
Batch Differentiable Pose Refinement for
In-The-Wild Camera/LiDAR Extrinsic Calibration

Lanke Frank Tarimo Fu
University of Oxford
fu@robots.ox.ac.uk

Maurice Fallon
University of Oxford

mfallon@robots.ox.ac.uk

Figure 1: Coarse-to-fine refinement of the LiDAR-to-camera extrinsic parameters. The matching
appearance between the LiDAR and camera features is trained using only ground-truth extrinsic
parameters for self-supervision. During training, batched refinement helps retain difficult samples
that individually would have been discarded. During inference, we show that batched refinement
achieves state-of-the-art zero-shot transfer. The rightmost column shows the refined overlay of Li-
DAR points in the image.

Abstract: Accurate camera to LiDAR (Light Detection and Ranging) extrinsic
calibration is important for robotic tasks carrying out tight sensor fusion — such
as target tracking and odometry. Calibration is typically performed before de-
ployment in controlled conditions using calibration targets, however, this limits
scalability and subsequent recalibration. We propose a novel approach for target-
free camera-LiDAR calibration using end-to-end direct alignment which doesn’t
need calibration targets. Our batched formulation enhances sample efficiency dur-
ing training and robustness at inference time. We present experimental results,
on publicly available real-world data, demonstrating 1.6cm/0.07◦median accuracy
when transferred to unseen sensors from held-out data sequences. We also show
state-of-the-art zero-shot transfer to unseen cameras, LiDARs, and environments.

Keywords: Sensor Fusion, Extrinsic Calibration, Differentiable Optimization

1 Introduction

In many multi-sensor robotic setups, information fusion between any two sensors requires accurate
knowledge of the relative transformation between the sensors — the extrinsic parameters. In the case
of sensor fusion between a camera and a LiDAR, the extrinsic parameters along with the intrinsic
parameters of the camera are used to determine point-to-pixel correspondence displayed in Fig. 1.
This correspondence enables fusion in downstream tasks such as object detection, tracking, and ego-
motion estimation. Camera/LiDAR extrinsic calibration ‘in-the-wild’ — meaning in uncontrolled
environments without specialized targets — is difficult due to the domain gap between the two
sensors. Cameras register textural information but can’t directly measure geometry whereas LiDARs

7th Conference on Robot Learning (CoRL 2023), Atlanta, USA.



measure geometry but can’t register texture. Additionally, cameras are passive sensors and may
capture illumination variations like shadows. In contrast, LiDARs, which produce their own light,
don’t detect shadows in the same visual range. Given these challenges, in-the-wild camera/LiDAR
extrinsic calibration is still an active research question.

In this work, we present a framework for camera/LiDAR extrinsic calibration that:

• Can recover the accurate extrinsic parameters from a wide range of initial estimates.

• Learns relevant features for pose alignment from both camera and LiDAR input automati-
cally.

• Generalizes to sensors and environments not encountered during training.

We formulate the camera/LiDAR extrinsic calibration problem as one of batch differentiable direct
alignment – aligning a batch of learned features from the LiDAR domain to their corresponding
batch of deep image features, guided by deep feature gradients in the image. The end-to-end dif-
ferentiable nature of our formulation relaxes the need for manual feature tuning. We show in our
experiments that not only do we achieve state-of-the-art performance on the training sensor suite
(with median translation and rotation errors of 1.6cm and 0.07◦), but our method also generalizes
to unseen sensor models and environments — with results demonstrated using a variety of common
datasets.

2 Related Works

Classical solutions to the problem of target-free camera/LiDAR extrinsic calibration form two cat-
egories: The first category exploits correlations between the image intensity value and the LiDAR
reflectance value [1, 2, 3]. These methods perform well under assumptions of uniform lighting in the
environment but still require an initial guess which is close to the ground truth extrinsic parameters.
The other category of methods maps geometric (e.g. depth or normal) discontinuities in the LiDAR
scan to image intensity discontinuities i.e. image gradients [4, 5, 6]. This use of local image gradient
information can be augmented by local intensity normalization, which improves the robustness of
these methods in scenes with varying illumination sources. Still, their performance in cluttered en-
vironments is limited by the abundance of local minima. Both these categories of classical methods
typically require manual parameter tuning for each unique sensor suite and as such struggle to be
adapted to different configurations and manufacturers.

More recent works tackle the target-free calibration problem using deep-learned approaches. We
classify these works into two categories: i) regression-based methods [7, 8] that align camera and
LiDAR features using parameters regressed by a deep neural network. While these methods demon-
strate impressive accuracy on held-out datasets of their training environment, their regression-based
nature makes a zero-shot transfer to other datasets difficult since the neural network is biased to
output extrinsic parameters in the distribution seen during training. Another, newer category of
methods employs differentiable optimization for either (ii) indirect feature point matching via non-
linear perspective-n-point [9]; or (iii) calibration-flow refinement [10] to align LiDAR-extracted
deep features to their corresponding pixel locations in the image. While both these methods gener-
alize better than regression-based methods, [10] only recovers calibration over a narrow region of
operation and [9] achieves significantly less accurate results.

