
Imitating Task and Motion Planning with
Visuomotor Transformers

Murtaza Dalal1, Ajay Mandlekar2*, Caelan Garrett2*,
Ankur Handa2, Ruslan Salakhutdinov1, Dieter Fox2

1Carnegie Mellon University, 2NVIDIA

Abstract: Imitation learning is a powerful tool for training robot manipulation
policies, allowing them to learn from expert demonstrations without manual pro-
gramming or trial-and-error. However, common methods of data collection, such as
human supervision, scale poorly, as they are time-consuming and labor-intensive. In
contrast, Task and Motion Planning (TAMP) can autonomously generate large-scale
datasets of diverse demonstrations. In this work, we show that the combination
of large-scale datasets generated by TAMP supervisors and flexible Transformer
models to fit them is a powerful paradigm for robot manipulation. We present a
novel imitation learning system called OPTIMUS that trains large-scale visuomotor
Transformer policies by imitating a TAMP agent. We conduct a thorough study of
the design decisions required to imitate TAMP and demonstrate that OPTIMUS
can solve a wide variety of challenging vision-based manipulation tasks with over
70 different objects, ranging from long-horizon pick-and-place tasks, to shelf and
articulated object manipulation, achieving 70 to 80% success rates. Video results
and code at https://mihdalal.github.io/optimus/

Keywords: Imitation Learning, Task and Motion Planning, Transformers

1 Introduction
Large-scale data-driven learning, powered by the Transformer architecture [1], has transformed the
fields of natural language processing (NLP) and computer vision (CV). Large models at the scale
of billions of parameters, trained on massive corpi [2, 3, 4] exhibit powerful capabilities such as
writing coherently [2, 5], answering questions [6], and image classification [7, 8] and generation [9].
Although there is recent work applying large Transformers to robot learning [10, 11, 12], the
recipe of large-scale data-driven learning and Transformers has not yet achieved the same level of
widespread success in robotic manipulation. One significant bottleneck is a lack of useful data – data
collection is especially challenging because it requires the robot to interact in real-time with the
world. Furthermore, not all data is useful: the collected interactions should be relevant for solving
manipulation tasks of interest. Finally, for learned policies to be broadly applicable, they require
access to a diverse set of task instances, which necessitates a scalable data collection pipeline.

Prior work has used human teleoperation [13, 14, 15, 16, 17, 18, 19] to collect large robot manipu-
lation datasets, enabling training large scale models [20, 10]. However, this can require significant
human time and labor – RT-1 [10] required 1.5 years of data collection. Other works have used
reinforcement learning (RL) – this has the potential to scale more efficiently via autonomous data
collection, but it is prohibitively expensive to run in terms of robot time due to its sample ineffi-
ciency [21, 22, 23, 24], and requires significant computation time and human reward engineering
[25, 26]. In this work, we consider an alternative form of supervision, Task and Motion Planning
(TAMP) [27], which addresses some key limitations of prior data-collection techniques. TAMP plans
a discrete sequence of objects to interact with and how to manipulate them, and continuous motions

Corresponding Author: mdalal@andrew.cmu.edu. Work done during internship at NVIDIA.
∗Denotes equal contribution

7th Conference on Robot Learning (CoRL 2023), Atlanta, USA.

https://mihdalal.github.io/optimus/

Figure 1: Long-horizon task visualization. We visualize the initial state and each intermediate pick state for
the pick-and-place task. Note there is significant variation in geometry across each object, requiring the agent to
perform a diverse series of grasps to complete the task.

that safely and correctly facilitate these interactions. TAMP supervision is beneficial because it:
1) collects data autonomously and 2) efficiently generates demonstrations by leveraging privileged
information. TAMP can generate supervision on a wide distribution of task instances, producing task
relevant, diverse, large-scale datasets for robot-learning.

However, TAMP on its own requires accurate estimation of the scene geometry and its state, is
not reactive, and can spend significant time on planning. Instead, we propose to imitate TAMP
across a wide range of tasks using closed-loop, visuomotor Transformer policies. As a result, we
obtain fast-to-execute, reactive agents that can solve long horizon manipulation tasks without state
estimation. Furthermore, by training on large, diverse datasets of successful trajectories, we show in
our experimental evaluation that large Transformer policies have the capability of improving beyond
TAMP performance. Finally, we note that while McDonald et al. [28] have also learned closed-loop
policies from TAMP supervision, we perform an extensive study of the challenges in imitating
TAMP, evaluate models across a wide range of tasks, and demonstrate novel capabilities including
high-frequency end-to-end visuomotor control, task plan adaptation and scene generalization.

However, there existf challenges in imitating TAMP include learning from decisions made based on
privileged information and multimodal demonstrations [29, 15]. To address these challenges, we
propose Offline Pretrained TAMP Imitation System, or OPTIMUS, a system for training visuomotor
Transformer policies via imitation learning. Our contributions are:
• a novel framework for training visuomotor Transformer policies for high-frequency (30-50Hz)
low-level control by taking advantage of TAMP supervision
• an empirically validated data-generation pipeline and study of the insights required to imitate TAMP
• strong results demonstrating that our trained policies can solve over 300 long-horizon manipulation
tasks involving up to 8 stages and 72 different objects, achieving success rates of over 70%

2 Preliminaries

Related Work: OPTIMUS builds on a rich history of work in imitation learning and TAMP
for robotic manipulation. In this work, we focus on the setting of offline learning via behavior
cloning [30], in which a plethora of work has leveraged human demonstrations to learn effective
policies [29, 31, 32, 33, 34, 35, 36, 37, 10, 20, 38, 39]. Our work instead relies on a TAMP supervisor,
which can generate large, diverse datasets without human supervision. Furthermore, we build on
recent work using Transformers for imitation [12, 40, 41, 10, 42, 43] by designing a fast to execute,
visuomotor architecture operating over low-level control inputs. Finally, our system uses Task and
Motion Planning [27, 44] to generate imitation data, a paradigm that has been recently explored in
approaches that imitate planning [45, 46, 47] as well as TAMP directly [28]. In contrast to such
prior work, our system adapts the TAMP data-generation process for improved imitation learning
and uses a Transformer architecture that does not require any scene or task specific knowledge. See
Appendix G for full related work.

Background: We address Partially Observable Markov Decision Processes (POMDP)
⟨S,A, T ,R, p0,Ω,O, γ⟩, where S is the set of environment states, A is the set of actions, T (s′ | s, a)
is the transition probability distribution, R(s, a) is the reward function, p0 defines the distribution of
the initial state s0 ∼ p0, Ω is the set of observations, O(o | s) is the observation distribution, and γ is
the discount factor. We consider sparse reward POMDPs where R(s, a) ≡ −1s/∈S∗ is zero at terminal,
goal states S∗ ⊆ S and elsewhere negative one. Solutions are policies πθ(ot, ht) that operate on

2

3. Large-Scale
Behavior Cloning

4. Visuomotor
Policy Execution

1. Procedural Environment
Generation and TAMP Solution

2. Data Curation and
Filtering

Figure 2: OPTIMUS system. Column 1: We generate a variety of tasks with differing initial configurations
(left) and goals (right). Column 2: We transform TAMP joint space demonstrations to task space (top), go from
privileged scene knowledge in TAMP to visual observations (middle) and prune TAMP demonstrations based on
workspace constraints. Columns 3 and 4: We perform large-scale behavior cloning using a Transformer-based
architecture and execute the visuomotor policies.

the history ht = (o1, a1, ..., ot−1, at−1) of observations o ∈ Ω and actions a ∈ A, outputting the
next action at = πθ(ot, ht). The objective is to find a policy πθ(ot, ht) that maximizes the expected
policy return E[

∑∞
t=1 R(st, at)]. In this context, for behavior cloning, πθ(ot, ht) is trained to regress

at from (ot, ht) from a dataset D consisting of trajectories τni = (oi1, a
i
1, ..., o

i
Ti
, aiTi

) produced by
the expert, in which i is the i-th trajectory in the dataset, Ti is its length and n is the n-th MDP.

Task and Motion Planning: TAMP algorithms address deterministic and observable, but hybrid,
control problems [27]. In order to apply them to the POMDP for data collection, we grant them
observability to the system state s. In simulation, this can be done through providing them access to
the underlying simulator state. As a result, a TAMP policy πp(st) need only be a function of the state
st, which is a sufficient statistic for the history ⟨ht, ot⟩. To construct this policy, we approximate
the now observable POMDP with a deterministic model that can be effectively planned with [48].
Then, a TAMP algorithm uses this approximate model to plan a sequence of object interactions, the
constraints present in each interaction (e.g. grasps and placements), and finally safe joint motions
that realize them. An automated policy is built around the TAMP algorithm by tracking plans with a
high-frequency feedback controller that outputs actions a and periodically replanning [48].

Consider an example TAMP problem in which the goal is to place a cup on a shelf (i.e.
the Shelf task). The TAMP model has the following parameterized actions: move(q1, τ, q2)
moves the robot from configuration q1 to configuration q2 via trajectory τ , pick(o, g, p, q)
picks object o at placement pose p with grasp pose g when the robot is at configuration q,
and place(o, g, p, q, o2) places object o at placement pose p on object o2 with grasp pose g
when the robot is at configuration q. An example TAMP plan p for the Shelf task is: p =
[move(q0, τ1, q1), pick(cup, g,p0, q1), move(q1, τ2, q2), place(cup, g, p, q2, shelf)] The values in
bold, the initial configuration q0 and cup placement p0, are constants. The other values are free
parameters. A TAMP algorithm searches to find both the plan skeleton, the sequence of parameterized
actions, as well as values for grasp g, placement p, configurations q1, q2, and trajectories τ1, τ2 that
satisfy grasp, stability, kinematic, and collision constraints.

3 Designing a TAMP Imitation System
In this section, we motivate and describe our TAMP imitation system, OPTIMUS. We distill a
privileged TAMP policy into a neural network in order to obtain policies that do not require access
to state information, are fast to execute, and react instantaneously. To design OPTIMUS, we apply
a TAMP supervisor to a procedural problem generator to produce demonstrations across a diverse
range of tasks. However, trajectories produced by TAMP are not necessarily straightforward for an

3

agent to imitate, especially when the agent must learn without access to privileged state information.
Consequently, we carefully create a data curation pipeline and couple it with agent design decisions
that maximize its ability to learn from TAMP trajectories and solve challenging manipulation tasks.

