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Abstract: Reinforcement Learning (RL) is notoriously data-inefficient, which
makes training on a real robot difficult. While model-based RL algorithms (world
models) improve data-efficiency to some extent, they still require hours or days of
interaction to learn skills. Recently, offline RL has been proposed as a framework
for training RL policies on pre-existing datasets without any online interaction.
However, constraining an algorithm to a fixed dataset induces a state-action dis-
tribution shift between training and inference, and limits its applicability to new
tasks. In this work, we seek to get the best of both worlds: we consider the prob-
lem of pretraining a world model with offline data collected on a real robot, and
then finetuning the model on online data collected by planning with the learned
model. To mitigate extrapolation errors during online interaction, we propose to
regularize the planner at test-time by balancing estimated returns and (epistemic)
model uncertainty. We evaluate our method on a variety of visuo-motor control
tasks in simulation and on a real robot, and find that our method enables few-shot
finetuning to seen and unseen tasks even when offline data is limited. Videos are
available at https://yunhaifeng.com/FOWM.
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1 Introduction

Reinforcement Learning (RL) has the potential to train physical robots to perform complex tasks
autonomously by interacting with the environment and receiving supervisory feedback in the form
of rewards. However, RL algorithms are notoriously data-inefficient and require large amounts
(often millions or even billions) of online environment interactions to learn skills due to limited
supervision [1, 2, 3]. This makes training on a real robot difficult. To circumvent the issue, prior
work commonly rely on custom-built simulators [4, 5, 1] or human teleoperation [6, 7] for behavior
learning, both of which are difficult to scale due to the enormous cost and engineering involved.
Additionally, these solutions each introduce additional technical challenges such as the simulation-
to-real gap [8, 1, 9, 10] and the inability to improve over human operators [11, 12], respectively.

Recently, offline RL has been proposed as a framework for training RL policies from pre-existing
interaction datasets without the need for online data collection [13, 14, 15, 16, 17, 18, 19, 20].
Leveraging existing datasets alleviates the problem of data-inefficiency without suffering from the
aforementioned limitations. However, any pre-existing dataset will invariably not cover the entire
state-action space, which leads to (potentially severe) extrapolation errors, and consequently forces
algorithms to learn overly conservative policies [21, 22, 23, 24]. We argue that extrapolation errors
are less of an issue in an online RL setting, since the ability to collect new data provides an in-
trinsic self-calibration mechanism: by executing overestimated actions and receiving (comparably)
negative feedback, value estimations can be adjusted accordingly.

In this work, we seek to get the best of both worlds. We consider the problem of pretraining an RL
policy on pre-existing interaction data, and subsequently finetuning said policy on a limited amount
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Figure 1. Approach. We propose a framework for offline pretraining and online finetuning of world
models directly in the real world, without reliance on simulators or synthetic data. Our method
iteratively collects new data by planning with the learned model, and finetunes the model on a
combination of pre-existing data and newly collected data. Our method can be finetuned few-shot
on unseen task variations in ≤20 trials by leveraging novel test-time regularization during planning.

of data collected by online interaction. Because we consider only a very limited amount of online
interactions (≤20 trials), we shift our attention to model-based RL (MBRL) [25] and the TD-MPC
[26] algorithm in particular, due to its data-efficient learning. However, as our experiments will
reveal, MBRL alone does not suffice in an offline-to-online finetuning setting when data is scarce.
In particular, we find that planning suffers from extrapolation errors when queried on unseen state-
action pairs, and consequently fails to converge. While this issue is reminiscent of overestimation
errors in model-free algorithms, MBRL algorithms that leverage planning have an intriguing prop-
erty: their (planning) policy is non-parametric and can optimize arbitrary objectives without any
gradient updates. Motivated by this key insight, we propose a framework for offline-to-online fine-
tuning of MBRL agents (world models) that mitigates extrapolation errors in planning via novel
test-time behavior regularization based on (epistemic) model uncertainty. Notably, this regularizer
can be applied to both purely offline world models and during finetuning.

We evaluate our method on a variety of continuous control tasks in simulation, as well as visuo-
motor control tasks on a real xArm robot. We find that our method outperforms state-of-the-art
methods for offline and online RL across most tasks, and enables few-shot finetuning to unseen
tasks and task variations even when offline data is limited. For example, our method improves the
success rate of an offline world model from 22% to 67% in just 20 trials for a real-world visual
pick task with unseen distractors. We are, to the best of our knowledge, the first work to investigate
offline-to-online finetuning with MBRL on real robots, and hope that our encouraging few-shot
results will inspire further research in this direction.

2 Preliminaries: Reinforcement Learning and the TD-MPC Algorithm

We start by introducing our problem setting and MBRL algorithm of choice, TD-MPC, which to-
gether form the basis for the technical discussion of our approach in Section 3.