RGKCNet [9] and DXQNet [10] are of a different category of differentiable pose alignment com-
pared to our method, in that they are forms of indirect alignment. RGKCNet learns 3-D point to 2-D
pixel correspondences, and thus incorrectly models degenerate features such as lamp posts and thin
trees which are line constraints and not point constraints. DXQNet learns a 2-dimensional weighting
term which is used to weight the per-point alignment along XY-axis aligned directions. This puts
the burden on the network to not just learn features but to also accurately model their orientations.
Our method overcomes this challenge by explicitly computing deep image gradients, naturally dis-

2



Figure 2: An overview of one iteration of the batched differentiable alignment. Batches of pairs of
images and voxelized point clouds are passed through their respective U-Net feature extractors. Each
sparse voxel feature is warped to the image using the latest transform parameters and the camera in-
trinsic parameters and registers a residual for its difference to the image feature at the corresponding
pixel location. This residual along with the image gradient and the Jacobian of the projected pixel
location with respect to the transform parameters forms the signal for the optimization.

tinguishing between line and point constraints — allowing the network to focus simply on learning
useful features.

3 Method

We take inspiration from methods for scene-agnostic visual localization. Like PixLoc [11], we avoid
overfitting pose estimation into a scene memorization problem by performing deep feature alignment
using differentiable optimization. This allows us to decouple the task of projective geometry, in pose
refinement, from the task of learning features. In doing so, we translate the task of achieving zero-
shot transfer for camera/LiDAR extrinsic calibration, into the task of learning camera and LiDAR
features that transfer to unseen environments, captured by different sensors.

3.1 Problem formulation

Given a point cloud, a set of N 3-D points, PL ∈ R3×N represented in the LIDAR reference frame
(denoted by the subscript L) and a set of images, we want to determine the extrinsic parameters
RC

L ∈ SO(3), tCL ∈ R3, such that,

PC = RC
LPL + tCL . (1)

Where PC are the corresponding coordinates of PL, from the camera’s reference frame. For brevity,
we use (RC

L , t
C
L ) = TC

L ∈ SE(3) to denote the rigid body transform and omit the reference frame
scripts i.e. T ≜ TC

L .

3.2 Camera/LiDAR extrinsic calibration as differentiable direct alignment

With direct alignment, the transform parameters are optimized to minimize the misalignment in the
appearance of the signals registered by different sensors. In our case, our two sensors are the LiDAR
and the camera. Instead of attempting to match the raw outputs from sensors, such as the intensity
from LiDAR to image intensity, which has proven problematic in difficult lighting situations [3], we
begin by extracting deep features from the raw inputs.

From the LiDAR side, we map the 3-D points using the initial guess of the extrinsic parameters
to get P̂ = R̂PL + t̂. We then voxelize these points and extract, using a sparse 3-D CNN, a
set (P̂p,Fp

L,w
p
L) for each p ∈ [1, ..., P ] of a P -level multi-scale feature pyramid. At each level,

P̂p ∈ R3×Np are the Np voxel centroids, and Fp
L ∈ RDp×Np are the Np corresponding deep feature

vectors at each voxel centroid of dimension Dp. Lastly, wp
L is the vector of Np learned weights with

elements in the range [0, 1].

3



From the camera side, we use a 2-D CNN to extract from the camera image I ∈ RW×H×3 a pyramid
of deep features Fp

C ∈ RWp×Hp×Dp , and corresponding weights Wp
C ∈ RWp×Hp . Similarly,

p ∈ [1, ..., P ] stands for one of the pyramid levels, each matching in scale with their corresponding
LiDAR extractor pyramid levels.

At each i-th iteration of the optimization, the misalignment between the deep features extracted from
the j-th LiDAR point and camera features at its corresponding projected point is given by,

rpj = (Fp
Lj

− Fp
C [Π

p(RiP̂
p
j + ti)]) ∈ RDp . (2)

Πp is the projection function of a 3-D point in the camera reference frame onto the image plane
at level p, and [·] denotes sub-pixel lookup by bi-linear interpolation. We’ve also introduced new
variables Ri and ti which are optimization parameters that we iterate and initialize as R0 = I3×3

and t0 = 0.

Similar to [11], we formulate a total cost function from these residuals in the form,

Ep(Ri, ti) =

Np∑
j

wljwcjρ(∥r
p
j∥

2), (3)

where wlj is the j-th element of wp
L, the LiDAR-learned weighting, and wcj is the camera-learned

weighting sub-pixel interpolated at the pixel location of the j-th LiDAR point projected into the
image plane at level p. Lastly, ρ is the learnable robust cost function [12]. To robustly minimize
this non-linear least-squares problem we perform the alignment in a coarse-to-fine fashion, using
solutions from the previous coarser level of the pyramid as the starting point in the problem of the
finer level. At each level, we use the learned Levenberg-Marquardt algorithm [11], parameterizing
transform updates using ξ ∈ se(3). As such, we stack all the residual terms at level p into rp ∈
RDpNp and formulate each row of the Jacobian J ∈ RDpNp×6 and the Hessian H ∈ R6×6 with
respect to ξ as,

Jk+(j−1)Dp
=

∂rpjk
∂p̂

∂p̂

∂ξ
, and H = J⊺WJ, (4)

where j ∈ [1, Np] is the j-th 3-D point, k ∈ [1, Dp] denotes the k-th dimension of the deep-learned
features at level p, and W ∈ RDpNp×DpNp is a block diagonal matrix with Np blocks of size
Dp ×Dp each, where the j-th block has uniform diagonal weights wljwcj . With these defined, we
compute a Gauss-Newton gradient step in the direction of decreasing cost with ξ = −H−1J⊺Wr,
and update our transform estimate using,

[
Ri+1 ti+1

0 1

]
= exp(ξ̂)⊺

[
Ri ti
0 1

]
. (5)

We visualize one of these steps in Fig. 2

The training loss: During training, we perform these alignment updates for fixed M steps at each
pyramid level, yielding for each level, Tp

M . We supervise these transforms with the ground truth
using the reprojection error of each 3-D point:

L =
∑
p

∑
j

ρ(∥Πp(R̄P̂p
j + t̄)−Πp(Rp

M P̂p
j + tpM )∥2). (6)

Note that since the points P̂p
j are LiDAR points projected by the initial guess of the extrinsic pa-

rameters, our supervision signal T̄ is given by, T̄ = TT̂−1, where T is the ground truth extrinsic
parameters and T̂ is the initial guess applied to the LiDAR points before voxelization.