We consider tasks with significant variation across objects, poses, and configurations. We design four
environments: 1) block stacking, 2) single and multi-step pick and place, 3) shelf pick and place, and
4) articulated object manipulation with microwaves. To obtain object diversity, we load objects from
the ShapeNet dataset [49]. With a TAMP supervisor and diverse task distribution in place, we now
describe the data collection pipeline and how we use it for policy learning.

3.1 Cost-Minimizing TAMP

We use the PDDLStream planning framework [50] to model the TAMP domain and the adaptive
algorithm, a sampling-based algorithm, to plan. Our formulation makes use of samplers for grasp
generation, placement sampling, inverse kinematics, and motion planning. The samplers can produce
a large, if not infinitely large, set of diverse values. We implement the grasp generator using the
ACRONYM grasp dataset [51] for ShapeNet objects. We use TRAC-IK [52] for inverse kinematics
(IK), and bidirectional Rapidly-Exploring Random Trees (BiRRT) [53] for motion planning.

When using TAMP solutions for imitation learning, it is essential to train on high-quality plan
traces. Behavior cloning techniques typically are adverse to multi-modal policy behavior, so a TAMP
demonstrator that takes several different actions at a particular state produces data is challenging to
imitate. One way to reduce TAMP policy variability is to optimize for low-cost plans. Although
a TAMP problem is not guaranteed to have a unique minimum cost solution, this strategy biases
solutions to a consistent family of low-cost plans.

We propose a two-stage approach to producing low-cost TAMP solutions. First, we use cost-sensitive
PDDLStream planning that minimizes the joint-space distance traveled. Specifically, we define
costs for move(q1, τ, q2) actions that limit ∞-norm (max) of the distance ||q1 − q2||∞ between
configurations q1, q2. The straight-line distance between two configurations is a lower bound on
the length of the shortest collision-free path between them. We optimize this lower bound before
performing motion planning which is computationally expensive due to continuous collision checking.
This PDDLStream algorithm is asymptotically optimal [54, 50], but it might take arbitrary long to
find a plan below a target cost bound. In practice, we run the planner in an anytime mode with
a computation budget of five seconds and return the best plan identified. In the second stage, we
perform motion planning using BiRRT; however, it can produce motions that are jagged and locally
sub-optimal. To smooth these trajectories, we post-process them using cubic spline short cutting with
velocity and acceleration limits [55], which converges to a locally time-optimal trajectory.

Finally, we aim to limit the variability in IK solutions. This is also advantageous for task-space
control, which lacks the control authority to reach all IK solutions. We seed TRAC-IK’s optimization-
based IK from a single configuration seed, the initial configuration, and optimize for the closest
solution to the initial configuration within a 10 millisecond timeout. This also biases TAMP toward
plans that stay near the initial configuration, typically accelerating the search for low-cost plans. By
intentionally not exploiting the redundancy to explore diverse IK solutions, we limit the completeness
of the TAMP algorithm for the benefit of downstream learning.

3.2 Generating Imitation Data from TAMP

Directly training on datasets collected by TAMP is a challenge for imitation learning, as the TAMP
system operates with access to information unavailable to the learner, controls the robot in joint
space, which can be difficult to learn in, and generates demonstrations that may not necessarily take
the shortest path in task-space. To address these issues, we highlight design decisions regarding the
observations and actions we produce from the TAMP data-generation process as well as how we
select which demonstrations to train on.

Imitating a Privileged Expert: TAMP operates over a privileged view of the world. It has access to
information that is difficult to obtain from a perception system, such as environment geometry and
object state. To address these issues, OPTIMUS operates over image observations by using multiple

4

camera views in each task (1-2 fixed cameras and 1 wrist-mounted camera). We find that multiple
views, in particular the wrist camera, help the agent to better perceive scene geometry [56] and align
its actions with the privileged expert. By training over multi-view RGB observations, we provide the
network with an observation space that is invariant to object symmetry, encodes 3D information, is
efficient to train over, and enables simplicity of the architecture.

Learning from TAMP Generated Actions: The TAMP system plans arm motions in configuration
space, in which it can fully control each robot degree of freedom. However, training vision-based
policies in joint-space is difficult due to the challenge of learning the camera projection from pixels
to poses and then the redundant inverse kinematics mapping from pixels to joint angles [57, 58, 29].
Additionally, for robots with more than six degrees of freedom, joint space is higher dimensional
than task space. Thus, in OPTIMUS, we instead use task-space control. We generate task space
trajectories by performing forward kinematics on joint-space way-points given by the TAMP planner,
then execute an operational-space (task-space) controller [59] to achieve them. Appendix C conducts
an experiment comparing the trained policy success rate with joint-space actions versus task-space
actions. Fig. C.1 shows that task-space actions enable higher success rates.

Filtering Demonstrations: Since there is variance in run-time due to random sampling and the
TAMP system is not guaranteed to converge in plan cost within the fixed time limit, some plans and
thus behaviors may be sub-optimal. This data can often hamper policy learning by operating outside
of the space of nominal solution trajectories. Training on this data from the TAMP system increases
the likelihood of the agent leaving areas of high state space coverage, which produces policies that
exhibit heightened compounding error. To ease the burden on the policy, we curate the data using
several trajectory pruning rules. During data collection, we employ joint-space path smoothing.
However, straight-line paths through joint-space are non-linear in task space, resulting in longer
motions in the learner’s action space. Therefore, we propose two data pruning rules (Fig. 2 column
2) to filter TAMP demonstrations. First, we remove outlier trajectories that have task-space length
greater than two standard deviations away from the mean trajectory length, which can be viewed
as randomly restarting TAMP episodes to reduce plan variance. Second, we impose a containment
constraint in the form of a bounding box in visible workspace and prune out trajectories in which the
end-effector pose exits the box. Appendix C and Fig. C.1 illustrate that the combination of these rules
does improve performance by comparing the trained policy success rate with and without filtering.

3.3 Training Imitation Policies at Scale PI

MLP Dec.

Transformer

t-h

at

MLP Enc.Resnet-18

It-h

1

MLP Proj.

Resnet-18

It-h

N P
t-h

zt-h

. . . t

1

MLP Enc.Resnet-18

MLP Proj.

Resnet-18

I t

N

t

z t

. . .
Camera N

Proprioception

Action

Figure 3: OPTIMUS policy architecture. The
model takes as input multiple images and proprio-
ception information per time-step, with a context
of h. We encode the input using Resnet-18 for
images and a MLP for the low-dimensional obser-
vations. We concatenate the embeddings, project
them into the Transformer embedding dimension
and pass them to the Transformer, which predicts
an embedding that is decoded into an action.

We now describe the imitation pipeline in OPTIMUS.
Given large, diverse datasets from TAMP, we perform
offline behavior cloning to distill the TAMP expert
into a visuomotor policy.

OPTIMUS Architecture: Our policy must operate
over a history of multiple camera views and propri-
oception, output low-level task space actions, and
execute in real time. To that end, we design our pol-
icy π, visualized in Fig. 3, as a Transformer operating
over a history of observations h, in which each token
corresponds to a single observation time-step. As a
result, the Transformer can efficiently attend to all
observations as the Transformer context length is set
to h. To produce a single input token for a time-step
t, we first embed each input, images from cameras
1, ..., N (It1 through ItN) as well as proprioception pt,
into fixed dimensional vector spaces. For propriocep-
tion, we pass in the end-effector pose (xyz position and quaternion orientation) and gripper joint
position (dual finger positions), encoded by an MLP. For embedding images, we use the vision
backbone from Mandlekar et al. [29]: ResNet-18 [60] with a spatial softmax [61] output activation.
We then fuse the inputs for a single time-step to produce zt, a vector matching the Transformer

5

(a) StackFive (b) PickPlaceFour (c) Shelf (d) Microwave
Figure 4: Environment Visualizations. We evaluate OPTIMUS on long-horizon block stacking (a), multi-step
pick-place (b), shelf object manipulation (c), and articulated object manipulation (d).

embedding dimension, by concatenating and performing an MLP projection. The Transformer attends
to each token zt and outputs a distribution over action at corresponding to the current time-step.

The data distribution outputted by the TAMP supervisor is heavily multi-modal, from the diversity
in planned paths to the variety of grasps and placements per object. As a result, we use a Gaussian
Model Mixture (GMM) output distribution with K = 5 components for the policy from Mandlekar
et al. [29] and train the model using log likelihood. As in [29], we find that this loss function provides
a significant improvement over the standard MSE loss, which produces a unimodal policy.

4 Experimental Evaluation
In our experimental evaluation of OPTIMUS, we aim to answer the following questions: 1) Can
imitating TAMP enable end-to-end policies to acquire long-horizon behaviors? 2) Does TAMP allow
networks to solve complex manipulation tasks involving 3D obstacles and articulated objects? 3)
Does diverse environment generation along with TAMP data-collection enable large-scale behavior
learning? We begin by describing the datasets, tasks, and protocols that we use to evaluate OPTIMUS.
We then proceed to experimentally evaluate OPTIMUS.

Datasets and Tasks: We evaluate OPTIMUS across block stacking, pick and place, shelf manipula-
tion and articulated object manipulation. (Fig. 4). Our block stacking tasks have two (Stack), three
(StackThree), four (StackFour) or five (StackFive) blocks, with 1K, 2K, 5K, and 7K demonstrations
respectively. For pick and place, we have: PickPlace-1, pick-place with a single object using 1K
demos, and pick-place with two (PickPlaceTwo), three (PickPlaceThree), and four objects (Pick-
PlaceFour) into separate bins. Finally we have two tasks in which the goal is for the agent to move
the object to the target location while maneuvering in tight spaces (Shelf-1) or first pulling open
a microwave door (Microwave-1), for which we generate 1K demonstrations each. For PickPlace,
Shelf, and Microwave, we additionally evaluate two multi-task variants, in which we sample a set of
19 and 72 objects from ShapeNet. We collect a 1K demonstrations per object, with 19K and 72K
total trajectories, resulting in the following datasets: Pickplace-19, PickPlace-72, Shelf-19, Shelf-72,
Microwave-19, Microwave-72. See Appendix Sec. D for complete task descriptions and details.