Reinforcement Learning We consider the problem of learning a visuo-motor control policy by
interaction, formalized by the standard RL framework for infinite-horizon Partially Observable
Markov Decision Processes (POMDPs) [27]. Concretely, we aim to learn a policy πθ : S×A 7→ R+

that outputs a conditional probability distribution over actions a ∈ A conditioned on a state s ∈ S
that maximizes the expected return (cumulative reward) R = Eπθ

[
∑∞

t=0 γ
trt], where t is a discrete

time step, rt is the reward received by executing action at in state st at time t, and γ ∈ [0, 1) is a
discount factor. We leverage an MBRL algorithm in practice, which decomposes πθ into multiple
learnable components (a world model), and uses the learned model for planning. For brevity, we
use subscript θ to symbolize learnable parameters throughout this work. In a POMDP, environment
interactions obey an (unknown) transition function T : S×A 7→ S , where states s themselves are as-
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sumed unobservable. However, we can define approximate environment states s .
= (o1,o2, . . . ,on)

from sensory observations o1:n obtained from e.g. cameras or robot proprioceptive information.
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Figure 2. Architecture. Our
world model encodes an observa-
tion s0 into its latent representa-
tion z0, and then recurrently pre-
dicts future latent states z1:h as
well as optimal actions â0:h, re-
wards r̂0:h, and values q̂0:h. Fu-
ture states s1:h provide supervi-
sion for learning but are not re-
quired for planning.

TD-MPC Our work extends TD-MPC [26], an MBRL algo-
rithm that plans using Model Predictive Control (MPC) with a
world model and terminal value function that is jointly learned
via Temporal Difference (TD) learning. TD-MPC has two in-
triguing properties that make it particularly relevant to our set-
ting: (i) it uses planning, which allows us to regularize action
selection at test-time, and (ii) it is lightweight relative to other
MBRL algorithms, which allows us to run it real-time. We sum-
marize the architecture in Figure 2. Concretely, TD-MPC learns
five components: (1) a representation z = hθ(s) that maps
high-dimensional inputs s to a compact latent representation
z, (2) a latent dynamics model z′ = dθ(z,a) that predicts the
latent representation at the next timestep, and three prediction
heads: (3) a reward predictor r̂ = Rθ(z,a) that predicts the in-
stantaneous reward, (4) a terminal value function q̂ = Qθ(z,a),
and (5) a latent policy guide â = πθ(z) that is used as a behav-
ioral prior for planning. We use z′, s′ to denote the successor
(latent) states of z, s in a subsequence, and use â, r̂, q̂ to dif-
ferentiate predictions from observed (ground-truth) quantities a, r, q. In its original formulation,
TD-MPC is an online off-policy RL algorithm that maintains a replay buffer B of interactions, and
jointly optimizes all components by minimizing the objective

L(θ) = E
(s,a,r,s′)0:h∼B

 h∑
t=0

∥z′t − sg(hϕ(s
′
t))∥22︸ ︷︷ ︸

Latent dynamics

+ ∥r̂t − rt∥22︸ ︷︷ ︸
Reward

+ ∥q̂t − qt∥22︸ ︷︷ ︸
Value

−Qθ(zt, ât)︸ ︷︷ ︸
Action


 (1)

where (s,a, r, s′)0:h is a subsequence of length h sampled from the replay buffer, ϕ is an expo-
nentially moving average of θ, sg is the stop-grad operator, qt = rt + γQϕ(z

′
t, πθ(z

′
t)) is the

TD-target, and gradients of the last term (action) are taken only wrt. the policy parameters. Con-
stant coefficients balancing the losses are omitted. We refer to Hansen et al. [26] for additional
implementation details, and instead focus our discussion on details pertaining to our contributions.
During inference, TD-MPC plans actions using a sampling-based planner (MPPI) [28] that itera-
tively fits a time-dependent multivariate Gaussian with diagonal covariance over the space of action
sequences such that return – as evaluated by simulating actions with the learned model – is maxi-
mized. For a (latent) state z0 = hθ(s0) and sampled action sequence a0:h, the estimated return R̂ is
given by

R̂ = γh Qθ(zh,ah)︸ ︷︷ ︸
Value

+

h−1∑
t=0

γt Rθ(zt,at)︸ ︷︷ ︸
Reward

, zt+1 = dθ(zt,at)︸ ︷︷ ︸
Latent dynamics

, z0 = hθ(s0)︸ ︷︷ ︸
Encoder

. (2)

To improve the rate of convergence in planning, a fraction of sampled action sequences are gener-
ated by the learned policy πθ, effectively inducing a behavioral prior over possible action sequences.
While πθ is implemented as a deterministic policy, Gaussian action noise can be injected for stochas-
ticity. TD-MPC has demonstrated excellent data-efficiency in an online RL setting, but suffers from
extrapolation errors when naı̈vely applied to our problem setting, which we discuss in Section 3.

3 Approach: A Test-Time Regularized World Model and Planner

We propose a framework for offline-to-online finetuning of world models that mitigates extrapo-
lation errors in the model via novel test-time regularization during planning. Our framework is
summarized in Figure 1, and consists of two stages: (1) an offline stage where a world model is pre-
trained on pre-existing offline data, and (2) an online stage where the learned model is subsequently
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finetuned on a limited amount of online interaction data. While we use TD-MPC [26] as our back-
bone world model and planner, our approach is broadly applicable to any MBRL algorithm that uses
planning. We start by outlining the key source of model extrapolation errors when used for offline
RL, then introduce our test-time regularizer, and conclude the section with additional techniques
that we empirically find helpful for the few-shot finetuning of world models.

