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Abstract: Diligently gathered human demonstrations serve as the unsung heroes
empowering the progression of robot learning. Today, demonstrations are col-
lected by training people to use specialized controllers, which (tele-)operate robots
to manipulate a small number of objects. By contrast, we introduce AR2-D2: a
system for collecting demonstrations which (1) does not require people with spe-
cialized training, (2) does not require any real robots during data collection, and
therefore, (3) enables manipulation of diverse objects with a real robot. AR2-D2
is a framework in the form of an iOS app that people can use to record a video of
themselves manipulating any object while simultaneously capturing essential data
modalities for training a real robot. We show that data collected via our system
enables the training of behavior cloning agents in manipulating real objects. Our
experiments further show that training with our AR data is as effective as train-
ing with real-world robot demonstrations. Moreover, our user study indicates that
users find AR2-D2 intuitive to use and require no training in contrast to four other
frequently employed methods for collecting robot demonstrations.
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1 Introduction

Manually curated datasets are often the inglorious heroes of many large-scale machine learning
projects [1, 2, 3]; this is especially true in robotics, where human-generated datasets of robot demon-
strations are indispensable [4, 5] especially with recent success in robot learning via imitation learn-
ing [6, 7, 8, 9] of these demonstration data. For example, one recent effort collected ∼ 130k robot
demonstrations, with a fleet of 13 robots over the course of 17 months [10]. As a result, researchers
have spent considerable effort developing various mechanisms for demonstration collection. One
popular option for collecting robot demonstrations is through kinesthetic-teaching, where a person
guides a robot through a desired trajectory [11]. Although intuitive, this mechanism can be tedious
and slow [12]. Alternatively, teleoperation with various controllers has become popular: using a
keyboard and mouse [13, 14], a video game controller [15], a 3D-mouse [16, 6], special purpose
master-slave interfaces [17, 18], and even virtual reality (VR) controllers [19, 20, 21].

Despite all these demonstration collection efforts, there are three key challenges limiting robot data
collection. First, people need to be trained to produce useful demonstrations: kinesthetic methods
are labor-intensive while teleoperation methods require learning specialized controllers. Second, the
ability to parallelize data collection is limited by how many—often expensive—robots are available.
Third, robots are usually bulky and locked within a laboratory, reducing their exposure to a handful
of nearby objects. Lastly, (tele)-operation in simulation has the potential to scale efficiently with-
out real robot hardware, but addressing the sim2real gap and limited variety of trainable tasks in
simulation environments are challenges to overcome.
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Figure 1. AR2-D2 collects robot demonstrations without needing a real robot. (Top left) Using AR2-D2, the user captures a video manipu-
lating an object with their arm. AR2-D2 projects an operational URDF (unified robotics description format) of an AR Franka Panda robot arm
into a physical environment. It uses a hand-pose tracking algorithm to move the AR robot’s end effector to align with and mirror the 6D pose
of the human hand. (Right) With this video demonstration, we train a perceiver-actor agent and (Bottom left) deploy the agent on a real-world
robot to demonstrate its ability to learn from AR demonstrations.

We introduce AR2-D2: a system for collecting robot demonstrations that (1) does not require people
to have specialized training, (2) does not require any real robots during data collection, and therefore,
(3) enables manipulation of diverse objects with a real robot. AR2-D2 is a framework in the form
of an iOS app that enables users to record a video of themselves manipulating any object. Once
the video is captured, AR2-D2 uses the iOS depth sensor to place an AR robot in the scene and
uses a motion planner to produce a trajectory where it appears as if the AR robot manipulates the
object (Figure 1). Manipulating objects and recording a video is so intuitive that users do not need
any training to use AR2-D2. Our system completely removes the need for a real robot during
demonstration collection, allowing data collection to potentially parallelize without being limited
by expensive real robots. Finally, since videos can be captured anywhere, AR2-D2 re-situates
demonstration collection out of the laboratory; users can take videos anywhere, making it easy
to collect demonstrations involving manipulation of diverse objects. Furthermore, unlike collecting
visual observations of human activities, our approach uses AR projection during robot demonstration
collection to provide constant feedback on the robot’s pose and physical constraints in the given
environment while performing the task.