Evaluation Protocol: We evaluate BC-MLP [62] and BC-RNN [29], which consist of a Resnet-18
backbone followed by an MLP and an LSTM [63]. Additionally, we compare against Behavior
Transformer (BeT) [43], which discretizes the dataset into clusters using K-Means and uses a
Transformer model to predict a cluster center and an offset, in order to handle multi-modal data. Each
method uses on the order of magnitude of 30M parameters, uses the same architecture as OPTIMUS
for the vision-backbone, and leverages the data-pipeline we propose in Sec. 3. For each task, we
evaluate on a dataset of unseen initial environment states. For single-task results, we evaluate using
50 problems and average across 3 random seeds per run. For multi-task results, we evaluate using
10 problems per task, with a single seed per run. We use task success rate as our evaluation metric,
which is 1 if all objects are in a goal arrangement and 0 otherwise.

4.1 Learning Results
We first show that OPTIMUS can imitate the TAMP system to high fidelity on simple, shorter horizon
tasks. We then extend our evaluation to the long-horizon regime in which the task complexity grows
significantly with the number of objects. Next, we move beyond the table-top manipulation setting

6

Dataset BC-MLP BC-RNN BeT OPTIMUS

Stack 100 100 100 100
StackThree 98 88 76 100
StackFour 83 77 61 96
StackFive 57 57 45 70

Dataset BC-MLP BC-RNN BeT OPTIMUS

PickPlaceTwo 96 98 80 96
PickPlaceThree 62 81 46 91
PickPlaceFour 33 38 22 60

Figure 5: Long Horizon Manipulation Results. (left) Performance is shown in terms of task success rate. While
all methods are able to solve single-step block stacking, only OPTIMUS is able to solve longer-horizon variants.
(right) For long-horizon manipulation, while the baselines are competitive with OPTIMUS on PickPlaceTwo,
OPTIMUS demonstrates significant improvement in success rate as the number of objects increases.

and train policies to solve tasks involving a shelf and microwave. Finally, we demonstrate that
OPTIMUS can enable multi-task policies that can manipulate a wide range of objects. Please see
Appendix C for a detailed analysis and ablation of OPTIMUS.

OPTIMUS imitates TAMP to high fidelity on simple pick-and-place tasks. On Stack (Fig. 5), we
find that OPTIMUS and the baselines are all able to achieve 100% performance on the task. On the
other hand, on PickPlace-1, (Fig. 5), while the baselines achieve high success rates of up to 97%, only
our method is able to solve the task at 100% success rate. These results demonstrate that on simple
tasks, OPTIMUS can fit well to the output of the TAMP system, even though OPTIMUS does not
have access to any privileged information. We note that even with significant tuning, BeT struggles to
fit to TAMP data on most of our tasks. We hypothesize that this may be due to the difficulty of fitting
K-Means as the dataset size increases, especially as TAMP generated datasets contain on the order of
1-100K trajectories depending on the task. As a result, the cluster centers can be highly inaccurate,
increasing the burden on the transformer to fit appropriate offsets.

OPTIMUS enables visuomotor policies to solve manipulation tasks with up to 8 stages. We first
evaluate on long-horizon block stacking, a task that is difficult because the stack of blocks becomes
more unstable as its height grows. We train visuomotor policies across StackThree, StackFour, and
StackFive, and visualize the results in Fig. 5. OPTIMUS outperforms the baseline methods while
achieving near-perfect performance across each task. Multi-step pick-place is even more difficult
as the network must learn to fit a variety of different grasps for each object. We plot the results for
the multi-step pickplace tasks in Fig. 5. We find that while BC-RNN outperforms OPTIMUS on
PickPlaceTwo, OPTIMUS exhibits a large performance improvement on PickPlaceThree and Four.
These results demonstrate that with either primitive or general-purpose rigid objects, it is possible to
train policies to perform long-horizon behaviors consisting of up to 8 pick and place operations or
40 TAMP high-level actions, with high success rates of 70% and 60% respectively. An important
take-away from these results is that for longer-horizon tasks, the Transformer policy architecture we
develop in OPTIMUS greatly outperforms MLPs and RNNs.

Guided TAMP OPTIMUS

88 90

Table 1: Comparison against
Guided TAMP. Results are in
terms of task success rate.

We additionally compare against prior work on imitating TAMP [28]
on the Robosuite [58] PickPlace task, which involves picking and
placing four fixed objects: a milk carton, a soda can, a cereal box
and a piece of bread, into separate bins. In contrast to PickPlaceFour,
Robosuite PickPlace can be solved with top-down, axis-aligned
grasps due to the simplicity of the object geometry. However, the

initial configurations are more challenging as all the objects are placed together in the same bin.
We generate 25K demonstrations of the task using our system. As we show in Table 1, OPTIMUS
achieves favorable results to Guided TAMP (90% vs. 88%) without requiring access to privileged
state information, a fixed set of ground actions or online supervision.

OPTIMUS can also solve tasks requiring obstacle awareness and skills beyond pick-and-place.
On Shelf-1, OPTIMUS is able to grasp then place the object in the middle rung of the shelf at high
success rates of 91% shown in Table 2. On Microwave-1 OPTIMUS outperforms the baselines by
nearly 10%, achieving 86% success rate overall. This is likely because OPTIMUS is able to better fit
the data in the multi-step manipulation regime, as noted in the prior section. The results on the Shelf
and Microwave tasks demonstrate that OPTIMUS can learn to solve difficult manipulation tasks that
require obstacle awareness and the ability to manipulate articulated objects.

7

OPTIMUS can learn to adapt its behavior based on the scene configuration. As we describe
in the Appendix, OPTIMUS is able to learn to adapt its task plan to produce additional stacking
operations (StackAdapt) or clear the area in front of the microwave (MicrowaveAdapt) achieving
96% and 75% success. OPTIMUS is able to generalize to unseen receptacle sizes, achieving 80%
and 70% success rate on held out shelves and microwaves.

We next evaluate the ability of our TAMP generation pipeline to collect diverse datasets in order to
train large-scale policies. We add variety in the form of objects with differing geometries, requiring a
single network to learn a range of manipulation behaviors end-to-end.

Dataset BC-MLP BC-RNN BeT OPTIMUS

PickPlace-1 94 97 85 100
PickPlace-19 61 58 50 85
PickPlace-72 50 49 41 75

Shelf-1 91 88 70 91
Shelf-19 48 31 26 66
Shelf-72 30 36 13 48

Microwave-1 73 77 51 86
Microwave-19 24 41 31 61
Microwave-72 23 29 16 47

Table 2: Single and Multitask Results across Pick-
Place, Shelf, Microwave. Performance is shown in
terms of task success rate. While the baselines are com-
petitive with OPTIMUS on the single task variants of
each task, OPTIMUS greatly outperforms the baselines
as the number of objects increases across all tasks.

OPTIMUS achieves high success rates on
vision-based manipulation tasks with up to
72 objects. For each task: PickPlace, Shelf,
and Microwave, we evaluate on their 19 and
72 object variants (Table 2). On the 19 object
tasks, OPTIMUS achieves 85%, 66%, and 61%
in greatly outperforming the best baseline for
each task: 61%, 48%, and 41%. Similarly on the
72 object tasks, we find that OPTIMUS obtains
75%, 48% and 47% success rates, in compar-
ison to 50%, 36% and 29% for the best base-
line. From these results, we note two important
points: 1) Transformer-based architectures such
as OPTIMUS are highly effective for multi-task

imitation learning: they greatly outperform MLPs and RNNs. 2) While the single task variants of
these tasks are solved at high success rates, performance drops significantly in the multi-task case,
particularly for more challenging manipulation tasks such as Shelf and Microwave, indicating further
work remains to bridge that gap.

Finally, we highlight three advantages of OPTIMUS over the TAMP system: 1) success rate im-
provement over the TAMP supervisor, 2) faster run-time, 3) operation from image instead of state
input. We evaluate TAMP and OPTIMUS on all of the single task datasets and find that on average,
OPTIMUS almost doubles the performance of the TAMP supervisor (87% vs. 52%). Additionally,
we evaluate the run-time of OPTIMUS against TAMP by computing the average time per step for
both systems across 100 trials. Overall, OPTIMUS is 5-7.5x faster than TAMP (21/31ms vs. 150ms
per action). See Appendix Sec. B for analysis of scene adaptation and TAMP comparison results.

5 Limitations and Future Work

In this work, we propose an approach for distilling privileged TAMP experts into large-scale visuomo-
tor policies. We generate large, diverse datasets and train high-capacity Transformer models to solve
challenging, long-horizon manipulation tasks without task, state, or environment knowledge. Even so,
there are limitations to OPTIMUS and scope for future work. First, for OPTIMUS to be able to solve
a task, TAMP needs to be capable of solving it at training time, which could prevent OPTIMUS from
being applied to tasks that require considering dynamics or tasks involving contact-rich manipulation,
which can be challenging for traditional TAMP. However, TAMP can be applied to such tasks, e.g.
pouring, scooping, stirring, peg insertion, or coffee making, by leveraging integrated task planning
and skill learning approaches [64, 65, 66, 67], which OPTIMUS can leverage for supervision as well.
Second even with OPTIMUS, there is a significant drop in success rate with increasing task difficulty
and number of objects (Sec. 4.1), which suggests further work on multi-task learning is necessary
to bridge that gap. Finally, we describe two possible approaches to applying OPTIMUS to the real
world: 1) Collect TAMP data in a controlled setting at training time using a pose estimation system
(e.g. AR tags, SAM with calibrated depth [68], MegaPose [69]) and distill using OPTIMUS. At test
time, OPTIMUS would not require pose estimation, while providing significantly faster execution
and superior task performance. 2) Transfer imitation policies trained in simulation either zero-shot or
via fine-tuning to real data [70, 71, 72, 73]. We leave this extension of OPTIMUS to future work.

8

Acknowledgments
We thank Russell Mendonca, Sudeep Dasari, Theophile Gervet and Brandon Trabucco and Rishi
Veerapaneni for feedback on early drafts of this paper. This work was supported in part by ONR
N000141812861, ONR N000142312368 and DARPA/AFRL FA87502321015. Additionally, MD is
supported by the NSF Graduate Fellowship.