3.1 Extrapolation Errors in World Models Trained by Offline RL

All methods suffer from extrapolation errors when trained on offline data and evaluated on unseen
data due to a state-action distribution shift between the two datasets. In this context, value overesti-
mation in model-free Q-learning methods is the most well-understood type of error [14, 16, 17, 19].
However, MBRL algorithms like TD-MPC face unique challenges in an offline setting: state-action
distribution shifts are present not only in value estimation, but also in (latent) dynamics and reward
prediction when estimating the return of sampled trajectories as in Equation 2. We will first address
value overestimation, and then jointly address other types of extrapolation errors in Section 3.2.

Inspired by Implicit Q-learning (IQL; [19]), we choose to mitigate the overestimation issue by ap-
plying TD-backups only on in-sample actions. Specifically, consider the value term in Equation 1
that computes a TD-target q by querying Qϕ on a latent state z′t and potentially out-of-sample ac-
tion πθ(z

′
t). To avoid out-of-sample actions in the TD-target, we introduce a state-conditional value

estimator Vθ and reformulate the TD-target as qt = rt + γVθ(z
′
t). This estimator can be optimized

by an asymmetric ℓ2-loss (expectile regression):

LV (θ) = |τ − 1{Qϕ(zt,at)−Vθ(zt)<0}|(Qϕ(zt,at)− Vθ(zt))
2, (3)

where τ ∈ (0, 1) is a constant expectile. Intuitively, we approximate the maximization in Vθ(zt) =
maxat

Qϕ(zt,at) for τ → 1, and are increasingly conservative for smaller τ . Note that at is
the action from the dataset (replay buffer), and thus no out-of-sample actions are needed. For the
same purpose of avoiding out-of-sample actions, we replace the action term for policy learning
in Equation 1 by an advantage weighted regression (AWR) [29, 30, 21] loss exp(β(Qϕ(zt,at) −
Vθ(zt))) log πθ(at|zt), where β ≥ 0 is a temperature parameter.

3.2 Uncertainty Estimation as Test-Time Behavior Regularization

While only applying TD-backups on in-sample actions is effective at mitigating value overestimation
during offline training, the world model (including dynamics, reward predictor, and value function)
may still be queried on unseen state-action pairs during planning, i.e., when estimating returns using
Equation 2. This can result in severe extrapolation errors despite a cautiously learned value function.
To address this additional source of errors, we propose a test-time behavior regularization technique
that balances estimated returns and (epistemic) model uncertainty when evaluating Equation 2 for
sampled action sequences. By regularizing estimated returns, we retain the expressiveness of plan-
ning with a world model despite imperfect state-action coverage. Avoiding actions for which the
outcome is highly uncertain is strongly desired in an offline RL setting where no additional data can
be collected, but conservative policies likewise limit exploration in an online RL setting. Unlike
prior offline RL methods that predominantly learn an explicitly and consistently conservative value
function and/or policy, regularizing planning based on model uncertainty has an intriguing property:
as planning continues to cautiously explore and the model is finetuned on new data, the epistemic
uncertainty naturally decreases. This makes test-time regularization based on model uncertainty
highly suitable for both few-shot finetuning and continued finetuning over many trajectories.

To obtain a good proxy for epistemic model uncertainty [31] with minimal computational over-
head and architectural changes, we propose to utilize a small ensemble of value functions
Q

(1)
θ , Q

(2)
θ , . . . , Q

(N)
θ similar to Chen et al. [32]. We optimize the Q-functions with TD-targets

discussed in Section 3.1, and use a random subset of (target) Q-networks to estimate the Q-values
in Equation 3. Although ensembling all components of the world model may yield a better estimate
of epistemic uncertainty, our choice of ensembling is lightweight enough to run on a real robot and
is empirically a sufficiently good proxy for uncertainty. We argue that with a Q-ensemble, we can
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Simulation tasks Real-world tasks Robot setupTransfer tasks

Figure 3. Tasks. We consider diverse tasks in simulation and on a real robot. Our real-world tasks
use raw pixels as input. Our method achieves high success rates in offline-to-online transfer to both
seen and unseen tasks in just 20 online trials on a real robot.

Table 1. Real-world offline-to-online results.
Success rate (%) as a function of online finetun-
ing trials. Mean of 18 trials and 2 seeds.

online offline-to-online
Trials TD-MPC TD-MPC Ours

R
ea

ch 0 0±0 50±18 72±6
10 0±0 67±12 94±6
20 0±0 78±12 89±0

Pi
ck

0 0±0 0±0 0±0

10 0±0 28±6 33±0
20 0±0 28±6 50±6

K
itc

he
n 0 0±0 0±0 11±11

10 0±0 33±11 56±11
20 0±0 61±17 78±0

Table 2. Finetuning to unseen real-world
tasks. Success rate (%) of our method for each
task variation shown in Figure 3. We include
4 successful transfers and 1 failure. See Ap-
pendix B for task descriptions. Mean of 18 trials
and 2 seeds.

online trials
Variation 0 10 20

Reach distractor 22±0 22±11 62±6
object shape 44±11 44±0 78±11

Pick distractors 22±11 56±0 67±11
object color 0±0 0±0 0±0

Kitchen distractor 0±0 50±28 67±11

not only benefit from better Q-value estimation, but also leverage the standard deviation of the Q-
values to measure the uncertainty of a state-action pair, i.e., whether it is out-of-distribution or not.
This serves as a test-time regularizer that equips the planner with the ability to balance exploitation
and exploration without explicitly introducing conservatism in training. By penalizing the actions
leading to high uncertainty, we prioritize the actions that are more likely to achieve a reliably high
return. Formally, we modify the estimated return in Equation 2 of an action sequence a0:h to be

R̂ = γh (Qθ(zh,ah)−λuh) +

h−1∑
t=0

γt (Rθ(zt,at)−λut) , ut = std
(
{Q(i)

θ (zt,at)}Ni=1

)
, (4)

where the uncertainty regularizer ut is highlighted in red. Here, std denotes the standard deviation
operator, and λ is a constant coefficient that controls the regularization strength. We use the same
value of λ for both the offline and online stages in practice, but it need not be equal.

