2212.07407, 2022.

[15] B. Eysenbach, A. Gupta, J. Ibarz, and S. Levine. Diversity is all you need: learning skills
without a reward function. arXiv preprint arXiv:1802.06070, 2018.

[16] A. Sharma, S. Gu, S. Levine, V. Kumar, and K. Hausman. Dynamics-aware unsupervised
discovery of skills. arXiv preprint arXiv:1907.01657, 2019.

[17] J. Merel, S. Tunyasuvunakool, A. Ahuja, Y. Tassa, L. Hasenclever, V. Pham, T. Erez, G. Wayne,
and N. Heess. Catch & carry: reusable neural controllers for vision-guided whole-body tasks.
ACM Transactions on Graphics (TOG), 39(4):39–1, 2020.

[18] T. Shankar and A. Gupta. Learning robot skills with temporal variational inference. In
International Conference on Machine Learning, pages 8624–8633. PMLR, 2020.

[19] T. Kipf, Y. Li, H. Dai, V. Zambaldi, A. Sanchez-Gonzalez, E. Grefenstette, P. Kohli, and
P. Battaglia. Compile: Compositional imitation learning and execution. In International
Conference on Machine Learning, pages 3418–3428. PMLR, 2019.

[20] W. Whitney, R. Agarwal, K. Cho, and A. Gupta. Dynamics-aware embeddings. arXiv preprint
arXiv:1908.09357, 2019.

9

[21] C. Lynch, M. Khansari, T. Xiao, V. Kumar, J. Tompson, S. Levine, and P. Sermanet. Learning
latent plans from play. arXiv preprint arXiv:1903.01973, 2019.

[22] A. Gupta, V. Kumar, C. Lynch, S. Levine, and K. Hausman. Relay policy learning: Solving
long-horizon tasks via imitation and reinforcement learning. arXiv preprint arXiv:1910.11956,
2019.

[23] Z. J. Cui, Y. Wang, N. Muhammad, L. Pinto, et al. From play to policy: Conditional behavior
generation from uncurated robot data. arXiv preprint arXiv:2210.10047, 2022.

[24] A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, M. Chen, and I. Sutskever.
Zero-shot text-to-image generation. In International Conference on Machine Learning, pages
8821–8831. PMLR, 2021.

[25] A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen. Hierarchical text-conditional image
generation with clip latents. arXiv preprint arXiv:2204.06125, 2022.

[26] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution image synthesis
with latent diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 10684–10695, 2022.

[27] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, et al. Language models are few-shot learners. Advances in neural
information processing systems, 33:1877–1901, 2020.

[28] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. Advances in Neural
Information Processing Systems, 33:6840–6851, 2020.

[29] Z. Wang, J. J. Hunt, and M. Zhou. Diffusion policies as an expressive policy class for offline
reinforcement learning. arXiv preprint arXiv:2208.06193, 2022.

[30] M. Janner, Y. Du, J. B. Tenenbaum, and S. Levine. Planning with diffusion for flexible behavior
synthesis. arXiv preprint arXiv:2205.09991, 2022.

[31] A. Ajay, Y. Du, A. Gupta, J. Tenenbaum, T. Jaakkola, and P. Agrawal. Is conditional generative
modeling all you need for decision-making? arXiv preprint arXiv:2211.15657, 2022.

[32] P. Hansen-Estruch, I. Kostrikov, M. Janner, J. G. Kuba, and S. Levine. Idql: Implicit q-learning
as an actor-critic method with diffusion policies. arXiv preprint arXiv:2304.10573, 2023.

[33] C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and S. Song. Diffusion policy:
Visuomotor policy learning via action diffusion. arXiv preprint arXiv:2303.04137, 2023.

[34] O. Mees, L. Hermann, E. Rosete-Beas, and W. Burgard. Calvin: A benchmark for language-
conditioned policy learning for long-horizon robot manipulation tasks. IEEE Robotics and
Automation Letters, 7(3):7327–7334, 2022.

[35] A. Zeng, P. Florence, J. Tompson, S. Welker, J. Chien, M. Attarian, T. Armstrong, I. Krasin,
D. Duong, V. Sindhwani, and J. Lee. Transporter networks: Rearranging the visual world for
robotic manipulation. CoRL, 2020.