Our experiments show that AR2-D2’s AR demonstrations can effectively train a real robot to manip-
ulate real-world objects. We use AR2-D2 to collect robot demonstrations cross three manipulation
tasks (press, pick-up and push) on 9 personalized objects. These personalized objects are uniquely
shaped, sized, or textured items designed to meet the specific needs or functionalities of individual
users within their personalized environments. We collect and use as few as five effortlessly collected
demonstrations to train a behavior cloning agent [6]. This trained agent needs to be finetuned for
3,000 iterations (which is equivalent to less than 10 minutes of training) on a dummy real-world task
to overcome the sim-to-real gap; Once finetuned, a real robot is capable of manipulating real objects
even though that object was only encountered by the AR robot. This AR-trained agent performs
comparable to agents trained with real-world tele-operated demonstrations (specifically the PerAct
demonstration collection [6]).

We assess AR2-D2’s usability through a within-subjects user study (N=10). For the user study,
participants are asked to provide demonstrations for two standard manipulation tasks: pick-up and
stacking. Besides AR2-D2, users collect demonstrations using four alternative methods, including
keyboard and mouse [22], VR controller [23], 3D-mouse [22], and kinesthetic-teaching [24]. Results
suggest AR2-D2 is intuitive, requires no training, and enables quick demonstration production,
comparable to kinesthetic teaching and faster than other methods. AR2-D2 paves the way for
democratizing robot training: an estimated 1.36 billion1 iPhone users could create personalized
manipulation data to train real robots for their household objects.

1Source: https://www.bankmycell.com/blog/number-of-iphone-users
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Figure 2. AR2-D2 collection process. (Left) Once the user records themselves manipulating an object, AR2-D2 extracts the following
information: 6D hand pose, hand state, RGB frames and depth estimations. We replace the hand with an AR robot, aligning its motions
to align its end effector with the hand’s. (Right) We create a 3D voxelized observation over time from the extracted keyframes. This 3D
representation is used to train a PERACT [6] agent. We also use the generated video to train an image-conditioned BC agent [6].

2 Related work

Demonstration collection methods. There are several conventional methods available for gathering
robot demonstrations. One popular approach involves kinesthetically controlling the robot to follow
a desired trajectory; the generated robot trajectories showcase the behavior required to accomplish a
specific task [11]. Teleoperation techniques [25, 26, 27] have also been a popular collection process,
using various user interfaces including keyboard and mouse [13, 14], a video game controller [15],
3D-mouse [16, 6], mobile phones [28], special purpose master-slave interfaces [17, 18],virtual real-
ity controllers [19, 20, 21, 29] and using human videos and extracts visual priors to project them into
a simple set of robot primitives for collect robot demonstrations [30, 31, 32, 33, 34]. However, all of
these methods require a real physical robot to be controlled, bottle-necking demonstration collection
by how many robots are available and limited to the laboratories that house these robots.

Demonstrations for behavior cloning. Recently, robot demonstrations are primarily used as train-
ing data for imitation learning, which has pioneered a paradigm shift in robot training. Offline be-
havior cloning from robot demonstrations is currently the de-facto imitation learning paradigm [35].
These demonstrations are collected either in simulation or through human control using a real robot
in the real world [36, 37]. For example, Task and Motion Planning (TAMP) uses expert task
planners to create large-scale simulation demonstrations [36]. Meanwhile in the real-world, users
employ techniques such as teleportation or vision-based guidance are used to create demonstra-
tions [20, 38, 39, 7]. Recent methods have also begun developing specialized hardware to stream-
line demonstration collection. For example, a low-cost handheld device featuring a plastic grabber
tool outfitted with an RGB-D camera and a servo can control the binary opening and closing of a
grabber’s fingers [40]. By contrast, our real-world data collection approach requires no teleopera-
tion hardware [28], no simulators [41], and most importantly, no real robots [42]. All we need is an
iPhone camera to record users manipulating objects with their hands.

3 The AR2-D2 system

We introduce AR2-D2, a system for collecting robot demonstrations without requiring a physical
robot. In this section, we describe AR2-D2’s features, its supported data collection procedure, its
implementation details.

3.1 AR2-D2 system features

AR2-D2 contributes the following features:

No need for a physical robot. In traditional robotics research, obtaining demonstrations often
involves operating a physical robot [38, 39, 20, 40]. AR2-D2 presents a new paradigm for collecting

3



demonstrations; it forgoes access to a real robot, enabling users to collect high-quality demonstration
data from anywhere with only their mobile devices.