To facilitate rapid propagation of information acquired during finetuning, we maintain two replay
buffers, Boff and Bon for offline and online data, respectively, and optimize the objective in Equation
1 on mini-batches of data sampled in equal parts from Boff and Bon, i.e., online interaction data is
heavily oversampled early in finetuning. Balanced sampling has been explored in various settings
[33, 34, 35, 22, 36, 37], and we find that it consistently improves finetuning of world models as well.

4 Experiments & Discussion

We evaluate our method on diverse continuous control tasks from the D4RL [38] and xArm [39]
task suites and quadruped locomotion in simulation, as well as three visuo-motor control tasks on a
real xArm robot, as visualized in Figure 3. Our experiments aim to answer the following questions:
− Q1: How does our approach compare to state-of-the-art methods for offline RL and online RL?
− Q2: Can our approach be used to finetune world models on unseen tasks and task variations?
− Q3: How do individual components of our approach contribute to its success?

5



Table 3. Offline-to-online results in simulation. Success rate
(xArm) and normalized return (D4RL and quadruped) of methods
before and after online finetuning. See Appendix B for task ex-
planations. Mean of 5 seeds.

online offline-to-online
Task TD-MPC TD-MPC (+d) TD-MPC (+o) IQL Ours
Push (m) 69.0 76.0 14.0 → 77.0 39.0 → 51.0 35.0 → 79.0
Push (mr) 69.0 81.0 59.0 → 80.0 22.0 → 22.0 45.0 → 64.0
Pick (mr) 0.0 84.0 0.0 → 96.0 0.0 → 0.0 0.0 → 88.0
Pick (m) 0.0 52.0 0.0 → 58.0 0.0 → 1.0 0.0 → 66.0
Hopper (m) 4.8 2.8 0.8 → 11.0 66.3 → 76.1 49.6 → 100.7
Hopper (mr) 4.8 6.1 13.4 → 13.7 76.5 → 101.4 84.4 → 93.5
AntMaze (mp) 0.0 52.0 0.0 → 68.0 54.0 → 80.0 58.0 → 96.0
AntMaze (md) 0.0 72.0 0.0 → 91.0 62.0 → 88.0 75.0 → 89.0
Walk 8.8 9.2 18.5 → 1.2 19.1 → 19.2 67.2 → 85.8
Average 17.4 48.3 11.8 → 55.1 37.7 → 48.7 46.0 → 84.7
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Environment steps (×103)
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xArm Transfer Tasks

Ours TD-MPC

Figure 4. Finetuning to unseen
tasks. Success rate (%) aggre-
gated across 9 transfer tasks in
simulated xArm environments.
Mean of 5 seeds.

In the following, we first detail our experimental setup, and then proceed to address each of the
above questions based on our experimental results.

Real robot setup Our setup is shown in Figure 3 (right). The agent controls an xArm 7 robot with
a jaw gripper using positional control, and 224 × 224 RGB image observations are captured by a
static third-person Intel RealSense camera (an additional top-view camera is used for kitchen; see
Appendix B.1 for details); the agent also has access to robot proprioceptive information. Our setup
requires no further instrumentation. We consider three tasks: reach, pick, and kitchen, and several
task variations derived from them. Our tasks are visualized in Figure 3. The goal in reach is to reach
a target with the end-effector, the goal in pick is to pick up and lift a target object above a height
threshold, and the goal in kitchen is to grasp and put a pot in a sink. We use manually designed
detectors to determine task success and automatically provide sparse rewards (albeit noisy) for both
offline and online RL. We use 120 offline trajectories for reach, 200 for pick, and 216 for kitchen;
see Section 4.1 (Q3.2) for details and ablations.

Simulation tasks and datasets We consider a diverse set of tasks and datasets, includ-
ing four tasks from the D4RL [38] benchmark (Hopper (medium), Hopper (medium-replay),
AntMaze (medium-play) and AntMaze (medium-diverse)), two visuo-motor control tasks from the
xArm [40] benchmark (push and pick) and a quadruped locomotion task (Walk); the two xArm tasks
are similar to our real-world tasks except using lower image resolution (84×84) and dense rewards.
See Figure 3 (left) for task visualizations. We also consider two dataset variations for each xArm
task: medium, which contains 40k transitions (800 trajectories) sampled from a suboptimal agent,
and medium-replay, which contains the first 40k transitions (800 trajectories) from the replay buffer
of training a TD-MPC agent from scratch. See Appendix B for more details.