3.3 Batch SE(3) alignment

At test time: When we make the added assumption that we are solving for the same transform
parameters across a batch of image/point cloud pairs at test time, the change to our algorithm is

4



Figure 3: PCA feature visualization of a feature-deprived scene (top) and a feature-rich scene (bot-
tom). During training, our batch formulation keeps the harder example at the top from diverging.
Consequently, we can still learn the sparse amount of features it does have e.g. the ground to hedge
differences in the middle columns, and the salient post on the rightmost column.

rather straightforward. Where we used to have, at each pyramid level, the residual rp ∈ RDpNp ,
we now stack all the residuals across the batch together and get the vector rpB ∈ RDpNB where
NB =

∑B
b Np

b is the total number of 3-D points in the batch at level p. Then, we update Eq. (4)
accordingly and solve the optimization steps just as we did in the single sample case. This technique
is deployed in most existing non-learning-based target-free calibration works [4, 3, 2], where it
is interpreted as making the calibration cost function Eq. (3) smoother and more convex. To our
surprise, this simple yet very effective scheme has so far not been deployed in deep-learned camera-
LiDAR extrinsic calibration.

At training time While at first glance it may seem impossible to perform batch pose alignment
during training since we might encounter camera/LiDAR pairs with heterogeneous extrinsic param-
eters, note that the pose alignment is performed relative to the initial guess (Eq. (5)). So while the
actual camera/LiDAR relative transforms may differ across the batch, we can independently pick
initial guesses for each sample in the batch such that the relative transform from the initial guess to
the ground truth is identical. Mathematically, this gives for each b-th sample in the batch:

T̂b = ∆T−1Tb. (7)

Initializing the initial guess of each sample using Eq. (7) enables joint optimization across all sam-
ples of the entire batch, allowing us to learn features from even hard examples where individually
the optimization would have diverged (see Fig. 3).

4 Training Setup

To test the capability of our framework to perform accurate zero-shot transfer to unseen environ-
ments, we’ve set up our experiments to train solely on one dataset, and subsequently evaluate per-
formances using other datasets with different sensors and test environments.

Dataset: Due to its popularity as a benchmark for learning-based camera/LiDAR calibration, we
use the KITTI Odometry dataset [13] as our sole training dataset. It consists of 22 sequences of sub-
urban driving scenarios. During training, we only use camera “2” which is a front-facing colored
perspective camera and the top-mounted Velodyne HDL-64E LiDAR. Of the 22 sequences, we use
sequences “01” – “21”, leaving sequence “00” out for validation and testing.

Setup for LiDAR and camera input: Different LiDARs exhibit different spatial coverage, inten-
sity profiles, and reference coordinate frames. To make our framework robust to these variations
during zero-shot transfer, we perform pose and intensity augmentations to the LiDAR point cloud
and crop augmentations to the camera image. We specify these details in Appendix A.1.

Model: To facilitate robust calibration from large initial offsets, we use a coarse-to-fine alignment
scheme with 3 levels. Two U-Net [14] architectures extract deep features from LiDAR and camera
separately for each of these levels. To aid the correspondence of similar features from different
domains, we further adapt the features from each domain with a single multi-layer perceptron. We
provide details about our model and its weight initialization in Appendix A.2. During training, we

5



Table 1: Results on the same camera of a held-out sequence (values show component-wise
mean/median absolute values of translation/rotation along each axis).

Initial
error

Method Mean/Median ∆t (cm) Mean/Median ∆R (◦)
x y z roll pitch yaw

±1.5m
±20◦

LCCNet 0.24/0.26 0.38/0.36 0.46/0.35 0.03/0.03 0.01/0.00 0.04/0.02
DXQNet / / / / / /
Ours (1) 8.77/1.76 5.50/1.45 9.25/1.80 0.36/0.08 0.43/0.07 0.53/0.07
Ours (8) 2.26/0.51 2.02/0.87 1.24/0.58 0.10/0.02 0.21/0.04 0.16/0.03

±0.1m
±5◦

LCCNet 0.24/0.15 0.48/0.26 1.11/0.47 0.02/0.02 0.17/0.10 0.03/0.03
DXQNet 0.75/0.53 0.48/0.51 1.09/0.78 0.05/0.03 0.05/0.03 0.03/0.02
Ours (1) 3.23/0.94 2.58/1.04 3.42/1.18 0.09/0.05 0.13/0.05 0.15/0.04
Ours (8) 0.42/0.32 0.82/0.83 0.59/0.46 0.02/0.02 0.04/0.04 0.02/0.02

use the Adam [15] optimizer with a learning rate of 10−5 to train for 20 epochs with a batch size of
8.

5 Results

All results showcased here are derived from models trained on a single camera/LiDAR pair as de-
tailed in Section 4. To assess the capacity for zero-shot transfer, we incrementally test on more
challenging scenarios, starting with a held-out sequence of the training data and culminating in tests
on completely different cameras, LiDARs, and environments.