9

References

[1] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin. Attention is all you need. Advances in neural information processing systems,
30, 2017.

[2] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, et al. Language models are few-shot learners. Advances in neural
information processing systems, 33:1877–1901, 2020.

[3] C. Sun, A. Shrivastava, S. Singh, and A. Gupta. Revisiting unreasonable effectiveness of data in
deep learning era. In Proceedings of the IEEE international conference on computer vision,
pages 843–852, 2017.

[4] C. Schuhmann, R. Beaumont, R. Vencu, C. Gordon, R. Wightman, M. Cherti, T. Coombes,
A. Katta, C. Mullis, M. Wortsman, et al. Laion-5b: An open large-scale dataset for training next
generation image-text models. arXiv preprint arXiv:2210.08402, 2022.

[5] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham, H. W.
Chung, C. Sutton, S. Gehrmann, et al. Palm: Scaling language modeling with pathways. arXiv
preprint arXiv:2204.02311, 2022.

[6] R. Thoppilan, D. De Freitas, J. Hall, N. Shazeer, A. Kulshreshtha, H.-T. Cheng, A. Jin, T. Bos,
L. Baker, Y. Du, et al. Lamda: Language models for dialog applications. arXiv preprint
arXiv:2201.08239, 2022.

[7] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani,
M. Minderer, G. Heigold, S. Gelly, et al. An image is worth 16x16 words: Transformers for
image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

[8] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 10012–10022, 2021.

[9] C. Saharia, W. Chan, S. Saxena, L. Li, J. Whang, E. Denton, S. K. S. Ghasemipour, B. K. Ayan,
S. S. Mahdavi, R. G. Lopes, et al. Photorealistic text-to-image diffusion models with deep
language understanding. arXiv preprint arXiv:2205.11487, 2022.

[10] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn, K. Gopalakrishnan, K. Haus-
man, A. Herzog, J. Hsu, J. Ibarz, B. Ichter, A. Irpan, T. Jackson, S. Jesmonth, N. Joshi, R. Julian,
D. Kalashnikov, Y. Kuang, I. Leal, K.-H. Lee, S. Levine, Y. Lu, U. Malla, D. Manjunath,
I. Mordatch, O. Nachum, C. Parada, J. Peralta, E. Perez, K. Pertsch, J. Quiambao, K. Rao,
M. Ryoo, G. Salazar, P. Sanketi, K. Sayed, J. Singh, S. Sontakke, A. Stone, C. Tan, H. Tran,
V. Vanhoucke, S. Vega, Q. Vuong, F. Xia, T. Xiao, P. Xu, S. Xu, T. Yu, and B. Zitkovich. Rt-1:
Robotics transformer for real-world control at scale. In arXiv preprint arXiv:2204.01691, 2022.

[11] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David, C. Finn, C. Fu, K. Gopalakr-
ishnan, K. Hausman, A. Herzog, D. Ho, J. Hsu, J. Ibarz, B. Ichter, A. Irpan, E. Jang, R. J. Ruano,
K. Jeffrey, S. Jesmonth, N. Joshi, R. Julian, D. Kalashnikov, Y. Kuang, K.-H. Lee, S. Levine,
Y. Lu, L. Luu, C. Parada, P. Pastor, J. Quiambao, K. Rao, J. Rettinghouse, D. Reyes, P. Sermanet,
N. Sievers, C. Tan, A. Toshev, V. Vanhoucke, F. Xia, T. Xiao, P. Xu, S. Xu, M. Yan, and A. Zeng.
Do as i can and not as i say: Grounding language in robotic affordances. In arXiv preprint
arXiv:2204.01691, 2022.

[12] S. Reed, K. Zolna, E. Parisotto, S. G. Colmenarejo, A. Novikov, G. Barth-Maron, M. Gimenez,
Y. Sulsky, J. Kay, J. T. Springenberg, et al. A generalist agent. arXiv preprint arXiv:2205.06175,
2022.

10

[13] P. F. Hokayem and M. W. Spong. Bilateral teleoperation: An historical survey. Automatica, 42
(12):2035–2057, 2006.

[14] B. D. Argall, S. Chernova, M. Veloso, and B. Browning. A survey of robot learning from
demonstration. Robotics and autonomous systems, 57(5):469–483, 2009.

[15] A. Mandlekar, Y. Zhu, A. Garg, J. Booher, M. Spero, A. Tung, J. Gao, J. Emmons, A. Gupta,
E. Orbay, et al. Roboturk: A crowdsourcing platform for robotic skill learning through imitation.
In Conference on Robot Learning, pages 879–893. PMLR, 2018.

[16] C. Lynch, M. Khansari, T. Xiao, V. Kumar, J. Tompson, S. Levine, and P. Sermanet. Learning
latent plans from play. In Conference on robot learning, pages 1113–1132. PMLR, 2020.

[17] C. Lynch and P. Sermanet. Language conditioned imitation learning over unstructured data.
arXiv preprint arXiv:2005.07648, 2020.

[18] Z. J. Cui, Y. Wang, N. Muhammad, L. Pinto, et al. From play to policy: Conditional behavior
generation from uncurated robot data. arXiv preprint arXiv:2210.10047, 2022.

[19] E. Rosete-Beas, O. Mees, G. Kalweit, J. Boedecker, and W. Burgard. Latent plans for task-
agnostic offline reinforcement learning. arXiv preprint arXiv:2209.08959, 2022.

[20] E. Jang, A. Irpan, M. Khansari, D. Kappler, F. Ebert, C. Lynch, S. Levine, and C. Finn. Bc-z:
Zero-shot task generalization with robotic imitation learning. In Conference on Robot Learning,
pages 991–1002. PMLR, 2022.

[21] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang, D. Quillen, E. Holly, M. Kalakr-
ishnan, V. Vanhoucke, et al. Scalable deep reinforcement learning for vision-based robotic
manipulation. In Conference on Robot Learning, pages 651–673. PMLR, 2018.

[22] D. Kalashnikov, J. Varley, Y. Chebotar, B. Swanson, R. Jonschkowski, C. Finn, S. Levine, and
K. Hausman. Mt-opt: Continuous multi-task robotic reinforcement learning at scale. arXiv
preprint arXiv:2104.08212, 2021.

[23] H. Zhu, J. Yu, A. Gupta, D. Shah, K. Hartikainen, A. Singh, V. Kumar, and S. Levine. The
ingredients of real-world robotic reinforcement learning. arXiv preprint arXiv:2004.12570,
2020.

[24] V. H. Pong, M. Dalal, S. Lin, A. Nair, S. Bahl, and S. Levine. Skew-fit: State-covering
self-supervised reinforcement learning. arXiv preprint arXiv:1903.03698, 2019.

[25] I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew, A. Petron, A. Paino,
M. Plappert, G. Powell, R. Ribas, et al. Solving rubik’s cube with a robot hand. arXiv preprint
arXiv:1910.07113, 2019.

[26] A. Handa, A. Allshire, V. Makoviychuk, A. Petrenko, R. Singh, J. Liu, D. Makoviichuk,
K. Van Wyk, A. Zhurkevich, B. Sundaralingam, et al. Dextreme: Transfer of agile in-hand
manipulation from simulation to reality. arXiv preprint arXiv:2210.13702, 2022.

[27] C. R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Silver, L. P. Kaelbling, and T. Lozano-P´erez.
Integrated Task and Motion Planning. Annual review of control, robotics, and autonomous
systems, 4, 2021.

[28] M. J. McDonald and D. Hadfield-Menell. Guided imitation of task and motion planning. In
Conference on Robot Learning, pages 630–640. PMLR, 2022.

[29] A. Mandlekar, D. Xu, J. Wong, S. Nasiriany, C. Wang, R. Kulkarni, L. Fei-Fei, S. Savarese,
Y. Zhu, and R. Martı́n-Martı́n. What matters in learning from offline human demonstrations for
robot manipulation. In arXiv preprint arXiv:2108.03298, 2021.

11

[30] D. A. Pomerleau. Alvinn: An autonomous land vehicle in a neural network. In Advances in
neural information processing systems, pages 305–313, 1989.

[31] A. J. Ijspeert, J. Nakanishi, and S. Schaal. Movement imitation with nonlinear dynamical
systems in humanoid robots. Proceedings 2002 IEEE International Conference on Robotics
and Automation, 2:1398–1403 vol.2, 2002.

[32] C. Finn, T. Yu, T. Zhang, P. Abbeel, and S. Levine. One-shot visual imitation learning via
meta-learning. In Conference in Robot Learning, volume abs/1709.04905, 2017.

[33] A. Billard, S. Calinon, R. Dillmann, and S. Schaal. Robot programming by demonstration. In
Springer Handbook of Robotics, 2008.

[34] S. Calinon, F. D’halluin, E. L. Sauser, D. G. Caldwell, and A. Billard. Learning and reproduction
of gestures by imitation. IEEE Robotics and Automation Magazine, 17:44–54, 2010.

[35] T. Zhang, Z. McCarthy, O. Jow, D. Lee, K. Goldberg, and P. Abbeel. Deep imitation learning for
complex manipulation tasks from virtual reality teleoperation. arXiv preprint arXiv:1710.04615,
2017.

[36] A. Mandlekar, D. Xu, R. Martı́n-Martı́n, S. Savarese, and L. Fei-Fei. Learning to generalize
across long-horizon tasks from human demonstrations. arXiv preprint arXiv:2003.06085, 2020.

[37] C. Wang, R. Wang, D. Xu, A. Mandlekar, L. Fei-Fei, and S. Savarese. Generalization through
hand-eye coordination: An action space for learning spatially-invariant visuomotor control.
arXiv preprint arXiv:2103.00375, 2021.

[38] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David, C. Finn, K. Gopalakrishnan,
K. Hausman, A. Herzog, et al. Do as i can, not as i say: Grounding language in robotic
affordances. arXiv preprint arXiv:2204.01691, 2022.

[39] F. Ebert, Y. Yang, K. Schmeckpeper, B. Bucher, G. Georgakis, K. Daniilidis, C. Finn, and
S. Levine. Bridge data: Boosting generalization of robotic skills with cross-domain datasets.
arXiv preprint arXiv:2109.13396, 2021.