[36] M. Shridhar, L. Manuelli, and D. Fox. Cliport: What and where pathways for robotic manipula-
tion. In Conference on Robot Learning, pages 894–906. PMLR, 2022.

[37] L. P. Kaelbling. Learning to achieve goals. In IJCAI, volume 2, pages 1094–8. Citeseer, 1993.

[38] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. McGrew, J. Tobin,
O. Pieter Abbeel, and W. Zaremba. Hindsight experience replay. Advances in neural information
processing systems, 30, 2017.

10

[39] D. Ghosh, A. Gupta, A. Reddy, J. Fu, C. Devin, B. Eysenbach, and S. Levine. Learning to reach
goals via iterated supervised learning. arXiv preprint arXiv:1912.06088, 2019.

[40] A. Goyal, A. Friesen, A. Banino, T. Weber, N. R. Ke, A. P. Badia, A. Guez, M. Mirza, P. C.
Humphreys, K. Konyushova, et al. Retrieval-augmented reinforcement learning. In International
Conference on Machine Learning, pages 7740–7765. PMLR, 2022.

[41] L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin, P. Abbeel, A. Srinivas, and
I. Mordatch. Decision transformer: Reinforcement learning via sequence modeling. Advances
in neural information processing systems, 34:15084–15097, 2021.

[42] C. Lynch and P. Sermanet. Grounding language in play. arXiv preprint arXiv:2005.07648, 40:
105, 2020.

[43] E. Jang, A. Irpan, M. Khansari, D. Kappler, F. Ebert, C. Lynch, S. Levine, and C. Finn. Bc-z:
Zero-shot task generalization with robotic imitation learning. In Conference on Robot Learning,
pages 991–1002. PMLR, 2022.

[44] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David, C. Finn, K. Gopalakrishnan,
K. Hausman, A. Herzog, et al. Do as i can, not as i say: Grounding language in robotic
affordances. arXiv preprint arXiv:2204.01691, 2022.

[45] S. Nair, E. Mitchell, K. Chen, S. Savarese, C. Finn, et al. Learning language-conditioned robot
behavior from offline data and crowd-sourced annotation. In Conference on Robot Learning,
pages 1303–1315. PMLR, 2022.

[46] O. Mees, L. Hermann, and W. Burgard. What matters in language conditioned robotic imitation
learning over unstructured data. IEEE Robotics and Automation Letters, 7(4):11205–11212,
2022.

[47] M. Shridhar, L. Manuelli, and D. Fox. Perceiver-actor: A multi-task transformer for robotic
manipulation. In Conference on Robot Learning, pages 785–799. PMLR, 2023.

[48] C. Lynch and P. Sermanet. Language conditioned imitation learning over unstructured data.
arXiv preprint arXiv:2005.07648, 2020.

[49] D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114,
2013.

[50] D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and approximate
inference in deep generative models. arXiv preprint arXiv:1401.4082, 2014.

[51] E. Zhang, Y. Lu, W. Wang, and A. Zhang. Lad: Language augmented diffusion for reinforcement
learning. arXiv preprint arXiv:2210.15629, 2022.

[52] N. M. Shafiullah, Z. Cui, A. A. Altanzaya, and L. Pinto. Behavior transformers: Cloning k
modes with one stone. Advances in neural information processing systems, 35:22955–22968,
2022.

[53] D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and J. Davidson. Learning latent
dynamics for planning from pixels. arXiv preprint arXiv:1811.04551, 2018.

[54] D. Hafner, T. Lillicrap, J. Ba, and M. Norouzi. Dream to control: Learning behaviors by latent
imagination. arXiv preprint arXiv:1912.01603, 2019.

[55] Y. Dai, M. Yang, B. Dai, H. Dai, O. Nachum, J. Tenenbaum, D. Schuurmans, and P. Abbeel.
Learning universal policies via text-guided video generation. arXiv preprint arXiv:2302.00111,
2023.