Baselines We compare our approach against strong online RL and offline RL methods: (i) TD-
MPC [26] trained from scratch with online interaction only, (ii) TD-MPC (+data) which utilizes
the offline data by appending them to the replay buffer but is still trained online only, (iii) TD-MPC
(+offline) which naı̈vely pretrains on offline data and is then finetuned online, but without any of our
additional contributions, and (iv) IQL [19], a state-of-the-art offline RL algorithm which has strong
offline performance and also allows for policy improvement with online finetuning. See Appendix C
and D for extensive implementation details on our method and baselines, respectively.

4.1 Results

Q1: Offline-to-online RL We benchmark methods across all tasks considered; real robot results
are shown in Table 1, and simulation results are shown in Table 3. We also provide aggregate curves
in Figure 5 (top) and per-task curves in Appendix A. Our approach consistently achieves strong zero-
shot and online finetuning performance across tasks, outperforming offline-to-online TD-MPC and
IQL by a large margin in both simulation and real in terms of asymptotic performance. Notably,
the performance of our method is more robust to variations in dataset and task than baselines, as
evidenced by the aggregate results.
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Q2: Finetuning to unseen tasks A key motivation for developing learning-based (and model-
based in particular) methods for robotics is the potential for generalization and fast adaptation to
unseen scenarios. To assess the versatility of our approach, we conduct additional offline-to-online
finetuning experiments where the offline and online tasks are distinct, e.g., transferring a reach policy
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Figure 5. Aggregate results.
Top: comparison to baselines.
Bottom: ablations. Offline pre-
training is shaded gray. 5 seeds.

to a push task, introducing distractors, or changing the target ob-
ject. We design 5 real-world transfer tasks, and 11 in simulation
(9 for xArm and 2 for locomotion). See Figure 3 (center) and
Appendix B for task visualizations and descriptions. Our real
robot results are shown in Table 2, and aggregated simulation
results are shown in Figure 4. We also provide per-task results
in Appendix A. Our method successfully adapts to unseen tasks
and task variations – both in simulation and in real – and signif-
icantly outperforms TD-MPC trained from scratch on the target
task. However, as evidenced in the object color experiment of
Table 2, transfer might not succeed if the initial model does not
achieve any reward.

Q3: Ablations To understand how individual components
contribute to the success of our method, we conduct a series of
ablation studies that exhaustively ablate each design choice. We
highlight our key findings based on aggregate task results but
note that per-task curves are available in Appendix A.

Q3.1: Algorithmic components We ablate each component
of our proposed method in Figure 5 (bottom), averaged across
all D4RL tasks. Specifically, we ablate (1) learning Qθ with
in-sample actions and expectile regression as described in Sec-
tion 3.1, (2) using an ensemble of 5 value functions instead of
2 as in the original TD-MPC, (3) regularizing planning with our
uncertainty penalty described in Section 3.2, and (4) using bal-
anced sampling, i.e., sampling offline and online data in equal
parts within each mini-batch. The results highlight the effective-
ness of our key contributions. Balanced sampling improves the
data-efficiency of online finetuning, and all other components
contribute to both offline and online performance.

Table 4. Real-world ablation on offline data.
Success rate (%) as a function of online finetuning
trials for two data sources and sizes from our real-
world reach task. Mean of 18 trials and 2 seeds.

TD-MPC Ours
Base Diverse Base Diverse

Trials 100 120 50 100 70 120

0 0±0 50±18 0±0 0±0 33±0 72±6
10 44±12 67±12 50±0 61±6 61±6 94±6
20 83±6 78±12 61±6 89±0 89±0 89±0

Q3.2: Offline dataset Next, we investigate
how the quantity and source of the offline
dataset affect the success of online finetun-
ing. We choose to conduct this ablation with
real-world data to ensure that our conclusions
generalize to realistic robot learning scenarios.
We experiment with two data sources and two
dataset sizes: Base that consists of 50/100 tra-
jectories (depending on the dataset size) gen-
erated by a BC policy with added noise; and
Diverse that consists of the same 50/100 tra-
jectories as Base, but with an additional 20 exploratory trajectories from a suboptimal RL agent. In
fact, the additional trajectories correspond to a 20-trial replay buffer from an experiment conducted
in the early stages of the research project. Results for this experiment are shown in Table 4. We
find that results improve with more data regardless of source, but that exploratory data holds far
greater value: neither TD-MPC nor our method succeeds zero-shot when trained on the Base dataset
– regardless of data quantity – whereas our method obtains 33% and 72% success rate with 70 and
120 trajectories, respectively, from the Diverse dataset. This result demonstrates that replay buffers
from previously trained agents can be valuable data sources for future experiments.
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Figure 6. Regularization (λ).
Score as a function of regulariza-
tion strength for two tasks from
D4RL. Gray shade indicates of-
fline RL. Mean of 5 seeds.

Q3.3: Uncertainty regularization We seek to understand
how the uncertainty regularization strength λ influences the test-
time performance of our method. Results for two tasks are
shown in Figure 6; see Appendix A for more results. While
λ > 0 almost always outperforms λ = 0 in both offline and
online RL, large values, e.g., λ = 20, can be detrimental to on-
line RL in some cases. We use the same λ for offline and online
stages in this work, but remark that our uncertainty regularizer is
a test-time regularizer, which can be tuned at any time at no cost.