[40] M. Shridhar, L. Manuelli, and D. Fox. Perceiver-actor: A multi-task transformer for robotic
manipulation. In Proceedings of the 6th Conference on Robot Learning (CoRL), 2022.

[41] Y. Jiang, A. Gupta, Z. Zhang, G. Wang, Y. Dou, Y. Chen, L. Fei-Fei, A. Anandkumar, Y. Zhu,
and L. Fan. Vima: General robot manipulation with multimodal prompts. arXiv preprint arXiv:
Arxiv-2210.03094, 2022.

[42] S. Dasari and A. Gupta. Transformers for one-shot visual imitation. In Conference on Robot
Learning, pages 2071–2084. PMLR, 2021.

[43] N. M. M. Shafiullah, Z. J. Cui, A. Altanzaya, and L. Pinto. Behavior transformers: Cloning k
modes with one stone. arXiv preprint arXiv:2206.11251, 2022.

[44] M. A. Toussaint, K. R. Allen, K. A. Smith, and J. B. Tenenbaum. Differentiable physics and
stable modes for tool-use and manipulation planning. 2018.

[45] M. Bhardwaj, S. Choudhury, and S. Scherer. Learning heuristic search via imitation. In
Conference on Robot Learning, pages 271–280. PMLR, 2017.

[46] A. H. Qureshi, A. Simeonov, M. J. Bency, and M. C. Yip. Motion planning networks. In 2019
International Conference on Robotics and Automation (ICRA), pages 2118–2124. IEEE, 2019.

[47] A. Fishman, A. Murali, C. Eppner, B. Peele, B. Boots, and D. Fox. Motion policy networks.
arXiv preprint arXiv:2210.12209, 2022.

12

[48] C. R. Garrett, C. Paxton, T. Lozano-Pérez, L. P. Kaelbling, and D. Fox. Online replanning in
belief space for partially observable task and motion problems. In 2020 IEEE International
Conference on Robotics and Automation (ICRA), pages 5678–5684. IEEE, 2020.

[49] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, S. Savarese, M. Savva,
S. Song, H. Su, et al. Shapenet: An information-rich 3d model repository. arXiv preprint
arXiv:1512.03012, 2015.

[50] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling. Pddlstream: Integrating symbolic planners
and blackbox samplers via optimistic adaptive planning. In Proceedings of the International
Conference on Automated Planning and Scheduling, volume 30, pages 440–448, 2020.

[51] C. Eppner, A. Mousavian, and D. Fox. Acronym: A large-scale grasp dataset based on
simulation. In 2021 IEEE International Conference on Robotics and Automation (ICRA), pages
6222–6227. IEEE, 2021.

[52] P. Beeson and B. Ames. {TRAC-IK}: An open-source library for improved solving of generic
inverse kinematics. 11 2015.

[53] J. J. Kuffner Jr. and S. M. LaValle. RRT-Connect: An efficient approach to single-query path
planning. In IEEE International Conference on Robotics and Automation (ICRA), 2000.

[54] W. Vega-Brown and N. Roy. Asymptotically optimal planning under piecewise-analytic con-
straints. 2016. URL http://www.wafr.org/papers/WAFR_2016_paper_11.pdf.

[55] K. Hauser and V. Ng-Thow-Hing. Fast smoothing of manipulator trajectories using optimal
bounded-acceleration shortcuts. pages 2493–2498, 2010.

[56] K. Hsu, M. J. Kim, R. Rafailov, J. Wu, and C. Finn. Vision-based manipulators need to also see
from their hands. arXiv preprint arXiv:2203.12677, 2022.

[57] R. Martı́n-Martı́n, M. A. Lee, R. Gardner, S. Savarese, J. Bohg, and A. Garg. Variable impedance
control in end-effector space: An action space for reinforcement learning in contact-rich tasks.
In 2019 IEEE/RSJ international conference on intelligent robots and systems (IROS), pages
1010–1017. IEEE, 2019.

[58] Y. Zhu, J. Wong, A. Mandlekar, and R. Martı́n-Martı́n. robosuite: A modular simulation
framework and benchmark for robot learning. arXiv preprint arXiv:2009.12293, 2020.

[59] O. Khatib. A unified approach for motion and force control of robot manipulators: The
operational space formulation. IEEE Journal on Robotics and Automation, 3(1):43–53, 1987.

[60] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–
778, 2016.

[61] S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end training of deep visuomotor policies.
The Journal of Machine Learning Research, 17(1):1334–1373, 2016.

[62] T. Zhang, Z. McCarthy, O. Jow, D. Lee, X. Chen, K. Goldberg, and P. Abbeel. Deep imitation
learning for complex manipulation tasks from virtual reality teleoperation. In 2018 IEEE
International Conference on Robotics and Automation (ICRA), pages 5628–5635. IEEE, 2018.

[63] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

[64] Z. Wang, C. R. Garrett, L. P. Kaelbling, and T. Lozano-Pérez. Learning compositional models
of robot skills for task and motion planning. The International Journal of Robotics Research,
40(6-7):866–894, 2021.

13

http://www.wafr.org/papers/WAFR_2016_paper_11.pdf

[65] A. Curtis, X. Fang, L. P. Kaelbling, T. Lozano-Pérez, and C. R. Garrett. Long-horizon manipu-
lation of unknown objects via task and motion planning with estimated affordances. In 2022
International Conference on Robotics and Automation (ICRA), pages 1940–1946. IEEE, 2022.

[66] S. Cheng and D. Xu. Guided skill learning and abstraction for long-horizon manipulation. arXiv
preprint arXiv:2210.12631, 2022.

[67] A. Mandlekar, C. Garrett, D. Xu, and D. Fox. Human-in-the-loop task and motion planning for
imitation learning. Workshop on effective Representations, Abstractions, and Priors for Robot
Learning (RAP4Robots), 2023.

[68] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead, A. C.
Berg, W.-Y. Lo, et al. Segment anything. arXiv preprint arXiv:2304.02643, 2023.

[69] Y. Labbé, L. Manuelli, A. Mousavian, S. Tyree, S. Birchfield, J. Tremblay, J. Carpentier,
M. Aubry, D. Fox, and J. Sivic. Megapose: 6d pose estimation of novel objects via render &
compare. arXiv preprint arXiv:2212.06870, 2022.

[70] A. Agarwal, A. Kumar, J. Malik, and D. Pathak. Legged locomotion in challenging terrains
using egocentric vision. 2022.

[71] P.-L. Guhur, S. Chen, R. Garcia, M. Tapaswi, I. Laptev, and C. Schmid. Instruction-driven
history-aware policies for robotic manipulations. 2022.

[72] M. Khansari, D. Ho, Y. Du, A. Fuentes, M. Bennice, N. Sievers, S. Kirmani, Y. Bai, and
E. Jang. Practical imitation learning in the real world via task consistency loss. arXiv preprint
arXiv:2202.01862, 2022.

[73] Y. Zhu, Z. Wang, J. Merel, A. Rusu, T. Erez, S. Cabi, S. Tunyasuvunakool, J. Kramár, R. Hadsell,
N. de Freitas, et al. Reinforcement and imitation learning for diverse visuomotor skills. arXiv
preprint arXiv:1802.09564, 2018.

[74] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. In International conference on machine
learning, pages 1861–1870. PMLR, 2018.

[75] D. Yarats, R. Fergus, A. Lazaric, and L. Pinto. Mastering visual continuous control: Improved
data-augmented reinforcement learning. arXiv preprint arXiv:2107.09645, 2021.

[76] N. Hansen, Y. Lin, H. Su, X. Wang, V. Kumar, and A. Rajeswaran. Modem: Accelerating visual
model-based reinforcement learning with demonstrations. arXiv preprint arXiv:2212.05698,
2022.

[77] H. Mao, R. Zhao, H. Chen, J. Hao, Y. Chen, D. Li, J. Zhang, and Z. Xiao. Transformer in
transformer as backbone for deep reinforcement learning. arXiv preprint arXiv:2212.14538,
2022.

[78] T. Dao, D. Y. Fu, S. Ermon, A. Rudra, and C. Ré. Flashattention: Fast and memory-efficient
exact attention with io-awareness. arXiv preprint arXiv:2205.14135, 2022.

[79] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin, D. Hoeller, N. Rudin,
A. Allshire, A. Handa, et al. Isaac gym: High performance gpu-based physics simulation for
robot learning. arXiv preprint arXiv:2108.10470, 2021.

[80] M. Macklin, M. Müller, N. Chentanez, and T.-Y. Kim. Unified particle physics for real-time
applications. ACM Transactions on Graphics (TOG), 33(4):1–12, 2014.

[81] M. Laskin, K. Lee, A. Stooke, L. Pinto, P. Abbeel, and A. Srinivas. Reinforcement learning
with augmented data. Advances in neural information processing systems, 33:19884–19895,
2020.

14

[82] I. Kostrikov, D. Yarats, and R. Fergus. Image augmentation is all you need: Regularizing deep
reinforcement learning from pixels. arXiv preprint arXiv:2004.13649, 2020.

[83] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli. Deep unsupervised learning
using nonequilibrium thermodynamics. In International Conference on Machine Learning,
pages 2256–2265. PMLR, 2015.

[84] C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and S. Song. Diffusion policy:
Visuomotor policy learning via action diffusion. arXiv preprint arXiv:2303.04137, 2023.

[85] P. Kormushev, S. Calinon, and D. G. Caldwell. Imitation learning of positional and force skills
demonstrated via kinesthetic teaching and haptic input. Advanced Robotics, 25(5):581–603,
2011.

[86] M. Hersch, F. Guenter, S. Calinon, and A. Billard. Dynamical system modulation for robot
learning via kinesthetic demonstrations. IEEE Transactions on Robotics, 24(6):1463–1467,
2008.

[87] S. Niekum, S. Chitta, A. G. Barto, B. Marthi, and S. Osentoski. Incremental semantically
grounded learning from demonstration. In Robotics: Science and Systems, volume 9, pages
10–15607. Berlin, Germany, 2013.

[88] B. Akgun, M. Cakmak, J. W. Yoo, and A. L. Thomaz. Trajectories and keyframes for kines-
thetic teaching: A human-robot interaction perspective. In Proceedings of the seventh annual
ACM/IEEE international conference on Human-Robot Interaction, pages 391–398, 2012.