Real-time control of AR robots in the real-world. AR2-D2 leverages LiDAR sensors, which
today are ubiquitous in iPhones and other smartphones to estimate the 3D layout in front of the cam-
era to project an AR robot. LiDAR helps the AR robot obey physical and visual realism. Users can
control the AR robot in one of three supported interactions: by pointing at 3D points that the robot’s
end-effector should move to, by using the iPhone’s GUI control, or through AR kinesthetic control
(see appendix). The projected robot’s motions are tightly coupled with the real-world environment,
and receives feedback upon collisions with real-world objects.

Real-time visualization of task feasibility. AR2-D2 simplifies the demonstration collection by
asking users to specify key-points that the robot end-effector should move to in order to complete
a task. Once each key-point is specified, AR2-D2 visualizes the AR robot’s motion, moving its
end-effector from its current position to the new key-pose. This real-time feedback enables users to
assess the feasibility and accuracy of the specified key-point and revise their selections if necessary.

3.2 Design and implementation

AR2-D2’s design and implementation consists of two primary components (Figure 2). The first
component is a phone application that projects AR robots into the real-world, allowing users to
interact with physical objects and the AR robot. The second component convert collected videos
into a format that can be used to train different behavior cloning agents, which can later be deployed
on real robots.

The phone application. We designed AR2-D2 as an iOS application, which can be run on an
iPhone or iPad. Since modern mobile devices and tablets come equipped with in-built LiDAR, we
can effectively place AR robots into the real world. The phone application is developed atop the
Unity Engine and the AR Foundation kit. The application receives camera sensor data, including
camera intrinsic and extrinsic values, and depth directly from the mobile device’s built-in function-
ality. The AR Foundation kit enables the projection of the Franka Panda robot arm’s URDF into
the physical space. To determine user’s 2D hand pose, we utilize Apple’s human pose detection
algorithm. This, together with the depth map is used to reconstruct the 3D pose of the human hand.
By continuously tracking the hand pose at a rate of 30 frames per second, we can mimic the pose
with the AR robot’s end-effector.

Training data creation. Given language instructions for a task (e.g., ”Pick up the plastic bowl”),
we hire users to generate demonstrations using AR2-D2. From the user-generated demonstration
video, we create training data to train and deploy on a real robot. To make this training data, we
convert the video to show an AR robot manipulating the object. We remove the human hand with
Segment-Anything [43] and fill the gap left behind by the missing hand with a video in-painting
technique, E2FGVI [44]. Finally, we produce a video with the AR robot arm moving to the user’s
hand’s key-points. This processed video makes it look like an AR robot arm manipulated the object
and can be used as training data for visual-based imitation learning [45]. Additionally, with access
to the scene’s depth estimation, we can create a 3D voxelized representation of the scene to train
agents like Perceiver-Actor.(PERACT) [6].

4 Evaluating AR2-D2 with real users

To evaluate AR2-D2’s efficacy, we conduct an extensive within-subjects user study (N = 10) across
5 demonstration collection techniques for 2 tasks. Participants demonstrated each task 3 times with
each technique, resulting in a total of 300 collected demonstrations. Participants were locally hired;
they were aged between 23 and 30.

Baselines collection techniques. In order to compare how effectively real participants create
demonstrations with AR2-D2, we also ask them to use 4 other baseline collection techniques. Two
collection techniques utilize real robots in the real-world and two control simulation robots. In sim-
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Figure 3. Evaluating AR2-D2 with real users. We conduct an extensive within-subjects user study, comparing AR2-D2 against 4 alternative
collection techniques: keyboard & mouse, 3D mouse (6-DoF), kinesthetic teaching, and HTC Hive controller. (a, b) We find that participants
spend significantly less time (with an average of 22.1 and 29.5 seconds across the two tasks) using our system than others versus the next best
(kinesthetic teaching with an average of 41.6 and 61.4 seconds). (c, d) We show that participants are able to successfully collect a demonstration
with the same rate of success using our system as kinesthetic teaching, both of which have significantly higher success rate versus others.