11

[56] W. Liu, Y. Du, T. Hermans, S. Chernova, and C. Paxton. Structdiffusion: Language-guided 304
creation of physically-valid structures using unseen objects. arXiv preprint arXiv:2211.04604,
305:2, 2022.

[57] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker,
M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. van den Driessche, T. Graepel, and
D. Hassabis. Mastering the game of go without human knowledge. Nature, 2017.

[58] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mastering the game of go with deep neural
networks and tree search. nature, 529(7587):484, 2016.

[59] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou,
H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis. Human-level control through
deep reinforcement learning. Nature, 518(7540):529–533, Feb. 2015.

[60] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environment: An
evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253–279,
jun 2013.

[61] M. Janner, Q. Li, and S. Levine. Offline reinforcement learning as one big sequence modeling
problem. Advances in neural information processing systems, 34:1273–1286, 2021.

[62] P. Wu, A. Majumdar, K. Stone, Y. Lin, I. Mordatch, P. Abbeel, and A. Rajeswaran. Masked
trajectory models for prediction, representation, and control. arXiv preprint arXiv:2305.02968,
2023.

[63] S. Ozair, Y. Li, A. Razavi, I. Antonoglou, A. Van Den Oord, and O. Vinyals. Vector quantized
models for planning. In International Conference on Machine Learning, pages 8302–8313.
PMLR, 2021.

[64] A. van den Oord, O. Vinyals, et al. Neural discrete representation learning. In NeurIPS, pages
6309–6318, 2017.

[65] N. Reimers and I. Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks.
arXiv preprint arXiv:1908.10084, 2019.

[66] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. CoRR,
abs/1512.03385, 2015. URL http://arxiv.org/abs/1512.03385.

[67] T. Z. Zhao, V. Kumar, S. Levine, and C. Finn. Learning fine-grained bimanual manipulation
with low-cost hardware. arXiv preprint arXiv:2304.13705, 2023.

[68] Y. Ding, C. Florensa, M. Phielipp, and P. Abbeel. Goal-conditioned imitation learning. arXiv
preprint arXiv:1906.05838, 2019.

[69] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer,
and V. Stoyanov. Roberta: A robustly optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692, 2019.

[70] K. Song, X. Tan, T. Qin, J. Lu, and T.-Y. Liu. Mpnet: Masked and permuted pre-training for
language understanding. Advances in Neural Information Processing Systems, 33:16857–16867,
2020.

[71] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. 2018.

12

http://arxiv.org/abs/1512.03385

[72] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, et al. Learning transferable visual models from natural language supervision.
In International conference on machine learning, pages 8748–8763. PMLR, 2021.

[73] S. Nair, A. Rajeswaran, V. Kumar, C. Finn, and A. Gupta. R3m: A universal visual representation
for robot manipulation. arXiv preprint arXiv:2203.12601, 2022.

[74] Calvin. https://github.com/mees/calvin/.

[75] Relay policy learning environments. https://github.com/google-research/

relay-policy-learning/.

[76] Cliport. https://github.com/cliport/cliport.

[77] From play to policy: Conditional behavior generation from uncurated robot data. https:

//github.com/jeffacce/play-to-policy.

13

https://github.com/mees/calvin/
https://github.com/google-research/relay-policy-learning/
https://github.com/google-research/relay-policy-learning/
https://github.com/cliport/cliport
https://github.com/jeffacce/play-to-policy
https://github.com/jeffacce/play-to-policy

A Website

Video results are available at https://play-fusion.github.io.

B Experimental Setup

We evaluate our method on three simulated environments. Below, we provide their details.

CALVIN [34]. The CALVIN benchmark tests a robotic agent’s ability to follow language instruc-
tions. CALVIN contains four manipulation environments, each of which include a desk with a
sliding door and a drawer that can be opened and closed, as well as a 7-DOF Franka Emika Panda
robot arm with a parallel gripper. The four environments differ from each other in both their spatial
composition (e.g., positions of drawers, doors, and objects) and visual features. The training data for
each environment contains around 200K trajectories, from which we sample a sequence of transitions
for each element of the minibatch. A portion of the dataset contains language annotations; we use
this subset to train our language-conditioned model. Each transition consists of the RGB image
observation, proprioceptive state information, and the 7-dimensional action. The agent is evaluated
on its success rate in completing 34 tasks, which include variations of rotation, sliding, open/close,
and lifting. These are specified by language instructions that are unseen during training in order
to test the generalization ability of the agent. We evaluate on two setups: (1) CALVIN A, where
the model is trained and tested on the same environment (called D→D in the benchmark) and (2)
CALVIN B, where the model is trained on three of the four environments and tested on the fourth
(called ABC→D in the benchmark).