[89] A. Mandlekar, J. Booher, M. Spero, A. Tung, A. Gupta, Y. Zhu, A. Garg, S. Savarese, and
L. Fei-Fei. Scaling robot supervision to hundreds of hours with roboturk: Robotic manipulation
dataset through human reasoning and dexterity. arXiv preprint arXiv:1911.04052, 2019.

[90] A. Tung, J. Wong, A. Mandlekar, R. Martı́n-Martı́n, Y. Zhu, L. Fei-Fei, and S. Savarese. Learning
multi-arm manipulation through collaborative teleoperation. arXiv preprint arXiv:2012.06738,
2020.

[91] J. Wong, A. Tung, A. Kurenkov, A. Mandlekar, L. Fei-Fei, S. Savarese, and R. Martı́n-Martı́n.
Error-aware imitation learning from teleoperation data for mobile manipulation. In Conference
on Robot Learning, pages 1367–1378. PMLR, 2022.

[92] M. Kelly, C. Sidrane, K. Driggs-Campbell, and M. J. Kochenderfer. Hg-dagger: Interactive
imitation learning with human experts. In 2019 International Conference on Robotics and
Automation (ICRA), pages 8077–8083. IEEE, 2019.

[93] A. Mandlekar, D. Xu, R. Martı́n-Martı́n, Y. Zhu, L. Fei-Fei, and S. Savarese. Human-in-the-loop
imitation learning using remote teleoperation. arXiv preprint arXiv:2012.06733, 2020.

[94] J. Zhang and K. Cho. Query-efficient imitation learning for end-to-end autonomous driving.
arXiv preprint arXiv:1605.06450, 2016.

[95] R. Hoque, A. Balakrishna, E. Novoseller, A. Wilcox, D. S. Brown, and K. Goldberg. Thriftydag-
ger: Budget-aware novelty and risk gating for interactive imitation learning. arXiv preprint
arXiv:2109.08273, 2021.

[96] R. Hoque, A. Balakrishna, C. Putterman, M. Luo, D. S. Brown, D. Seita, B. Thananjeyan,
E. Novoseller, and K. Goldberg. Lazydagger: Reducing context switching in interactive
imitation learning. In 2021 IEEE 17th International Conference on Automation Science and
Engineering (CASE), pages 502–509. IEEE, 2021.

[97] S. Dass, K. Pertsch, H. Zhang, Y. Lee, J. J. Lim, and S. Nikolaidis. Pato: Policy assisted
teleoperation for scalable robot data collection. arXiv preprint arXiv:2212.04708, 2022.

15

[98] A. H. Qureshi, A. Mousavian, C. Paxton, M. C. Yip, and D. Fox. Nerp: Neural rearrangement
planning for unknown objects. arXiv preprint arXiv:2106.01352, 2021.

[99] D. Driess, J.-S. Ha, M. Toussaint, and R. Tedrake. Learning models as functionals of signed-
distance fields for manipulation planning. In Conference on Robot Learning, pages 245–255.
PMLR, 2022.

16

Appendix

A Table of Contents

• Additional Learning Results (Appendix B): Additional experimental results demonstrating
OPTIMUS’s effectiveness on more tasks and additional baselines.

• Ablations (Appendix C): Ablations and analyses of OPTIMUS, demonstrating the effective-
ness of our design decisions.

• Environments (Appendix D): Description of all the environments we use in this work.

• Agent Structure (Appendix E): details regarding the observation space and action space of
the agent.

• Experiment Details (Appendix F): Full details on how OPTIMUS is implemented, specifi-
cally the hyper-parameters used for training and network architectures.

• Related Work (Appendix G): Full description of the related work.

17

B Additional Learning Results

OPTIMUS exhibits multi-task category control capabilities. We extend our multi-task results
to the setting in which the task category can also vary by training a multi-task category model
on a dataset of demonstrations from Pickplace, Shelf and Microwave. Across the tasks, the goal
is implicitly communicated by the initial observation. In this setting, we use the same camera
views across all tasks: the left/right shoulder views and the wrist camera. We build a dataset of
15K trajectories with 5 objects per task category and 1K demos per task. We include the results
in Table B.1. Similar to our multitask results in the main text, we find that OPTIMUS is able to
demonstrate multi-task category capabilities: a single Transformer is capable of learning to pick and
place objects on a table, manipulate objects in a shelf, and open doors across a large set of objects at
a success rate of 73%. This experiment shows that OPTIMUS greatly outperforms the baselines on
multi-task learning.

Dataset BC-MLP BC-RNN BeT OPTIMUS

PickPlace-Shelf-Microwave 44 47 41 73

Table B.1: Multi-task category results.. By distilling TAMP demonstrations across three environments
(PickPlace, Shelf, and Microwave), OPTIMUS is able to effectively manipulate a wide array of objects across
diverse scenes, purely from image input.

OPTIMUS can learn to adapt its behavior based on the scene configuration. We evaluate
OPTIMUS on two tasks that involve adapting the task plan based on the configuration of objects in
the scene: StackAdapt and MicrowaveAdapt, and two that require adapting motions to randomized
receptacle sizes: ShelfReceptacle and MicrowaveReceptacle. As shown in Table B.2, OPTIMUS
is able to effectively leverage visual input to learn when additional stacking operations are needed
(StackAdapt) or when the area in front of the microwave needs to be cleared (MicrowaveAdapt),
achieving 96% and 75% respectively, compared to the best baseline (96% and 40%). Additionally,
we demonstrate that OPTIMUS is able to effectively learn to generalize to unseen receptacle sizes
with high success rates, achieves 80% and 70% on held out shelves and microwaves respectively.
These results illustrate that OPTIMUS can distill scene conditioned task plan adaptation and motion
generalization across scene configurations from TAMP supervision.

Dataset BC-MLP BC-RNN BeT OPTIMUS

StackAdapt 96 92 81 96
MicrowaveAdapt 25 40 13 75
ShelfReceptacle 72 71 59 80
MicrowaveReceptacle 48 55 31 70

Table B.2: Scene-based adaptation results. OPTIMUS can learn to vary the task plan it executes based on the
scene configuration (rows 1 and 2) as well as adapt to unseen receptacles (rows 3 and 4).

OPTIMUS solves tasks that RL methods fail to make progress on. We perform a thorough
comparison of OPTIMUS against modern deep RL methods across four benchmark tasks in Robosuite
(Stack, PickPlaceCan, PickPlaceCereal, PickPlace), for which there exist dense rewards suitable for
RL. We evaluate 3 algorithms: SAC [74], a commonly used off-policy model free method, DRQ-
v2 [75], a state-of-the-art vision-based RL method, and MoDem [76], an efficient visual model-based
RL method. We train each RL method with up to 5 million samples with 5 seeds. We show the results
in Table B.3. Across every task, the RL baselines struggle to learn the long-horizon behaviors, failing
to achieve a greater than 10% success rate on any given task. These environments pose a significant
exploration challenge for RL agents, especially when trying to map high-dimensional observations
such as images to low-level control actions.

OPTIMUS can outperform purely Transformer based architectures. In this experiment, we
integrate Transformer-in-Transformer [77], a recently proposed Transformer architecture for control,
into OPTIMUS and evaluate it across five tasks: Stack, Pickplace-1, Shelf-1, Microwave-1 and

18

Dataset SAC Drq-v2 MoDem OPTIMUS

Stack 0 6 3 100
PickPlaceCan 0 10 0 100
PickPlaceCereal 0 5 0 100
PickPlace 0 0 0 90

Table B.3: Comparison of OPTIMUS vs. RL methods. OPTIMUS is able to solve each Robosuite task to a
high success rate, while RL methods struggle to make progress due to exploration challenges.

PickPlaceFour. We do so by modifying OPTIMUS to use the code released by the authors of [77] as
the Transformer block. The default settings from [77] did not perform well on our tasks (20% success
rate on Stack), so we made the following modifications: We modify the backbone used in [77] by
increasing the number of layers in the Vision Transformer backbone from 1 to 6, the number of heads
from 1 to 4, the patch dimension from 84 to 19 (to obtain a 4x4 grid). With these settings we achieve
54% success rate on Stack. We then perform one further modification: instead of using the class
token output as the state representation in [77], we reshape the tokens corresponding to each patch
into 4x4 images and then pass them through a spatial softmax to obtain a keypoint representation of
the image. Doing so improves the performance of Transformer-in-Transformer from 54% to 86%
on the Stack task. We run Transformer-in-Transformer across all five tasks and include the results
against OPTIMUS in Table B.4. Across each task, we find that OPTIMUS is able to outperform
Transformer-in-Transformer, with an average performance improvement of 16.8%. One additional
advantage of our architecture over the one proposed in [77] is that ours is 4-5x faster to execute. We
hypothesize that a likely reason for this performance discrepancy is that on our visuomotor control
tasks, ResNets [60] are a powerful inductive bias. They maintain spatial locality which allows the
spatial softmax [61] to easily identify important key-points in the image.

Dataset Transformer-in-Transformer OPTIMUS

Stack 86 100
PickPlace-1 82 100
Shelf-1 73 91
Microwave-1 67 86
PickPlaceFour 45 60

Table B.4: Comparison of OPTIMUS vs. Transformer-in-Transformer. OPTIMUS is able to outperform
purely Transformer based architectures such as Transformer-in-Transformer [77] by 16.8% across 5 tasks,
demonstrating that our architecture is well-suited to imitating TAMP data from visual input.

We describe and empirically validate three advantages of the distilled policies over the TAMP
system: 1) success rate improvement over the TAMP supervisor, 2) faster run-time, 3) operation from
perceptual instead of state input.

OPTIMUS almost doubles the performance of the TAMP supervisor. To evaluate TAMP, we
execute 50 trials averaged over three random seeds on each single-task environment and record the
performance in Table B.5. We find that OPTIMUS is able to outperform the TAMP system by a wide
margin, from 20% on the easiest task, PickPlace, to 64% on Microwave-1 and 44% on the hardest
task, PickPlaceFour. TAMP with joint space control has better performance on average than TAMP
with task space control (52% vs. 45%), but still performs significantly worse than OPTIMUS (52%
vs. 87%). We instead find that not all grasps execute perfectly every time, likely due to differences in
simulation, planning and control schemes from the ACRONYM paper. As a result, we observe grasp
execution failures and object slippage during placement motions. OPTIMUS avoids learning these
failure cases by only distilling the successful trajectories, which enables it to successfully generalize
to unseen configurations of the task.