5.1 Extrinsic calibration in settings similar to training

Testing using the same camera: In this simple setting, we use images from the training camera
(camera “02”) but from a held-out sequence “00” of the KITTI Odometry dataset which comprises
4541 image/point cloud samples. The differences between the extrinsic parameters in this sequence
and the training sequences are negligible, so the key distinction from the training data is the novel
scenes in this held-out sequence.

We compare against the regression-based LCCNet [8] and the differentiable calibration flow method
DXQNet [10]. When comparing against LCCNet, we pass to our model initial extrinsic parameter
guesses sampled uniformly [0, 20]◦and [0, 1.5]m around the ground truth value, using the scheme
presented in Appendix A.1. Note that the initial angular errors used in this experiment are even
larger than the values we used during training.

The upper section of Table 1 shows LCCNet outperforming our method. Our method performs
poorly on single image/point cloud pairs due to scenes with insufficient data for full 6-DoF pose
observability. However, our method substantially improves when run in batch optimization using 8
pairs, achieving sub-centimeter median absolute error on each translation axis and even surpassing
LCCNet in median roll rotation accuracy. Remarkably, our model achieves this despite the fact that
it has never encountered rotation perturbations up to 20◦during training.

DXQNet is designed to only recover calibration from small drifts [10] in the range [0, 5]◦and [0,
0.1]m, so we sample initial calibration parameters in this same range when comparing our method
against DXQNet. The lower section of Table 1 shows that our method’s single-sample performance
is slightly worse than DXQNet in median metrics and notably worse in mean metrics since our
method diverges when a single scene lacks sufficient structure. However, performing batch op-
timization significantly enhances our method, achieving lower error than DXQNet along all axes
except for Y-axis translation and median pitch-angle error.

While DXQNet is designed only for calibration from small initial errors of [0, 5]◦and [0, 0.1]m [10],
as seen in Table 1, our method competes even against state-of-the-art regression-based methods like
LCCNet and recovers calibration from large initial errors of [0, 20]◦and [0, 1.5]m.

6



Table 2: The performance change: trained on camera “2” and tested on camera “3” of a held-out
sequence (values show the mean/median magnitudes of the translation/rotation vector).

Initial
error

Method Mean ∆t (cm) Mean ∆R (◦) Median ∆t (cm) Median ∆R (◦)
seen unseen seen unseen seen unseen seen unseen

±1.5m
±20◦

LCCNet 1.59 52.5 0.16 1.54 1.01 52.5 0.12 1.47
DXQNet / / / / / / / /
Ours (1) 15.98 20.15 0.92 1.07 3.60 4.65 0.16 0.20
Ours (8) 3.09 3.77 0.15 0.30 1.39 1.69 0.07 0.07

±0.1m
±5◦

LCCNet 1.29 52.5 0.18 1.52 0.61 52.5 0.12 1.47
DXQNet 1.43 2.94 0.08 0.16 0.81 2.28 0.07 0.13
Ours (1) 6.25 8.32 0.25 0.31 2.21 2.86 0.10 0.13
Ours (8) 1.20 1.76 0.05 0.07 1.12 1.65 0.06 0.07

Testing using a different camera at a different vantage point: While all the methods are trained
on camera “2” (seen), in this test, we perform calibration between the LiDAR and camera “3”
(unseen). This is significant for generalization because cameras “3” and “2” are separated 50 cm
apart. We also use two ranges of initial errors in this experiment, a larger one to compare against
LCCNet, and a smaller one for DXQNet. In doing so, we test our model’s ability to both recover
calibration from large initial errors and also transfer to new sensors.

Unlike the case of testing on the seen camera, the upper section of Table 2 shows that, when tested
on the unseen camera, our method consistently performs better than LCCNet — whose mean and
median translation error magnitudes (of more than 50cm) are more than a magnitude higher than the
1cm error achieved with the seen camera. While our method also experiences a drop in accuracy
when tested on the unseen camera, our drop is significantly lower (from 3.60cm to 4.65cm median
translation error), and even lower when run in batch optimization, from 1.39cm to 1.69cm median
translation error magnitude – only a 3mm drop.

Meanwhile, DXQNet, the learned calibration flow method, is more robust when transferred to the
unseen camera. Seen on the lower section of Table 2, the median translation accuracy of DXQNet
drops to 2.28cm on the unseen camera, which is still relatively accurate when compared to LCCNet.
While DXQNet performed better than our method in the single image/point cloud pair setting on
the seen camera, once transferred to the unseen camera, the performance gap narrows down. In fact,
shown on the lower section of Table 2, our method and DXQNet achieve the same level of median
rotation accuracy.

We see that running batched optimization with our method achieves the best mean/median rotation
and translation accuracy compared to all other methods when transferred to the unseen camera.
Additionally, the drop in accuracy (transferring from the seen to the unseen camera) is lower using
our method – especially so in the batched alignment case. We highlight these facts in Fig. 4, where
the slope of the graphs highlights the drop in accuracy.

Seen Unseen

1cm

10cm

100cm Translation error
LCCNet
Ours Single
Ours Batch

(a)

Seen Unseen

0.1°

1.0°

Rotation error
LCCNet
Ours Single
Ours Batch

(b)

Seen Unseen

1cm

2cm

3cm

Translation error
DXQNet
Ours Single
Ours Batch

(c)

Seen Unseen0.0°

0.1°

0.2°

Rotation error
DXQNet
Ours Single
Ours Batch

(d)

Figure 4: Slope graphs highlighting the error increase when the methods are tested on an unseen
camera, having trained on the seen camera. All plots show median metrics: (a) and (b) comparing
translation and rotation errors of our method versus LCCNet, and (c) and (d) comparing against
DXQNet. Note that our method exhibits gentler slopes compared to the other methods, showing a
more robust transfer to the unseen camera.