Franka Kitchen [22]. Franka Kitchen is a simulated kitchen environment with a Franka Panda
robot. It contains seven possible tasks: opening a sliding cabinet, opening a hinge cabinet, sliding
a kettle, turning on a switch, turning on the bottom burner, turning on the top burner, and opening
a microwave door. The dataset contains 566 VR demonstrations of humans performing four of the
seven tasks in sequence. Each transition consists of the RGB image observation, proprioceptive state
information, and the 9-dimensional action. We split each of these demonstrations into their four tasks
and annotate them with diverse natural language to create a language-annotated play dataset. In our
experiments, we evaluate agents on two setups within this environment, which we denote as Kitchen
A and Kitchen B. In Kitchen A, we evaluate an agent’s language generalization ability at test-time
by prompting it with unseen instructions asking it to perform one of the seven tasks. This requires
the model to identify the desired task and successfully execute it. Kitchen B is a more challenging
evaluation setting, where the agent must perform two of the desired seven tasks in sequence given an
unseen language instruction. In this setting, the agent must exhibit long-horizon reasoning capabilities
and perform temporally consistent actions, in addition to the language generalization required in
Kitchen A.

Language-Conditioned Ravens [35, 36]. Ravens is a tabletop manipulation environment with a
Franka Panda arm. We evaluate on three tasks in the Ravens benchmark: putting blocks in bowls,
stacking blocks to form a pyramid, and packing blocks into boxes. The dataset consists of 1000
demonstrations collected by an expert policy. Although the dataset proposed in [36] contains language
instructions denoting which color block to move and the desired final location, they are not diverse
like human natural language annotations would be. In order to study our model’s performance on a
play-like language-annotated dataset, we instead annotate the demonstrations with diverse natural
language. At test-time, we prompt the agent with an unseen language instruction, similar to our other
setups.

B.1 Real World Setup

We create multiple play environments in the real world as well. We use a 7-DOF Franka Emika
Panda robot arm with a parallel gripper, operating in joint action space. We have three different

14

https://play-fusion.github.io

environments cooking, dining table and sink. All of these tasks are multi-step, i.e., in each the
robot has to at least grab one object and put it in another, i.e. grab a carrot and put it inside the oven.
In cooking, we test how the robot can handle articulated objects. It has to first open the oven, grill or
pot, and then place an object properly inside. All of these objects have different articulations. Each
of the placed objects (bread, carrot, knife, steak, spoon, etc.) have unique and different ways of being
interacted with. In the sink, we test very precise manipulation skills, where the robot has to place
objects in the narrow dish rack or hang objects (like mugs). In all of these settings, we test unseen
goals (a combination of objects) that has never been seen before, as well as an instruction that has
never been seen before. We provide more details in the Appendix.

B.2 Additional Analysis on Discretization Bottleneck

Discretization ablation in Ravens. Table 5 studies the impact of our discrete bottlenecks on the
Ravens benchmark. The success rate is, on average, worsened with the removal of either the U-Net
discretization and the language embedding discretization.

Discretizing a portion of the latent. It is possible to quantize only a portion of the U-Net latent
representation. Table 6 shows results of discretizing only a portion (25% or 50%) of the latent. We
find that discretizing 25% of the latent resulted in better performance. Discretizing the entire latent
still works well, but discretizing a portion is a great way to balance encouraging skill learning and
accurate denoising.

Table 5: Effect of discrete bottlenecks on Ravens tasks.