OPTIMUS executes 5-7.5x faster than TAMP. We evaluate the run-time of OPTIMUS against
TAMP by computing the average time per step for both systems across 100 trials. We run the

19

Dataset TAMP-joint TAMP-task OPTIMUS

PickPlace-1 82 82 100
PickPlaceTwo 52 58 96
PickPlaceThree 40 50 91
PickPlaceFour 34 16 60
Shelf-1 58 44 91
Microwave-1 46 22 86

Average 52 45 87
Table B.5: Comparison of OPTIMUS vs. TAMP. We plot percentage success on randomly chosen states from
the environment. We find OPTIMUS greatly outperforms the TAMP supervisor, whether TAMP uses task space
control or joint space.

evaluation on a machine with an RTX 3090 GPU and Intel i9-10980XE CPU and include the results
in Table B.6. TAMP takes 150ms per action on average while OPTIMUS (30M parameters) takes
21ms per action and OPTIMUS (100M parameters) takes 31ms per action. TAMP pays a high
up-front cost of 2-5 seconds, and then executes a feedback controller to quickly track the planned
way-points. In contrast, OPTIMUS spends a constant amount of time per action. Furthermore, it is
possible to greatly improve the inference time performance of OPTIMUS by employing techniques
such as FlashAttention [78], model compilation, and TensorRT.

TAMP OPTIMUS (30M) OPTIMUS (100M)

150ms 21ms 31ms

Table B.6: Timing Results. We measure the average time taken per action (lower is better). On average,
OPTIMUS is 5-7.5x faster to execute than TAMP.

By distilling TAMP, we obtain a performant policy that executes high-frequency low-level
control from purely perceptual input. OPTIMUS produces policies that are fast to execute, reactive
and perform visuomotor control at similar performance to policies that have access to state information
(Fig. C.2) and out-performs the privileged TAMP expert (Table B.5).

20

C Ablations

In this section, we ablate components of OPTIMUS, low-level controller, data filtration scheme,
gripper control scheme and data generation process, observation space design and loss function.

State Image
Observation Space

0

20

40

60

80

100

S
uc

ce
ss

 R
at

e

Action Space
Task
Joint

(a) Arm Action Space

None DurationWorkspace All
Filtering Rule

0

20

40

60

80

S
uc

ce
ss

 R
at

e

(b) Data Curation
Figure C.1: Effect of Arm Action Space Choice and Data Filtering Rules. (a) OPTIMUS task success
rate improves with task-space over joint-space actions when using image observations. Image observation-
space policies perform comparably to the privileged state-based policies when using task-space actions. (b)
Performance is improved by filtering TAMP success trajectories based on the visible workspace and their
duration.

Task-space control greatly improves visuomotor learning performance. We evaluate different
controllers on the Microwave-1 task. For state-based learning, we find that the choice of action space
makes little difference; both control schemes achieve high performance (98% for joint space vs. 100%
for task space). However, when training with visual observations, we find that there is a large gap
(86% vs. 100%) in performance between joint control and task-space control. We hypothesize that
this is due to the difficulty of learning an inverse kinematics mapping from visual input, i.e. mapping
2D pixel locations to 7DOF joint angles.

Data filtration results in a significant improvement in policy success rates. On the Microwave-1
task, we train four policies with different filtration schemes: 1) no filtering (None), 2) filtering based
on trajectory length (Duration) 3) filtering based on visible workspace limits (Workspace), and 4)
Duration and Workspace combined (Both). We find (Fig. C.1) that policies trained on unfiltered data
perform worse when compared to those trained on filtered data. Specifically, workspace filtering has
a greater impact than Duration. Combining both forms of filtering results in the greatest performance
improvement of 10% and demonstrates that filtering TAMP trajectories is crucial to obtaining high
success rates for learned policies.

Discrete gripper control and short ”stall” regions directly impact the performance of TAMP
imitation. We first analyze the impact of switching from continuous to discrete gripper control on
the Stack task in Fig. C.2. By using discrete control, we can improve the success rate by 4%, while
qualitatively we observe smoother gripper control and decisive grasps. On the other hand, we find
that the decision to tune the length of ”stall” regions, namely TAMP grasp and release actions, is
crucial to the performance of OPTIMUS. As observed in Fig. C.2, reducing the number of control
actions per grasp and release action greatly improves performance, from 78% at 25 steps to 100% at 5
actions. This is likely due to two reasons, 1) we shorten the overall length of the roll-outs, easing the
learning burden, and 2) we reduce the likelihood of the policy to encounter a series of states where
the observations and actions do not change, which can result in freezing behavior in the policy.

Camera view selection enables greatly improved visuomotor learning. We evaluate two camera
views on the Stack task. Both camera poses keep all objects as well as the robot in view; one is

21

No Wrist Cam Use Wrist Cam
Wrist Cam Utilization

0

20

40

60

80

S
uc

ce
ss

 R
at

e

(a) Wrist Camera

Close Up Zoomed Out Tuned
Camera Position

0

20

40

60

80

100

S
uc

ce
ss

 R
at

e

(b) Camera Position

Discrete Continuous
Gripper Action Space

0

20

40

60

80

100

S
uc

ce
ss

 R
at

e

(c) Gripper Control

5 10 15 20 25
Num Gripper Steps

0

20

40

60

80

100

S
uc

ce
ss

 R
at

e

(d) Gripper Steps

MSE Gaussian GMM
Loss Function

0

20

40

60

80

S
uc

ce
ss

 R
at

e

(e) Loss

Figure C.2: Effect of Observation, Action and Loss Decisions. We ablate a variety of design decisions in
OPTIMUS and demonstrate that each produces a clear improvement.

close up which hinders accurate estimation of scene geometry while the other is farther away which
decreases the size of the objects in the frame, making it difficult for the policy to focus on them. As a
result, we find in Fig. C.2 that a well-tuned camera view that is angled and positioned appropriately
performs best. We additionally evaluate the impact of using a wrist camera. For tasks with primitive
objects such as blocks, we found that the wrist cam had little impact. However, moving to tasks such
as Microwave, where close up views of the handle and target object enable improved perception of
grasp geometries, the wrist camera affords a significant performance improvement as we show in
Fig. C.2.

GMM loss enables OPTIMUS to better handle the multi-modality of TAMP supervision. TAMP
generates highly multi-modal action distributions through randomized planning and non-deterministic
IK. Therefore, as we note in Sec. 3.3, we use Gaussian Mixture Models to model the multi-modality.
We experimentally validate that GMM output distributions greatly improve learning performance
by comparing against MSE loss, which produces a deterministic, uni-modal output distribution,
and Gaussian log-likelihood, which produces a non-deterministic, uni-modal output distribution.
We find that GMM loss greatly out-performs both output distributions (86% vs. 66% and 70%).
While including a stochastic output distribution such as a Gaussian does improve performance by
4%, the multi-modality of GMM produces a further improvement of 16% performance. The results
demonstrate that by providing the policy a more expressive output distribution, we can greatly
improve how well the policy can model the TAMP expert.

22

D Environments

In this section, we provide a detailed description of the environments we use to evaluate OPTIMUS.
We begin by describing settings which are common across environments. We then discuss each task
individually.

For all tasks, we use a Franka Panda 7-DOF manipulator with the default Franka gripper, though the
TAMP system is capable of generating supervision using any manipulator, provided the robot URDF.
For the Stack task, we use the block stacking environment from Robosuite [58], modifying it to
include up to 5 blocks and a larger workspace region. For all other tasks we use IsaacGym [79] with
the PhysX [80] back-end. For each task, we use a fixed reset pose for the robot, while randomizing
the positions of sampled objects. Object orientation about the z-axis is sampled uniformly at random
from 0 to 360 degrees for all tasks.

For PickPlace, Multi-step PickPlace, Shelf and Microwave, we sample objects from ShapeNet [49].
We select objects that have valid grasps in the Acronym [51] dataset. We further refine our dataset by
filtering out objects that do not simulate well in our IsaacGym environments. From the remaining
objects, we form two datasets with 19 and 72 objects respectively.

We next provide additional details for each task.

Stack: The goal is to stack the blocks in a fixed ordering. Each block is a different color. The block
positions are sampled uniformly in an area of size 28cm x 28cm. The base block is of size 2.5cm3;
the rest are of size 2cm3. The task is considered solved if all of the blocks are stacked in the correct
ordering.

StackAdapt: The task is the same as Stack, except there are two platforms, the blocks must be
stacked on the target platform only. There is a 50/50 chance for the base block to be spawned on the
target platform, in which the task simply involves stacking, and the base block to be spawned on the
other platform, which requires the agent to first place the base block on the target platform then stack
on top of it.

PickPlace: The task involves picking and placing ShapeNet objects from the left platform to the
right platform. The platforms are of size .25 by .25 and are kept .5 apart. The object positions are
sampled uniformly at random on the platform. The task success criteria is fulfilled if the object is
placed anywhere on the target platform.

Multi-step PickPlace: The task involves picking and placing ShapeNet objects from platforms on
the left to bins on the right. Up to four objects: a basket, vase, magnet or cup are sampled on separate
platforms. Each platform is of size .15x.15 and each bin is of size .2x.2m. Each object’s position is
sampled uniformly at random on its associated platform. The task is solved when all objects are in
their associated bins.

Shelf: The task involves moving ShapeNet objects from the lower rung of the shelf to the middle
one. The shelf is 1m tall and has three rungs of size .5m x .25. The position and size of the shelf are
constant. Object positions are sampled on the lowest rung, uniformly at random across the surface.
The task is solved when the object is placed on the middle rung.

ShelfReceptacle: This task is the same as Shelf, but the shelf size is randomized within the following
intervals: height (.8-1m), rungs: (.5x.25m - .4x.75m).