7



Table 3: Zero-shot transfer performance on different datasets.
Method ∆t (cm) ∆R (◦)

DXQNet 5.65/4.70 2.89/1.03
Ours Single 28.0/5.99 1.70/0.55
Ours Batch 3.67/3.61 0.51/0.51

(a) KITTI-360 dataset. Initial error in the range:
±5◦±0.1m. Ours Batch uses a batch size of 8

Method ∆t (cm) ∆R (◦)

LCCNet 324/318 20.8/18.1
Ours Single 102/16.8 3.60/0.64
Ours Batch 6.97/3.87 0.44/0.43

(b) Waymo dataset. Initial error in the range:
±20◦±1.5m. Ours Batch uses a batch size of 4

5.2 Zero-shot transfer to different environments with different sensors

Transfer to a different camera in a different environment: The KITTI-360 [16] dataset is cap-
tured in Karlruhe, just like the KITTI Odometry dataset we used during training. However, the
camera setup is different both in intrinsic parameters and its relative transform to the LiDAR.

We compare our calibration accuracy to DXQNet, as they have also reported their zero-shot transfer
metrics in the KITTI-360 setup. In Table 3a, we show that overall, the accuracy achieved by both
methods is worse in rotation and in translation compared to their respective performances on the
KITTI Odometry dataset. While our single sample optimization method performs better in rota-
tion but worse in translation than DXQNet, our batched optimization method (batch of 8) performs
significantly better than DXQNet in both rotation and translation.

Transfer to a different camera, LiDAR, and environment: We also test generalizability to the
Waymo dataset [17], which has a higher resolution camera and a custom LiDAR. To match the
training data image resolution, we halve the image size and camera intrinsics, allowing for consistent
feature extraction. This flexibility further distinguishes optimization-based calibration methods from
regression-based methods which can’t explicitly reconfigure the camera projection parameters.

In Table 3b, we see that LCCNet does not generalize, with translation errors over 3m and rotation
errors at 20.8◦(mean) and 18.1◦(median). Our method, run on a single sample, is poor in the mean
metric (just above 1m and 3.6◦), but is better in the median metric (16.8cm, 0.64◦), suggesting that
some outlier scenes impact calibration performance. Notably, batch optimizing image/point cloud
pairs improves our performance significantly, reducing the median translation error to 3.87cm and
rotation errors to 0.44◦(mean) and 0.43◦(median).

6 Limitations

Currently, our model assumes shared visibility between the LiDAR and the camera, enabling pose
alignment from simultaneous image and point cloud pairs. In sensor settings without shared vis-
ibility, existing literature resolves this by creating a local map from several images and LiDAR
scans [18]. Our model further presumes simultaneous image pixel and LiDAR point registration,
necessitating ego-motion compensation for rotating LiDAR models. To overcome these limitations,
in future work, we aim to tackle ego-motion estimation, inter-sensor temporal calibration and Li-
DAR/camera extrinsic calibration jointly using differentiable representations of sensor relative pose
as explored in [19].

7 Conclusion

We have presented a method for in-the-wild camera/LiDAR calibration that both recovers calibration
from large initial errors ([0, 20]◦and [0, 1.5]m) and transfers to unseen sensors and environments —
a trait that no existing method has demonstrated. While these are promising results for in-the-wild
calibration, our accuracy still falls short of target-based calibration methods. In future work, we
aim to incorporate more geometric priors such as mapping/ego-motion consistency into our feature
learning to facilitate online tasks that require higher degrees of accuracy.

8



Acknowledgments

Support for this work has been provided by the Horizon Europe project DigiForest (101070405) and
a Royal Society University Research Fellowship (M. Fallon). This work has been carried out within
the framework of the EUROfusion Consortium, funded by the European Union via the Euratom
Research and Training Programme (Grant Agreement No 101052200 — EUROfusion). Views and
opinions expressed are however those of the author(s) only and do not necessarily reflect those of
the European Union or the European Commission. Neither the European Union nor the European
Commission can be held responsible for them.

References
[1] N. Williams, K.-L. Low, C. Hantak, M. Pollefeys, and A. Lastra. Automatic image alignment

for 3d environment modeling. pages 388– 395, 11 2004. ISBN 0-7695-2227-0. doi:10.1109/
SIBGRA.2004.1352985.

[2] G. Pascoe, W. Maddern, and P. Newman. Direct visual localisation and calibration for road
vehicles in changing city environments. In Proceedings of the IEEE International Conference
on Computer Vision (ICCV) Workshops, December 2015.

[3] G. Pandey, J. McBride, S. Savarese, and R. Eustice. Automatic targetless extrinsic calibration
of a 3d lidar and camera by maximizing mutual information. Twenty-Sixth AAAI Conference
on Artificial Intelligence, 26, 01 2012. doi:10.1609/aaai.v26i1.8379.

[4] J. Levinson and S. Thrun. Automatic online calibration of cameras and lasers. In Robotics:
Science and Systems, 2013.

[5] A. Napier, P. Corke, and P. Newman. Cross-calibration of push-broom 2d lidars and cameras
in natural scenes. In 2013 IEEE International Conference on Robotics and Automation, pages
3679–3684, 2013. doi:10.1109/ICRA.2013.6631094.

[6] X. Liu, C. Yuan, and F. Zhang. Targetless extrinsic calibration of multiple small fov lidars and
cameras using adaptive voxelization. IEEE Transactions on Instrumentation and Measurement,
71:1–12, 2022. doi:10.1109/TIM.2022.3176889.