5 Related Work
Offline RL algorithms seek to learn RL policies solely from pre-
existing datasets, which results in a state-action distribution shift
between training and evaluation. This shift can be mitigated by
applying explicit regularization techniques to conventional on-
line RL algorithms, commonly Soft Actor-Critic (SAC; [41]).
Most prior works constrain policy actions to be close to the data
[13, 14, 15, 16], or regularize the value function to be conserva-
tive (i.e., underestimating) [17, 18, 42, 43]. While these strate-
gies can be highly effective for offline RL, they often slow down
convergence when finetuned with online interaction [21, 22, 24]. Lastly, Agarwal et al. [44] and
Yarats et al. [23] show that online RL algorithms are sufficient for offline RL when data is abundant.

Finetuning policies with RL Multiple works have considered finetuning policies obtained by,
e.g., imitation learning [45, 12, 36], self-supervised learning [46], or offline RL [21, 47, 22, 48, 24].
Notably, Rajeswaran et al. [45] learns a model-free policy and constrains it to be close to a set of
demonstrations, and Lee et al. [22] shows that finetuning an ensemble of model-free actor-critic
agents trained with conservative Q-learning on an offline dataset can improve sample-efficiency in
simulated control tasks. By instead learning a world model on offline data, our method regularizes
actions at test-time (via planning) based on model uncertainty, without explicit loss terms, which is
particularly beneficial for few-shot finetuning. While we do not compare to [22] in our experiments,
we compare to IQL [19], a concurrent offline RL method that is conceptually closer to our method.

Real-world RL Existing work on real robot learning typically trains policies on large amounts
of data in simulation, and transfers learned policies to real robots without additional training
(simulation-to-real). This introduces a domain gap, for which an array of mitigation strategies
have been proposed, including domain randomization [8, 4, 1], data augmentation [39], and sys-
tem identification [49]. Additionally, building accurate simulation environments can be a daunting
task. At present, only a limited number of studies have considered training RL policies in the real
world without any reliance on simulators [50, 21, 51]. For example, researchers have proposed to
accelerate online RL with human demonstrations [50] or offline datasets [21, 34] for model-free
algorithms. Most recently, Wu et al. [51] demonstrates that MBRL can be data-efficient enough to
learn diverse real robot tasks from scratch. Our work is conceptually similar to [21, 51] but is not
directly comparable, as we consider an order of magnitude less online data than prior work.

6 Limitations
Several open problems remain: offline data quality and quantity heavily impact few-shot learning,
and we limit ourselves to sparse rewards since dense rewards are difficult to obtain in the real world.
We also find that the optimal value of λ can differ between tasks and between offline and online RL.
We leave it as future work to automate this hyperparameter search, but note that doing so is relatively
cheap since it can be adjusted at test-time without any overhead. Lastly, we consider pretraining on
a single task and transferring to unseen variations. Given such limited data for pretraining, some
structural similarity between tasks is necessary for few-shot learning to be successful.
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A Additional Results

In addition to the aggregated results in the main paper, we also provide per-task results for the
experiments and tasks in simulation. Our benchmark results are shown in Figure 7, and task transfer
results are shown in Figure 10. Per-task results for ablations are shown in Figure 8 and Figure 9.
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Figure 7. Comparison of our method against baselines. Offline pretraining is shaded gray. Mean
of 5 seeds; shaded area indicates 95% CIs.
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Figure 8. Per-task ablation results. Offline pretraining is shaded gray. Mean of 5 seeds; shaded
area indicates 95% CIs.
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Figure 9. Ablation study on uncertainty coefficient (λ). Offline pretraining is shaded gray. Mean
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B Tasks and Datasets

B.1 Real-World Tasks and Datasets

Figure 11. Real-world workspace.
Moving range of the end-effector
and the initialization range of tar-
get/object are shaded in the image.
The positions for evaluation are la-
beled by crosses.

We implement three visuo-motor control tasks, reach, pick
and kitchen on a UFactory xArm 7 robot arm. Here we first
introduce the setup for reach and pick, which share the same
workspace. We use an Intel RealSense Depth Camera D435
as the only external sensor. The observation space contains a
224 × 224 RGB image and an 8-dimensional robot proprio-
ceptive state including the position, rotation, and the opening
of the end-effector and a boolean value indicating whether the
gripper is stuck. Both tasks are illustrated in Figure 3 (second
from the left). For safety reasons, we limit the moving range
of the gripper in a 30cm× 30cm× 30cm cube, of which pro-
jection on the table is illustrated in Figure 11. To promote
consistency between experiments, we evaluate agents on a set
of fixed positions, visualized as red crosses in the aforemen-
tioned figure. The setup for kitchen is shown in Figure 12.
We use two D435 cameras for this task, providing both a front
view and a top view. The observation space thus contains two
224× 224 RGB images and the 8-dimensional robot proprio-
ceptive state.

(a) Kitchen setup (b) Front view (c) Top view

Figure 12. Real-world kitchen task setup. (a) Setup of the kitchen workspace with the xArm
robot. (b)-(c) Sample images from the front view and the top view, respectively.

Below we describe each task and the data used for offline pretraining in detail. Figure 13 shows
sample trajectories for these tasks.