ulation, participants control a simulated Franka Panda with either keyboard and mouse or with a
3D Space Mouse. Using the keyboard and mouse, users can manipulate the 6D end-effector of the
simulated robot within the Isaac Sim environment, utilizing ORBIT [22]. The 3D Space Mouse is a
joystick capable of simultaneous translation and rotation along the (x, y, z) axes; it operates within
the same environment as the keyboard. In the real world, participants use kinesthetic teaching or
an HTC Vive VR controller. Kinesthetic teaching allows participants to manipulate a real Franka
Panda, using its default zero-gravity feature. The demonstration collection interface using the HTC
Vive VR controller was developed in a recent paper and enables teleoperation of the robot [29].

Study protocol. Each participant was tasked with collecting demonstrations for two specific tasks:
picking and a stacking (Figure 3). Participants were asked to provide demonstrations for each task
across 3 trials, with 3 attempts allowed per trial. We imposed a time constraint are each trial: 3
minute limit for the picking and a 5 minute limit for stacking. After all the data was collected,
participants filled out a system usability scale (SUS) survey.

Measured variables. We evaluate the different data collection techniques using two metrics. First,
we measure average data collection time (in seconds). Lower values are better because it implies
that participants are able to collect demonstrations quicker. Second, we measure task success rate,
which calculates the percentage of trials that lead to a successful demonstration.

Results. We show that participants using AR2-D2 are both significantly faster (Figure 3 (a, b)) and
as likely (Figure 3 (c, d)) to collect a successful demonstration as kinesthetic teaching. In comparison
with kinesthetic teaching, which has an average task completion time of 41.6 and 61.4 seconds for
task 1 and 2 respectively, our method exhibits a substantial reduction in time with only 22.1 and 29.5
seconds for both tasks respectively. Furthermore, the t-tests for task 1 and task 2 yielded t-statistics
of t1 = 6.194 and t2 = 6.199, with p-values of p1 = 7.587× 10−6 and p2 = 7.514× 10−6 respec-
tively. Hence, we could confidently say that there is a statistically significant difference between
kinesthetic teaching and our approach, with kinesthetic teaching having, on average, significantly
longer timings compare to ours. This concludes that our method is capable of collecting robot
demonstrations faster than the traditionally favored kinesthetic teaching.
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Figure 4. Evaluating AR2-D2 data by training a real robot to manipulate real objects. We employ AR2-D2 as a tool for gathering a
diverse array of manipulations encompassing three fundamental actions, involving a wide variety of customized objects. These manipulations
range from performing precise actions such as pressing a computer mouse or a Minecraft torch button at specific locations, to pushing small
LEGO train toys towards table-sized drawers, and even encompassing the ability to pick up objects varying from chess pieces to takeaway
bags. By leveraging a limited number of real-world action demonstrations conducted with random dummy objects and fine-tuning for 3,000
iterations which is equivalent to 10 minutes of training, we have achieved the capacity to apply the PerAct framework in manipulating all these
personalized objects with broad generalization.

Task Press (Succ.%) Push (Succ.%) Pick up (Succ.%)
Personalized object Computer mouse Minecraft torch Buzzer LEGO train 8 ball Drawer Queen piece Plastic bowl Takeaway bag

Simulation 13.3 6.7 30.0 13.3 20.0 3.3 3.3 20.0 16.7
VR interface (w/o personalized objects) 3.3 6.7 16.7 13.3 10.0 3.3 0.0 16.7 13.3
VR interface (with personalized objects) 60.0 63.3 83.3 30.0 70.0 40.0 46.7 56.7 60.0
AR2-D2 (Ours) 56.7 53.3 73.3 50.0 55.7 23.3 46.7 53.3 63.3

Table 1. Task test results.We utilized AR2-D2 to collect demonstrations and train BC agents for real robot deployment. Our observations
revealed comparable results between our data collection approach and alternative methods. Success rates (mean %) of the foundational skills
tested on personalized objects collected via AR2-D2. For each skill, we evaluated it across ten different sets of distractors with the target object
and repeated thrice for consistency. The result has shown that our data collection approach with minimal fine-tuning achieves comparable
results to real-world data collected on these personalized objects via PerAct’s VR interface with a physical robot.