[7] G. Iyer, R. KarnikRam, K. M. Jatavallabhula, and K. M. Krishna. Calibnet: Geometrically
supervised extrinsic calibration using 3d spatial transformer networks. 2018 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), pages 1110–1117, 2018.

[8] X. Lv, B. Wang, D. Ye, and S. Wang. Lidar and camera self-calibration using cost volume
network. arXiv preprint arXiv:2012.13901, 2020.

[9] C. Ye, H. Pan, and H. Gao. Keypoint-based lidar-camera online calibration with robust ge-
ometric network. IEEE Transactions on Instrumentation and Measurement, 71:1–11, 2022.
doi:10.1109/TIM.2021.3129882.

[10] X. Jing, X. Ding, R. Xiong, H. Deng, and Y. Wang. Dxq-net: Differentiable lidar-camera
extrinsic calibration using quality-aware flow, 2022.

[11] P.-E. Sarlin, A. Unagar, M. Larsson, H. Germain, C. Toft, V. Larsson, M. Pollefeys, V. Lepetit,
L. Hammarstrand, F. Kahl, and T. Sattler. Back to the Feature: Learning Robust Camera
Localization from Pixels to Pose. In CVPR, 2021.

[12] J. T. Barron. A general and adaptive robust loss function. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 4331–4339, 2019.

[13] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous driving? the kitti vision
benchmark suite. In Conference on Computer Vision and Pattern Recognition (CVPR), 2012.

9

http://dx.doi.org/10.1109/SIBGRA.2004.1352985
http://dx.doi.org/10.1109/SIBGRA.2004.1352985
http://dx.doi.org/10.1609/aaai.v26i1.8379
http://dx.doi.org/10.1109/ICRA.2013.6631094
http://dx.doi.org/10.1109/TIM.2022.3176889
http://dx.doi.org/10.1109/TIM.2021.3129882


[14] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image
segmentation, 2015.

[15] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization, 2017.

[16] Y. Liao, J. Xie, and A. Geiger. Kitti-360: A novel dataset and benchmarks for urban scene
understanding in 2d and 3d, 2022.

[17] P. Sun, H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Patnaik, P. Tsui, J. Guo, Y. Zhou, Y. Chai,
B. Caine, V. Vasudevan, W. Han, J. Ngiam, H. Zhao, A. Timofeev, S. Ettinger, M. Krivokon,
A. Gao, A. Joshi, Y. Zhang, J. Shlens, Z. Chen, and D. Anguelov. Scalability in perception for
autonomous driving: Waymo open dataset. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), June 2020.

[18] T. Scott, A. A. Morye, P. Piniés, L. M. Paz, I. Posner, and P. Newman. Choosing a time and
place for calibration of lidar-camera systems. 2016 IEEE International Conference on Robotics
and Automation (ICRA), pages 4349–4356, 2016.

[19] Q. Herau, N. Piasco, M. Bennehar, L. Roldão, D. Tsishkou, C. Migniot, P. Vasseur, and C. De-
monceaux. Moisst: Multimodal optimization of implicit scene for spatiotemporal calibration,
2023.

[20] M. E. Muller. A note on a method for generating points uniformly on n-dimensional spheres.
Commun. ACM, 2(4):19–20, apr 1959. ISSN 0001-0782. doi:10.1145/377939.377946. URL
https://doi.org/10.1145/377939.377946.

[21] B. Graham, M. Engelcke, and L. van der Maaten. 3d semantic segmentation with submanifold
sparse convolutional networks. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2018.

[22] S. Contributors. Spconv: Spatially sparse convolution library. https://github.com/

traveller59/spconv, 2022.

[23] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recog-
nition, 2015.

[24] T. Sattler, W. Maddern, C. Toft, A. Torii, L. Hammarstrand, E. Stenborg, D. Safari, M. Oku-
tomi, M. Pollefeys, J. Sivic, F. Kahl, and T. Pajdla. Benchmarking 6dof outdoor visual local-
ization in changing conditions, 2018.

[25] X. Lai, Y. Chen, F. Lu, J. Liu, and J. Jia. Spherical transformer for lidar-based 3d recognition,
2023.

[26] J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke, C. Stachniss, and J. Gall. Se-
manticKITTI: A Dataset for Semantic Scene Understanding of LiDAR Sequences. In Proc. of
the IEEE/CVF International Conf. on Computer Vision (ICCV), 2019.

10

http://dx.doi.org/10.1145/377939.377946
https://doi.org/10.1145/377939.377946
https://github.com/traveller59/spconv
https://github.com/traveller59/spconv


A Details on experimental setup

A.1 Setup for LiDAR and camera input

Setup for LiDAR input: To learn robust features for the calibration of different transforms, we train
our network to recover the true calibration from a variety of initial guesses T̂ = TpT. We perturb
the ground truth T using uniformly sampled Tp, modeled by a translation and angle-axis vector.
We sample these vectors uniformly on the 3-sphere using [20] and scale them with a uniformly
distributed scalar. For training, the translation and rotation magnitudes are in the range [0, 1.5]m and
[0, 15]◦, respectively.

To account for different intensity profiles produced by different LiDAR models, and to cater for the
fact that some LiDAR drivers don’t provide intensity readings, we augment the intensity channel of
our LiDAR data to minimize our dependence on intensity information. We apply uniform random
scalar perturbations in the range [0, 1.0] to the intensity channel of the LiDAR points, meaning that
in some samples the intensity information is close to dropped out.