Methods put-block-in-bowl stack-block-pyramid packing-box-pairs

Ours 63.6 ± 2.5 20.0 ± 0.0 24.0 ± 1.8
No U-Net discretization 65.5 ± 3.3 5.0± 2.3 18.5± 0.0
No lang discretization 4.1± 0.6 3.3± 2.7 7.5± 2.5

Table 6: Effect of discretizing different fractions of the U-Net representation.

Methods Success Rate

Discretize 100% of latent 45.2± 1.2
Discretize 50% of latent 44.8± 0.1
Discretize 25% of latent 48.7 ± 0.8

B.3 Data Scaling Curves

Figure 5 shows data scaling curves.

Effect of discrete bottlenecks. Our method scales well with more data and performs very well even
at 100K trajectories, which is half the size of the CALVIN A training dataset. The removal of the
language discretization results in lower success rates across almost all dataset sizes. The removal of
U-Net discretization is not as critical and can actually improve performance for very small datasets,
but is on average harmful for larger datasets.

Comparison to baselines. Our method scales well with more data while C-BeT, Play-LMP, and
GCBC perform poorly for all dataset sizes.

B.4 Dataset Details

Real-world experiments. For each environment we collected 250 episodes. This translates to around
15 hours of data collection. We augmented the dataset by adding 3 or 4 variations for each language

15

Figure 5: Data scaling curves. Left: effect of discrete bottlenecks. Right: comparison to baselines.

instruction (making the training dataset 750-1K episodes). The episodes were not broken into smaller
annotated instructions.

Simulation experiments. We directly use the language-annotated dataset from CALVIN [34] and
data generation script from CLIPort [36]. For Kitchen experiments, we used the dataset from Relay
Policy Learning [22] and performed some processing and annotation to create language-annotated
datasets. We provide some information in Table 7, but note that some of the numbers are estimates
due to data processing procedures and refer the reader to the papers [34, 36, 22] for full details.

Table 7: Dataset details for simulation experiments.

How was play data
collected?

Hours Eps.
length

No. of lang. anno-
tated eps.

Is a single eps. broken into
smaller instructions?

CALVIN
A

Teleoperators are in-
structed only to ex-
plore. Processing into
episodes and annotat-
ing with language are
done after-the-fact.

2.5 64 5K (instructions
are repeated to cre-
ate 200K training
episodes)

No. Training trajectories
are length-16 sub-episodes
of the length-64 episodes. In-
structions are repeated for all
sub-episodes to create a total
of 200K language-annotated
training trajectories. (How-
ever, the length-64 window
was sampled from a long
stream of play data).

CALVIN
B

Same as CALVIN A,
but for three different
environments.

7.5 64 15K (instructions
are repeated to cre-
ate 600K training
episodes)

No. Same as CALVIN A,
but for three different envi-
ronments, for a total of 600K
training trajectories.

Kitchen
A

Teleoperators are in-
structed to perform 4
out of 7 possible tasks
for each episode.

1.5 200 566 (split to cre-
ate 2.2K training
episodes)

Yes. We split each episode
into the four training trajec-
tories and label each of them
with language.

Kitchen
B

Same as Kitchen A. 1.5 200 566 (split to cre-
ate 1.6K training
episodes)

Yes. We split each episode
into three training trajecto-
ries (one for each pair of con-
secutive tasks) and label each
of them with language.

Ravens Data is generated by
rolling out an expert
policy.

3 Up to 20 1000 Depends on the task. If it
is sequential then the instruc-
tion changes throughout the
episode and if it is single-
step then there is one instruc-
tion for the episode.

16

4 8 16 32
Action Horizon

0

10

20

30

40

50

60

Su
cc

es
s R

ate

PlayFusion

512 1024 2048 4096
Codebook Size

0

10

20

30

40

50

60

Su
cc

es
s

PlayFusion

Figure 6: Effect of model design choices.

B.5 Model Design Choices

Figure 6 studies the impact of action horizon and codebook size in CALVIN A. PlayFusion is mostly
robust to the action horizon Ta. We empirically found ta of around 20% of the overall horizon worked
the best. We find that PlayFusion is relatively robust to the discrete latent codebook sizes.

Note that asymptotically, increasing the codebook size would remove the discrete bottleneck, in
principle. To study whether this happens in practice, we further increased the codebook size and show
CALVIN A results in Table 8. As expected, performance drops when codebook size gets very large.