We find that participants using AR2-D2 are fast from the get-go (Figure 3(a, b)). Participants
are consistently faster when collecting demonstrations from the very first trial. This consistency is
reflected in the relatively low standard deviation values of 5.75 and 8.89 seconds for the two tasks
across participants. In contrast, the next quickest contender, kinesthetic teaching, exhibits a standard
deviation of 9.62 and 14.02. Additionally, users have indicated a higher preference for our system
in the SUS survey [46] (Figure 3 (d)). Our method garners a similar level of user preference as
kinesthetic-teaching, which necessitates a physical robot, with a mere ±6% difference in SUS scores
between the two techniques.

5 Evaluating AR2-D2 with a real robot deployment

With AR2-D2, we collect demonstrations and train behavior cloning agents for deployment on a
real robot. Here, we present our experimental setup and three key takeaways. First, we validate that
AR2-D2 demonstrations can train a real robot to manipulate personalized objects without access to
a physical robot. Second, the agent trained using AR2-D2’s demonstrations perform on par with
training on real robot demonstrations. Third, AR2-D2’s demonstrations can enable learning policies
from both image as well as voxelized inputs.
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AR2-D2 demonstration collection. We collect AR2-D2 demonstrations on a set of personalized
objects, and demonstrate that a policy trained on this data executes on a real Franka Panda robot.
We gather demonstrations centered around three common robotics tasks: {press, push, pick up}.
The three tasks are delineated as follows: pressing down on the targeted object, pushing the tar-
geted object across a surface, and picking up the targeted object. For each task, we collect five
demonstrations using three different objects, which vary in color, size, geometry, texture, and even
functionality (see Figure 4).

Behaviour cloning. We use Perciver-Actor (PERACT) [6] to train a transformer-based behavior
cloning policy. PERACT takes a 3D voxel observation and a language goal (v, l) as input and
produces outputs for translation, rotation, and gripper state of the end-effector. These outputs, with
a motion planner, enable the execution of the task specified by the language goal.

Training procedure. Following existing work [6], we train an individual agent for each task. We
train an agent for 30k iterations per set of demonstrations. We then freeze the backbone of the
PERACT architecture and finetune the rest using the set of VR (using HTC Hive) demonstrations on
dummy objects. This fine-tuning process spans an additional 3k iterations, equivalent to approxi-
mately 10 minutes of wall clock training. Fine-tuning allows us to close the domain gap resulting
from differences in depth cameras between the Kinect V2 used by PERACT and the iPhone/iPad
depth camera used by AR2-D2.

Task 2D data (Image-BC) 3D data (PerAct)

Press the buzzer from the side 0.00% 40.00%
Pick up the queen piece 6.67% 33.34%
Press the computer mouse 6.67% 40.00%

Table 2. Training with Different Data Modalities. AR2-D2 is capable
of offering diverse data modalities to facilitate training BC models, such
as Image-BC for 2D data and PerAct for 3D data. We assess these dis-
parate data modalities, gathered via AR2-D2, across three distinct tasks
using Image-BC for 2D data and PerAct for 3D data, conducted without
any form of fine-tuning

Finetuning demonstration collection. Fine-
tuning demonstrations are collected using the
VR interface from PerAct [6]. It involves us-
ing a VR handset to guide the real-robot to de-
sired end-effector poses. We collect 5 demon-
strations for each task using three dummy ob-
jects: {red button, yellow block, tennis ball},
corresponding to the three tasks, respectively.
These specific objects are only used for fine-
tuning and not used during testing. We also ablate the agent’s performance without finetuning.

Figure 5. Analysis on Fine-tuning. We conducted a
diagnostic analysis to determine the optimal number of
iterations and demonstrations required. By varying the
number of demonstrations and iterations for fine-tuning,
we found that using 5 demonstrations and 3,000 itera-
tions yielded the best results.

Testing procedure. We evaluate the trained policies’
ability to manipulate personalized objects in the real
world. The personalized objects are comprised of dis-
tinctly different objects from the AR2-D2-enabled real-
world demonstrations. Each test environment is infected
with ten different distractor objects. We repeat run infer-
ence three times for each environment setup and average
their performance.