Lastly, to process the LiDAR data using our sparse 3-D CNN, we voxelize the points using isotropic
voxels of 2 cm per side. We found this resolution to be reasonable since it is in the range of the
measurement error reported by most automotive LiDAR manufacturers.

Setup for camera input: We’ve experimentally found that the camera feature extractor fails to
learn generalizable geometric features unless spatial augmentations are applied. In our training, we
performed random crop augmentations of [512, 256] pixels in width and height to the input image,
and updated the camera intrinsic parameters accordingly.

A.2 Model setup

Both image and point cloud feature extractors in our model follow the U-Net [14] architecture with
5 layers of coarse-to-fine features, each layer being a factor of 2 finer than the previous layer. We
use features from 3 layers for our alignment, the 1/16-scale, the 1/4-scale, and the 1-scale. The
dimensionality of the feature at these layers are 128, 128, and 32, respectively. To aid adaptation, at
each pyramid level, the features from both domains are passed through a shared 2-layer MLP with
the same input and output dimensions at each layer and Leaky ReLu activation.

With recent advancements in 3-D convolutions [21], we’ve chosen the spconv [22] implementation
of sparse 3-D CNNs for our LiDAR feature extractor, as it can efficiently handle large point clouds,
and can effectively manage the sparsity pattern of the data.

Learning features in the image domain is relatively straightforward, we’ve found that using the same
U-Net [14] architecture (similar to Pixloc [11]) with the 2-D convolutional VGG [23] backbone was
sufficient for image feature learning.

We initialize the visual extractor using weights from a pre-trained PixLoc [11] model trained on
the CMU Seasons dataset [24], and the LiDAR extractor using only the sparse 3D CNN weights
of a SphereFormer [25] model pre-trained on Semantic KITTI [26]. For the pose optimization, we
trained with M = 5 iterations at every pyramid level.

11



B Additional Evaluations

B.1 Calibration recall as a function of initial error

To gauge the robustness of our method to initial calibration errors, we conducted an experiment to
measure the percentage of calibration trial that achieve errors less than 2cm and 0.1◦in both transla-
tion and rotation, respectively. In plotting this percentage as a function of the initial calibration error,
we aim to show the sensitivity of our method to initial calibration errors both in the single sample
optimization setting and in the batched optimization setting. We used the unseen camera from the
held-out KITTI Odometry data sequence. The results plotted in Figure 5, show that batched opti-
mization significantly boosts the robustness when there are large initial errors, achieving accurate
calibration over 60 percent of the time even when the initial error is in the ±2m,±20◦range unseen
during training.

2.0m 20°
1.5m 15°

1.0m 10°
0.5m 5°

0.1m 1°

Initial Error Range

10

20

30

40

50

60

70

Pe
rc

en
ta

ge
 (%

)

Percentage of accurately calibrated samples

batch
single

Figure 5: A plot of the percentage of calibration results that have errors less than 2cm and 0.1◦,
as a function of the initial error range, tested on the unseen camera from the held-out sequences
of the KITTI Odometry dataset. As seen, the batched optimization (batch size of 8) can estimate
an accurate calibration over 60 percent of the time, even when tested in the initial error range of
±2m,±20◦which was not encountered during training.

B.2 Comparison against additional methods

We compared our method to LCCNet and DXQNet in our evaluations as they have the best perfor-
mance for two different key traits — LCCNet excels in recovering from large initial errors, and can
DXQNet transfer to unseen environments. Of our cited works, there is only one other method based
on differentiable alignment, RGKCNet, but this method has reported lower calibration accuracy
than DXQNet, in a slightly different experiment setting. For completeness, we also show the per-
formance of our method tested in the RGKCNet experiment setting on the KITTI Odometry dataset.
The results, summarized in Table 4 show that our method significantly outperforms RGKCNet in
both translation and rotation metrics. Note that the median metrics for CalibNet are not included
because they were not made available by the authors.

Table 4: Comparison against RGKCNet and CalibNet in the KITTI Odometry setting. Initial error
in the range: ±7.5◦±0.2m

Method Mean/Median ∆t (cm) Mean/Median ∆R (◦)
x y z roll pitch yaw

CalibNet 12.0/ 3.5/ 7.9/ 0.18/ 0.9/ 0.15/
RGKCNet 5.0/2.8 4.0/2.6 5.9/3.4 0.16/0.09 0.15/0.10 0.17/0.11
Ours (1) 3.2/1.0 2.7/1.0 3.4/1.2 0.09/0.05 0.13/0.05 0.14/0.04
Ours (8) 0.4/0.3 0.8/0.8 0.6/0.5 0.02/0.02 0.04/0.04 0.02/0.02

12



B.3 The impact of batch optimization

B.3.1 A closer look at results from Table 2

In the case of using only a single image and point cloud pair, the direct alignment can encounter
outlier cases where the optimization diverges. In the absence of other sources of error, the median
metric can be robust to these outlier cases. However, in addition to spurious diverging outlier cases,
direct alignment with batch size = 1 is also affected by the frequent convergence to local optima. In
autonomous driving scenarios, these local optima are prevalent along the translation axes. Due to
the lack of features close to the camera, changes to the translation parameters create minimal visual
parallax which can make the optimization less sensitive to translation errors.

This shortcoming of direct alignment is consistent with our findings reported in Table 2. Referring
to the median rotation metric on the unseen camera, we see that Ours (1) performs just as well
as DXQNet, and nearly an order of magnitude better than LCCNet (the regression-based method).
On the other hand, on the median translation metric for the unseen camera, Ours (1) performs an
order of magnitude better than the regression-based method LCCNet (as we expected), but is still 6
millimeters less accurate than DXQNet (the sparse flow-based approach).