Reach The objective of this task is to accurately position the red hexagonal prism, held by the
gripper, above the blue square target. The action space of this task is defined by the first two dimen-
sions, which correspond to the horizontal plane. The agent will receive a reward of 1 when the object
is successfully placed above the target, and a reward of 0 otherwise. The offline dataset for reach
comprises 100 trajectories collected using a behavior-cloning policy, which exhibits an approximate
success rate of 50%. Additionally, there are 20 trajectories collected through teleoperation, where
the agent moves randomly, including attempts to cross the boundaries of the allowable end-effector
movement. These 20 trajectories are considered to be diverse and are utilized for conducting an
ablation study around the quality of the offline dataset.

Pick The objective of this task is to grasp and lift a red hexagonal prism by the gripper. The action
space of this task contains the position of the end-effector and the opening of the gripper. The agent
will receive a reward of 1 when the object is successfully lifted above a height threshold, 0.5 when
the object is grasped but not lifted, and 0 otherwise. The offline dataset for pick comprises 200
trajectories collected using a BC policy that has an approximate success rate of 50%.
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Kitchen This task requires the xArm robot to grasp a pot and put it into a sink in a toy kitchen
environment. The agent will receive a reward of 1 when the pot is successfully placed in the sink, 0.5
when the pot is grasped, and 0 otherwise. The offline dataset for kitchen consists of 216 trajectories,
of which 100 are human teleoperation trajectories, 25 are from BC policies, and 91 are from offline
RL policies.

Real-world transfer tasks We designed two transfer tasks for both reach and pick, and one for
kitchen as shown in Figure 3 (the second from right). As the red hexagonal prism is an important
indicator of the end-effector position in reach, we modify the task by (1) placing an additional red
hexagonal prism on the table, alongside the existing one, and (2) replacing the object with a small
red ketchup bottle, whose bottom is not aligned with the end-effector. In pick, the red hexagonal
prism is regarded as a target object. Therefore we (1) add two distractors, each with a distinct shape
and color compared to the target object, and (2) change the color and shape of the object (from a red
hexagonal prism to a green octagonal prism). For kitchen, we also add a teapot with a similar color
as the pot in the scene as a distractor. We’ve shown by experiments that different modifications
will have different effects on subsequent performance in finetuning, which demonstrates both the
effectiveness and limitation of the offline-to-online pipeline we discussed.

Reach Pick

Kitchen

Figure 13. Sample trajectories. We include eleven trajectories from the offline dataset or evaluation
results, which illustrate all real-world tasks considered in this work. Successful trajectories are
marked green while failed trajectories are marked red.
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B.2 Simulation Tasks and Datasets

xArm Push and pick are two visuo-motor control tasks in the xArm robot simulation environ-
ment [40] implemented in MuJoCo. The observations consist of an 84 × 84 RGB image and a
4-dimensional robot proprioceptive state including the position of the end-effector and the opening
of the gripper. The action space is the control signal for this 4-dimensional robot state. The tasks
are visualized in Figure 3 (left). push requires the robot to push a green cube to the red target. The
goal in pick is to pick up a cube and lift it above a height threshold. Handcrafted dense rewards are
used for these two tasks. We collected the offline data for offline-to-online finetuning experiments
by training TD-MPC agents from scratch on these tasks. The medium datasets contain 40k transi-
tions (800 trajectories) sampled from a sub-optimal agent, and the medium-replay datasets contain
the first 40k transitions (800 trajectories) from the replay buffers. Figure 14 gives an overview of
the offline data distribution for the two tasks.
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Figure 14. Offline dataset statistics for xArm tasks in simulation. We plot the distribution of
episode returns for trajectories in the two offline datasets. The red line indicates the mean perfor-
mance achieved by our method after online finetuning.

Quadruped locomotion Walk is a state-only continuous control task with a 12-DoF Unitree Go1
robot, as visualized in Figure 3 (left). The policy takes robot states as input and output control signal
for 12 joints. The goal of this task is to control the robot to walk forward at a specific velocity.
Rewards consist of a major velocity reward that is maximized when the forward velocity matches
the desired velocity, and a minor component that penalizes unsmooth actions.

Transfer tasks We designed nine transfer tasks based on reach (the same task as real reach but
simplified because of the knowledge of ground-truth positions) and push with xArm, and two trans-
fer tasks with the legged robot in simulation to evaluate the generalization capability of offline
pretrained models. Compared to real-world tasks, the online budget is abundant in simulation, thus
we increase the disparity between offline and online tasks such as finetuning on a totally different
task. As the target point for both xArm tasks is a red circle, we directly use reach as offline pretrain
task and online finetuning on different instances of push including push cube, push sphere, push
cylinder, and push cube with an obstacle. For quadruped locomotion, we require the robot to walk
at a higher target speed (twice the pretrained speed) and to walk on new rugged terrain. Tasks are
illustrated in Figure 15.

D4RL We consider four representative tasks from two domains (Hopper and AntMaze) in the
D4RL [38] benchmark. Each domain contains two data compositions. Hopper is a Gym locomotion
domain where the goal is to make hops that move in the forward (right) direction. Observations
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contain the positions and velocities of different body parts of the hopper. The action space is a 3-
dimension space controlling the torques applied on the three joints of the hopper. Hopper (medium)
uses 1M samples from a policy trained to approximately 1/3 the performance of the expert, while
Hopper (medium-replay) uses the replay buffer of a policy trained up to the performance of the
medium agent. Antmaze is a navigation domain with a complex 8-DoF quadruped robot. We use
the medium maze layout, which is shown in Figure 3 (left). The play dataset contains 1M samples
generated by commanding specific hand-picked goal locations from hand-picked initial positions,
and the diverse dataset contains 1M samples generated by commanding random goal locations in
the maze and navigating the ant to them. This domain is notoriously challenging because of the
need to “stitch” suboptimal trajectories. These four tasks are officially named hopper-medium-v2,
hopper-medium-replay-v2, antmaze-medium-play-v2 and antmaze-medium-diverse-v2

in the D4RL benchmark.