Table 9 shows the effect of number of diffusion timesteps in CALVIN A. We found that using 25
timesteps works slightly better but our method is generally robust to this hyperparameter.

Table 8: Effect of further increasing the codebook size.

Codebook Size Success Rate

2048 45.2 ± 1.2
8192 46.0 ± 1.2
16384 41.1± 0.1

Table 9: Effect of diffusion timesteps.

Timesteps Success Rate

50 45.2± 1.2
100 39.9± 1.3
25 47.4 ± 0.8

B.6 Generalization to Unseen Skills

We performed an experiment where we removed one skill from the CALVIN training data. Specif-
ically, we removed lift-red-block-slider from the training data and tested the model’s ability to
interpolate between (1) lifting other blocks from the slider (e.g., lift-blue-block-slider, lift-pink-block-
slider) and (2) lifting red blocks in other scenarios (e.g., lift-red-block-drawer, lift-red-block-table).
We also repeated this experiment for lift-blue-block-table. We find that the removal of the discrete
bottlenecks results in generally worse performance in this challenging setup (see Table 10). Al-
though confidence intervals do overlap a bit, we find that our method is on average the best for both
lift-red-block-slider and lift-blue-block-table.

17

Table 10: Performance on unseen skills.

Models lift-red-block-slider lift-blue-block-table

Ours 20.0± 8.1 16.6± 7.2
No U-Net discretization 10.0± 4.6 3.3± 2.7
No lang discretization 13.3± 2.7 13.3± 5.4

B.7 Ravens Experiments

Table 11 shows per-task success rates for Ravens.

Table 11: Per-task success rates for Ravens.

put-block-in-bowl stack-block-pyramid packing-box-pairs

C-BeT 17.2± 1.1 15.0± 2.3 8.1± 1.5
Play-LMP 0.0± 0.0 0.0± 0.0 0.8± 0.2
GCBC 0.0± 0.0 3.3± 2.7 1.7± 0.7

Ours 63.6 ± 2.5 20.0 ± 0.0 24.0 ± 1.8

B.8 Implementation Details

Table 12 shows the main hyperparameters of our model in our simulation and real world experiments.
We build off of the implementation of MCIL from CALVIN [74]. For Franka Kitchen and Ravens
dataset and environment processing, we use implementations from [75] and [76], respectively. For
implementations of the baselines, we modify [77] for C-BeT and [74] for Play-LMP and GCBC.
Where possible, we use the same hyperparameters for PlayFusion and the baselines.

Table 12: Hyperparameters of PlayFusion in our simulation and real-world experiments.

Hyperparameter CALVIN Franka Kitchen Ravens Real World

Batch size 32 32 128 12
Codebook size 2048 2048 2048 2048
U-Net discretiz. wgt 0.5 0.5 0.5 0.5
Lang. discretiz. wgt 0.5 0.5 0.5 0.5
Action horizon Ta 16 64 2 32
Context length To 2 1 1 1
Language features 384 384 384 384
Learning rate 1e-4 2.5e-4 2.5e-4 2.5e-4
Diffusion timsteps 50 50 50 50
Beta scheduler squaredcos cap v2 squaredcos cap v2 squaredcos cap v2 squaredcos cap v2
Timestep embed dim 256 256 128 256

18

	1 Introduction
	2 Related Work
	3 Background
	4 PlayFusion: Discrete Diffusion for Language-Annotated Play
	4.1 Language Conditioned Play Data
	4.2 Multi-modal Behavior Generation via Diffusion
	4.3 Discrete Diffusion for Control

	5 Experiments
	5.1 Results in Simulation and Real World
	5.2 Analysis of Discrete Representations
	5.3 Ablations of Design Choices

	6 Limitations and Discussion
	A Website
	B Experimental Setup
	B.1 Real World Setup
	B.2 Additional Analysis on Discretization Bottleneck
	B.3 Data Scaling Curves
	B.4 Dataset Details
	B.5 Model Design Choices
	B.6 Generalization to Unseen Skills
	B.7 Ravens Experiments
	B.8 Implementation Details