In this context, optimizing over a batch with size greater than 1, not only decreases the impact of
outlier diverging samples but also improves the accuracy of all samples altogether. This can be
seen in the histograms of the error distributions for translation and rotation in Figure 6. The error
distribution of the batch optimization (size 8) exhibits a shorter tail, it also has a sharper peak closer
to zero.

Distribution of absolute value of translation error (cm)

0

1000

2000

3000

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 10.00

Translation Batch 8 (count) Translation Single (count)

Histogram of Translation Errors

Distribution of absolute value of rotation error (degrees)

0

1000

2000

3000

4000

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.50

Rotation Batch 8 (count) Rotation Single (count)

Histogram of Rotation Errors

Figure 6: The error histograms of our method on the unseen camera referred to in Table 2. In both
translation and rotation error, the batched approach exhibits a shorter tail and also peaks closer to
zero than the single sample optimization. The last red bin in each plot aggregates all larger (outlier)
values.

13



B.3.2 Experiment with 3 simple scenes

To demonstrate how batch optimization can improve accuracy, even on non-diverging samples, we
performed a small but instructive experiment using 3 image/point-cloud pairs from the validation set
of KITTI odometry. Each of these samples contains sufficient information such that direct alignment
does not diverge to extreme errors. To further avoid divergence, we sampled initial guess transforms
relatively close to the ground truth (within 50 cm and 5 degrees).

(a) Scene 1

(b) Scene 2

(c) Scene 3

Figure 7: Scenes used in experiment B.3.2: Scene 1 has relatively more features close to the camera,
whereas Scene 3 has the fewest features due to a large patch of under-exposed bush in the image.

Running individual optimizations from 100 different initializations yields the distribution of trans-
lation errors seen in Figure 8.

Of the three scenes, performance is best on Scene 1 as it has more features closer to the camera
whereas performance is poorest in Scene 3 as it has the sparsest features. Aggregated statistics are
shown in Table 5. The last column shows the mean and median values found by stacking all error
values from scenes 1, 2, and 3 together. Note that the values in the last column are close to the values
computed from Scene 2, the mid ranking scene.

Table 5: Aggregate error statistics over 100 different runs of individual optimization on each of the
3 scenes from Figure 7

Translation Errors on the Experiment with 3 Scenes (cm)
Scene 1 Scene 2 Scene 3 Scenes Stacked

Mean 1.49 3.10 6.52 3.72
Median 1.11 3.05 6.36 2.96

Performing the same experiment as above, only running batch optimization with all 3 scenes yields
significantly better results, as seen in Figure 9.

14



Distribution of absolute value of translation errors (cm)

0

20

40

60

80

0.00 1.50 3.00 4.50 6.00 7.50 9.00 10.50 12.00 13.50 15.00 16.50 17.50

Scene 1 (count) Scene 2 (count) Scene 3 (count)

Histogram of Translation errors

Figure 8: Error distribution of optimizing 100 different initializations of each of the scenes in Fig-
ure 7 individually.

Distribution of absolute value of translation errors (cm)

0

20

40

60

80

0.00 1.50 3.00 4.50 6.00 7.50 9.00 10.50 12.00 12.50

Batch Optimization (count) Scene 1 (count) Scene 2 (count) Scene 3 (count)

Histogram of Translation errors

Figure 9: Error distribution of optimizing 100 different initializations of all scenes in Figure 7 jointly
(Batch Optimization) compared against the individual optimizations. The distribution of the batch
optimization errors exhibits a shorter tail and is closer to zero.

By fusing information from all scenes, the overall error distribution is sharper and closer to zero
than the error distribution of any of the individual scenes. Table 6 shows the aggregate statistics
found by performing batch optimization and compares it to the individual optimization result shown
previously.

The last two columns of Table 6 show a very significant difference in mean and median error between
performing batch optimization and individual per scene optimization. The mean error with batch
optimization is better than the mean error achieved by any of the individual scenes. While the

15



Table 6: Aggregate error statistics over 100 different runs of batch optimization of all 3 scenes
from Figure 7 jointly (Scenes Batch Optimized), contrasted against individual optimization.

Translation Errors on the Experiment with 3 Scenes (cm)

Scene 1 Scene 2 Scene 3 Scenes Stacked Scenes
Batch Optimized

Mean (cm) 1.49 3.10 6.52 3.72 1.38
Median (cm) 1.11 3.05 6.36 2.96 1.28

median error of batch optimization is slightly worse than that of the best-performing individual
scene, it is still significantly better than the median error of any other individual scene.

To conclude, the reason that batch optimization so significantly improves performance is not due to
the rejection of outlier cases alone. Owing to the effective fusion of features in direct alignment,
batch optimization yields solutions that are close in accuracy to the best individual sample in the
batch. This effectively raises the performance of many samples, not just the outlier cases.

16


	Introduction
	Related Works
	Method
	Problem formulation
	Camera/LiDAR extrinsic calibration as differentiable direct alignment
	Batch SE(3) alignment

	Training Setup
	Results
	Extrinsic calibration in settings similar to training
	Zero-shot transfer to different environments with different sensors

	Limitations
	Conclusion
	Details on experimental setup
	Setup for LiDAR and camera input
	Model setup

	Additional Evaluations
	Calibration recall as a function of initial error
	Comparison against additional methods
	The impact of batch optimization
	A closer look at results from Table 2
	Experiment with 3 simple scenes