C Implementation Details

Q-ensemble and uncertainty estimation We provide PyTorch-style pseudo-code for the imple-
mentation of the Q-ensemble and uncertainty estimation discussed in Section 3.2. Here Qs is a list
of Q-networks. We use the minimum value of two randomly selected Q-networks for Q-value es-
timation, and the uncertainty is estimated by the standard deviation of all Q-values. We use five
Q-networks in our implementation.

def Q_estimate(Qs, z, a):
x = torch.cat([z, a], dim=-1) # concatenate (latent) state and action
idxs = random_choice(len(Qs), 2, replace=False) # randomly select two distinct Qs
q1, q2 = Qs[idxs[0]](x), Qs[idxs[1]](x)
return torch.min(q1, q2) # return the minimum of the two as Q value estimation

def Q_uncertainty(Qs, z, a):
x = torch.cat([z, a], dim=-1) # concatenate (latent) state and action
qs = torch.stack(list(q(x) for q in Qs), dim=0)
uncertainty = qs.std(dim=0) # compute the standard deviation as uncertainty
return uncertainty

Network architecture For the real robot tasks and simulated xArm tasks where observations con-
tain both an RGB image and a robot proprioceptive state, we separately embed them into feature
vectors of the same dimensions with a convolutional neural network and a 2-layer MLP respec-
tively, and do element-wise addition to get a fused feature vector. For real-world kitchen tasks,
where observations include two RGB images and a proprioceptive state, we use separate encoders
to embed them into three feature vectors and do the element-wise addition. For D4RL and quadruped
locomotion tasks where observations are state features, only the state encoder is used. We use five
Q-networks to implement the Q-ensemble for uncertainty estimation. All Q-networks have the same
architecture. An additional V network is used for state value estimation as discussed in Section 3.1.

Hyperparameters We list the hyperparameters of our algorithm in Table 5. The hyperparameters
related to our key contributions are highlighted .

Other details We apply image shift augmentation [52] to image observations, and use Prioritized
Experience Replay (PER; [53]) when sampling from replay buffers.

D Baselines

TD-MPC We use the same architecture and hyperparameters for our method and our three
TD-MPC baselines as in the public TD-MPC implementation from https://github.com/

nicklashansen/tdmpc, except that multiple encoders are used to accommodate both visual inputs
and robot proprioceptive information in the real robot and xArm tasks, as described in Apppendix C.
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For the TD-MPC (+data) baseline, we append the offline data to the replay buffer at the beginning
of online training so that they can be sampled together with the newly-collected data for model up-
date. For the TD-MPC (+offline) baseline, we naı̈vely pretrain the model on offline data and then
finetune it with online RL without any changes to hyperparameters.

IQL We use the official implementation from https://github.com/ikostrikov/implicit_

q_learning for the IQL baseline. We use the same hyperparameters that the authors used
for D4RL tasks. For xArm tasks, we perform a grid search over the hyperparameters τ ∈
{0.5, 0.6, 0.7, 0.8, 0.9, 0.95} and β ∈ {0.5, 1.0, 3.0, 10.0}, and we find that expectile τ = 0.95
and temperature β = 10.0 achieves the best results. We add the same image encoder as ours to the
IQL implementation in visuo-motor control tasks.

Table 5. Hyperparameters.
Hyperparameter Value

Expectile (τ ) 0.9 (AntMaze, xArm, Walk)
0.7 (Hopper)

AWR temperature (β) 10.0 (AntMaze)
3.0 (Hopper, xArm)
1.0 (Walk)

Uncertainty coefficient (λ) 1 (xArm, Walk)
3 (AntMaze)
20 (Hopper)

Q ensemble size 5
Batch size 256
Learning rate 3e-4
Optimizer Adam(β1 = 0.9, β2 = 0.999)
Discount 0.99 (D4RL, Walk)

0.9 (xArm)
Action repeat 1 (D4RL, Walk)

2 (xArm)
Value loss coefficient 0.1
Reward loss coefficient 0.5
Latent dynamics loss coefficient 20
Temporal coefficient 0.5
Target network update frequency 2
Polyak 0.99
MLP hidden size 512
Latent state dimension 50
Population size 512
Elite fraction 50
Policy fraction 0.1
Planning iterations 6 (xArm, Walk)

1 (D4RL)
Planning horizon 5
Planning temperature 0.5
Planning momentum coefficient 0.1
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(a) Reach.

(b) Push.

(c) Push sphere with increased lighting.

(d) Push cylinder.

(e) Push with obstacle.

(f) Walk on rugged terrain.

Figure 15. Transfer tasks in simulation. We consider a total of eleven transfer settings in sim-
ulation. We here visualize a trajectory for each of the tasks used in our xArm experiments, and
a trajectory for walking on rugged terrain with the legged robot. Task labels correspond to those
shown in Figure 10.
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