Baseline collection techniques. We compare AR2-D2’s
demonstrations against two alternative techniques: real-
world and simulation data collection. We finetune all
methods using the same set of finetuning demonstrations
on dummy objects. Real world data collection uses a
VR controller interface to capture the training demonstra-
tions [6]. Real-world demonstrations are collected with and without the personalized objects (see
Table 1). Simulation demonstrations use RLBench and its key-frame point extraction technique, ac-
companied by motion planning to generate each demonstration [41]. We implemented domain ran-
domization to introduce texture variations, aiding in the transfer from simulation to the real world.

5.1 Results

Table 1 reports success rates of all the nine personalized objects across three tasks with demonstra-
tions from real-world, from simulation, and from AR2-D2.
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AR2-D2 demonstrations yields useful representation for training a real-robot. In general,
AR2-D2’s data outperforms policies trained using simulation of real-world (without personalized
objects). In fact, in one case, we outperform PERACT’s real world data collection (without personal-
ized objects) by a large margin of 53.4%. These findings highlight the significance of our approach,
which facilitates access to collecting demonstrations with such personalized objects which might
not be available in the laboratory that houses the robot. This capability to produce training data with
personalized objects is particularly important since behavior cloning agents perform better when
their training exposures them to the objects they are expected to manipulate.

AR2-D2 demonstrations train policies as accurately as demonstrations collected from real
robots. Referencing Table 1, it is evident that even when real-world data collection is trained with
personalized objects during the demonstration data collection phase, our method delivers compa-
rable results. Remarkably, our system’s data even surpasses the real-robot collection data in tasks
such as pushing the LEGO train and picking up the paper bag. While for the remaining personalized
objects, our approach maintains a ≤ 14.3% gap across the three foundational skills. The t-test re-
sults, with a calculated t-value of 0.547 and a p-value of 0.592, indicating that there is no statistical
significance in the observed difference between the two methods.

5.2 Ablations

Analysis on Fine-tuning. We investigate how many finetuning demonstrations ({1, 3, 5, 10, 15}) on
dummy objects and how many training iterations ({0, 1000, 2000, 3000, 4000, 5000}) are required
to maximize the agent’s performance. These ablations pretrain the policy using 5 AR2-D2 demon-
strations of the “mouse” pressing task trained for 30k training iterations. Each ablation is tested
on 1 real-world scene with the computer mouse but we evaluated it across 5 trials with varying tar-
get object poses and placement. We find that 5 fine-tuning demonstrations trained for 3k iterations
(equivalent to 10 minutes of training) yields the most effective outcome (see Figure 5).

Training with voxelized inputs is better than using 2D inputs. AR2-D2 demonstrations store
2D image and 3D depth data, facilitating training of image-based behavior cloning (Image-BC) and
3D voxelized methods (PERACT [6]). With fixed camera calibration offset and no finetuning during
training, 3D-input agents outperform 2D counterparts (refer to Table 2 and supplementary).

6 Limitations and Conclusion

Limitations. Our research does present certain limitations. Firstly, due to the inherent character-
istics of our method, it proves challenging to validate experimental outcomes via simulation. Con-
sequently, the verification relies on real-world assessments, which, despite our extensive multi-trial
evaluations using varied layouts, cannot completely encompass all conceivable scenarios. Secondly,
while our user-study participant count mirrors the standards set by RoboTurk [28], we acknowledge
that a larger participant pool might have enhanced the statistical significance of the performance
results across various methods. Lastly, due to the disparity between the camera sensors and the do-
main gap, there is still a need for fine-tuning to match the performance of real data. Nevertheless,
future work can explore better approaches to further bridge this domain gap either through better
data augmentation techniques or hardware such as Apple’s AR head-mounted display.

Conclusion. We present AR2-D2, an intuitive robot demonstration collection system that enables
the collection of quality robot demonstrations for diverse objects without the need for any real robots
or the need to train people before use. Our results highlight the effectiveness of this approach,
showing that as few as five AR demonstrations suffice to train a real-world robot to manipulate
personalized objects. Our extensive real-world experiments further confirmed that AR2-D2’s AR
data is on par with training using real-world demonstrations. Moreover, through our comprehensive
user-study, it revealed that users found our method intuitive and easy to use, requiring no prior
training, setting it apart from traditional collection methods. Finally, AR2-D2 paves the way towards
democratizing robot training by enabling any individual to gather significant robot training data for
manipulating their personalized objects at any place and time.
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