Microwave: The goal is to open the microwave by pulling open the handle, grasp a ShapeNet object,
and place it inside the microwave. The microwave is .3m tall, 50cm wide and 20 cm deep. Microwave
position and size are held fixed. The initial angle of the microwave door is 0, i.e. fully closed. Object
positions are sampled on a platform of size .25x.25m. The agent has succeeded when the object is
inside the microwave.

MicrowaveReceptacle: This task is the same as Microwave, but the microwave size is randomized
within the following intervals: height (.3-.4m), width: (.5-.6m), depth: (.2-.3m).

23

MicrowaveAdapt: The task is the same as the microwave task, except with 50% probability an
object is spawned in front of the microwave door, requiring the agent to first move the object aside
then open the door and place the target object inside.

24

E Agent Structure

Observation spaces: We use the same set of proprioceptive observations across all tasks: end-effector
position, end-effector orientation (quaternion), gripper position. For each task, we select a different
camera view that maximizes scene coverage. For Shelf and Microwave, we use two views, left
and right shoulder views, whereas for the rest of the tasks we use a single forward facing view.
Additionally, we use a wrist camera for every task, which greatly improves the performance. We use
camera images of size 84x84. We empirically validate these decisions in Sec. C and visualize the
results in Fig. C.2.

Action spaces: As mentioned in the main text, we use task space control for moving the arm.
In Robosuite, we use the built-in OSC controller [59]. In IsaacGym, we used a simple IK-based
task-space controller. With regard to gripper control, we discuss and resolve two challenges related
to TAMP. 1) Continuous gripper actions produced by the TAMP solver can be challenging for the
network to fit, as the network does not fully commit to predicting grasps. To that end, we modify
the gripper actions to be binary open and close motions which improves performance and reduces
noise in policy execution. We validate that this results in a performance improvement in Appendix C.
2) TAMP demonstrations can include“stall regions”: segments of the trajectory in which the robot
is not moving, such as when TAMP executes gripper-only actions for grasps and placements. This
results in trained policies that may freeze after grasping an object, as the data does not contain cues
for when to exit the stall region. To address this issue, we tune the length of stall regions during data
collection against the agent’s history length to ensure data collection success rate remains high while
minimizing policy freezing behavior.

25

F Experiment Details

Hyper-parameter Value

Learning Rate 0.0001
Batch Size 16/512
Warmup Steps 0
Linear Scheduling Steps 100K
Final Learning Rate 0.00001
Weight Decay 0.01
Gradient Clip Threshold 1.0
Number of Gradient Steps 1M
Optimizer Type AdamW
Loss Type GMM
GMM Components 5
GMM Min. Std. Dev. 0.0001
GMM Std. Dev. Activation Fn. SoftPlus

Table F.1: Hyper-parameters used during training.

OPTIMUS (30M/100M) MLP (30M/100M) RNN (30M/100M) BeT (30M/100M)

Num Layers 6/12 2/6 2/3 6/12
Hidden Dimension 1024/1024 1000/2000
Context Length 8/8 10/10 10/10
Num Heads 8/16 8/16
Transformer Embed. Dim. 256/512 256/512
Embedding Dropout Prob. 0.1/0.1 0.1/0.1
Attention Dropout Prob. 0.1/0.1 0.1/0.1
Output Dropout Prob. 0.1/0.1 0.1/0.1
Positional Embed. Learned/Learned Learned/Learned
Positional Embed. Type Relative/Relative Relative/Relative
Num. Clusters 24/24
Offset Loss Scale 100/100

Table F.2: Model hyper-parameters.

Network and Training Details: We include the model hyper-parameters for the 30M and 100M
parameter variants of each method in Table F.2. For the vision-backbone, as discussed in the main
text, we use a Resnet-18 [60] with a Spatial Softmax [61] output to encode each image separately.
For details, please see the Robomimic paper [29]. We include learned positional embeddings with
each token and employ relative, rather than absolute, position embeddings to enable the network to
adapt to longer horizons at test time. We use a linear annealing schedule that reduces the learning rate
from 10−4 to 10−5 over 100K gradient steps and then keeps the learning rate constant. We train with
the AdamW optimizer with a weight decay of 0.01 and no learning rate warm-up. For single-task
learning, we train with a batch size of 16 on a single V100 GPU, while for multi-task learning we
train using batch size of 512 to 1024 depending on the task, across 8 V100 GPUs. For visuomotor
learning, we train with multiple camera views with image size 84x84, and we augment the data with
random crops [29, 81, 82]. We additionally list the hyper-parameters used for training in Table F.1.
One note of interest: for multi-task training, we found that increasing the batch size greatly improved
the results; hence we use a batch size of 512.

For BeT, we tried using the original authors codebase, which we augmented with our vision backbone,
but found that the performance was extremely low. Instead, we re-implemented BeT as a modification
of OPTIMUS, using the same network structure but predicting a discrete cluster center and offset
head instead and training using the focal and MT losses from the BeT paper. We found that the
standard hyper-parameters for BeT did not perform well, and after significant hyper-parameter tuning
found that the combination of 24 cluster centers and offset loss scale of 100 performed best.

26

Evaluation Protocol: We note additional details regarding our evaluation protocol as follows. We
split each dataset into a set of training and validation trajectories (using a 90/10 split). From the
validation trajectories, we save the initial state of the demonstration. During evaluation, we reset
the simulator state to an initial state from the validation set, and execute the policy from there. By
comparing on the same set of validation states, we can better evaluate performance across seeds and
algorithms. Note this means evaluation is performed from states that the TAMP solver is able to
solve. As we note in Sec. 4.1, in practice this distinction matters little, as the TAMP system does not
have a systematic failure case which could be passed on to the policy. Therefore we observe similar
success rates when evaluating on randomly sample poses from the environment.

27

G Related Work

G.1 Offline Learning from Demonstrations

Imitation Learning (IL) is a paradigm for training robots to perform manipulation tasks by leveraging
a set of expert demonstrations. In this work, we focus on offline learning, in which a policy learns
a dataset of demonstrations, without any additional interaction. This is typically done through
Behavior Cloning (BC) [30], in which a policy is trained to imitate the actions in the dataset through
supervised learning. While this is a simple approach, it has proved incredibly effective for robotic
manipulation [29, 31, 32, 33, 34, 35, 36, 37], particularly when coupled with a large number of
demonstrations [10, 20, 38, 39]. Concurrent work has proposed leveraging Diffusion Models [83] to
train policies via BC [84] in order to handle multi-modality of demonstrations. Our work instead
focuses on how to best imitate TAMP with Transformers; Diffusion Policies, in particular their
Transformer variants, could be straightforwardly integrated into OPTIMUS.

Human supervision is a common source of demonstrations. Several prior works use kinesthetic
teaching [85, 86, 87, 88], in which a human manually guides an arm through a task, but this does not
scale. Many works have leveraged teleoperation systems [13, 14, 35, 15, 89, 90, 91, 20, 38, 39], in
which a human remote controls a robot arm to guide it through a task. However, scaling teleoperation
is costly because it can require months of data collection and numerous human operators [10, 20, 89].
This has motivated the development of intervention-based systems, in which humans provide smaller
corrective behaviors to an agent [92, 93, 94, 95, 96, 97], enabling more sample-efficient learning and
less operator burden. Instead of relying on human operators for supervision, we learn policies from
demonstrations provided by a TAMP supervisor, which can generate large, diverse datasets without
human supervision.

G.2 Transformers for Robot Control

Recent work explores the application of Transformers to controlling robot manipulators. Transformer-
based policy architectures such as Gato [12], PerAct [40], VIMA [41], RT-1 [10], Dasari and Gupta
[42], and Behavior Transformer [43] have demonstrated impressive results across a range of robotic
manipulation tasks, yet make use of discretization of the input observations and output actions,
limiting their applicability to tasks requiring precise manipulation. Additionally, PerAct [40] and
VIMA [41] use abstracted actions to ease the learning burden at the cost of expressivity and execution
speed. HiveFormer [71] is closest to our method in terms of architecture and training protocol
but also assumes temporally-extended motion planner actions. As a result, these systems require
privileged knowledge of the geometry of the environment to ensure safety. In contrast, OPTIMUS
uses a Transformer architecture that is efficient to train and scale, fast-to-execute, consumes raw
observations, and outputs low-level control actions.

G.3 Task and Motion Planning

Task and Motion Planning (TAMP) [27] addresses controlling a hybrid system through planning
a sequence of discrete of manipulation types (task planning) realized through continuous motions
(motion planning). TAMP approaches consume kinematic or dynamic models [44] of individual
manipulation types and search over combining them in a manner that achieves a goal. Classically,
these models are engineered; however, recently, they have been learned using methods such as
Gaussian Processes [64] or Deep Neural Networks [98, 65, 99]. These mixed engineering-learning
TAMP techniques can be quite effective, but they impose a strong human design bias, capping policy
performance. Also, they are too computationally expensive to be run in real-time, preventing them
from quickly reacting to new observations.

There has been recent interest in approaches that imitate planning [45, 46, 47]; however, these
approaches generally focus on single-step motion generation. The exception is [28], which recently
proposed an approach, Guided TAMP, that directly imitates TAMP. Our work builds on this direction
in several ways. First, Guided TAMP primarily addresses control from privileged state, while we

28

focus exclusively on visuomotor learning, which requires fewer assumptions. Second, Guided TAMP
proposes a hierarchical policy that first predicts a discrete task-level action and then, conditioned on
that action, predicts the next control. In order for the learner to predict a task-level action, they require
a fixed set of ground actions, preventing the same policy from being deployed in tasks, for example,
with varying numbers of objects. In contrast, our Transformer architecture does not explicitly reason
about task-level actions and thus does not require grounding and fixing the objects in the scene.
Finally, we identify new considerations when using TAMP as a data generation pipeline.

29

	1 Introduction
	2 Preliminaries
	3 Designing a TAMP Imitation System
	3.1 Cost-Minimizing TAMP
	3.2 Generating Imitation Data from TAMP
	3.3 Training Imitation Policies at Scale

	4 Experimental Evaluation
	4.1 Learning Results

	5 Limitations and Future Work
	A Table of Contents
	B Additional Learning Results
	C Ablations
	D Environments
	E Agent Structure
	F Experiment Details
	G Related Work
	G.1 Offline Learning from Demonstrations
	G.2 Transformers for Robot Control
	G.3 Task and Motion Planning

