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Abstract: Sampling-based motion planning algorithms excel at searching global
solution paths in geometrically complex settings. However, classical approaches,
such as RRT, are difficult to scale beyond low-dimensional search spaces and rely
on privileged knowledge e.g. about collision detection and underlying state dis-
tances. In this work, we take a step towards the integration of sampling-based
planning into the reinforcement learning framework to solve sparse-reward con-
trol tasks from high-dimensional inputs. Our method, called VELAP, determines
sequences of waypoints through sampling-based exploration in a learned state em-
bedding. Unlike other sampling-based techniques, we iteratively expand a tree-
based memory of visited latent areas, which is leveraged to explore a larger por-
tion of the latent space for a given number of search iterations. We demonstrate
state-of-the-art results in learning control from offline data in the context of vision-
based manipulation under sparse reward feedback. Our method extends the set of
available planning tools in model-based reinforcement learning by adding a latent
planner that searches globally for feasible paths instead of being bound to a fixed
prediction horizon.

Keywords: Reinforcement Learning, Planning, Robot Manipulation

1 Introduction

The acquisition of complex motor skills from raw sensory observations presents one of the main
goals of robot learning. Reinforcement learning (RL) [1] provides a generic framework to obtain
such decision-making policies through the interaction with an environment. Model-based RL [2]
has recently gained much attention due to benefits in terms of sample-efficiency and robustness in
long-horizon scenarios. To address the issue of short-sighted decisions, model-based agents are
often equipped with planning methods. However, effective planning with high-dimensional inputs,
such as video data, is often challenging due to the increased complexity of the search space and the
difficulty in generating accurate long-term predictions. Consequently, a growing body of research
has explored the utilization of representation learning to simplify the decision-making problem by
mapping it to an abstract and lower-dimensional latent state space [3, 4, 5, 6, 7].

The model-based reinforcement learning (RL) literature has investigated various planning methods
in latent spaces, encompassing zero-order shooting-based approaches such as the Cross-Entropy
Method (CEM) [8, 3] and Model-Predictive Path Integral (MPPI) [9, 10, 11, 7], first-order gradient-
based optimization [12, 4], and more recently, trajectory collocation using second-order solvers
[6]. Despite this methodological diversity, the majority of existing tools primarily facilitate local
optimization within a fixed prediction horizon. Even with guidance from value heuristics, such as
the one proposed in [7], local minima may still impede progress, particularly when estimating the
optimal value function is difficult due to sparse reward feedback or limited training data. This paper
argues that planning in latent state spaces can benefit from more global exploration strategies that
seek solutions beyond a fixed prediction horizon to avoid convergence to local minima.
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Figure 1: Our method grows a search tree in the la-
tent space to globally explore reward-maximizing paths
(blue:start, red:goal nodes, green: estimated values).

The limitations observed in existing methods
raise the need for more sophisticated planning
strategies that can seamlessly integrate with
learned state and dynamics models. Sampling-
based motion planning [13], provides a diverse
range of algorithms for finding global paths be-
tween states in continuous and geometrically-
complex environments. Recent works by [5, 14,
15] have proposed modifications of sampling-
based planners in latent spaces. However, these
approaches either rely on expert data or are not
directly applicable to the reward-based learning
setting. This paper explores the integration of sampling-based planning techniques in learned latent
spaces, providing new avenues for model-based reinforcement learning. Specifically, we focus on
the challenging scenario of offline RL [16], which is characterized by the amplified effects of value
approximation errors [17]. Further, it allows us to better study the performance of planning in iso-
lation by disentangling training and data collection. We introduce Value-guided Expansive Latent
Planning (VELAP), which combines a sampling-based planning module with a suitable state embed-
ding. Similar to [15], our search tree serves as a state memory and it used to guide the exploration
towards undiscovered areas within the data support. Moreover, we leverage value heuristics ob-
tained through temporal difference learning to accelerate the discovery of high-valued states. We
present a comprehensive benchmark evaluation focusing on vision-based control. For this purpose,
we adapt the robot manipulator control environments from the meta-world benchmark suite [18].
Our experiments reveal that VELAP surpasses existing approaches by a significant margin in terms
of episode success rate. We attribute this performance gain to its ability to overcome local value
optima through global exploration, in contrast to the prevalent approach of optimizing over a fixed
horizons.

2 Related Work

Learning to control from visual input is becoming increasingly popular due to the wide availability
of inexpensive sensors and the generic representational format of images. A considerable number
of work uses deep generative models [19] to generate future images and plan actions via model pre-
dictive control [20, 21, 22, 23, 24]. These methods allow visual inspection of paths by humans, but
this is accompanied by the difficulty of generating and evaluating high-resolution video sequences
of many future steps. In this work, we instead follow the latent planning paradigm, which bypasses
the need to synthesize high-dimensional samples and enables farsighted search with lower compu-
tational costs. Several works learn image distance metrics using unsupervised learning [25, 5] or
RL [26, 27] to build an environment map that can be searched to generate visual paths. Map-based
approaches have shown impressive results for navigation in static environments, but often do not
scale well to complex settings with object interaction.

The work in [3] presents a model-based RL agent which uses a recurrent state space model to map
image observations to a lower-dimensional latent space. Time-discrete state-action trajectories are
optimized using the Cross-Entropy Method (CEM) [8] with a learned latent dynamics model. In
a follow-up work, [4] uses a differentiable latent planner to efficiently learn behaviors by propa-
gating analytic value gradients back in time. Similarly, [12, 28] implement a differentiable plan-
ner that optimizes latent trajectories via gradient descent. [29] trains a goal-conditioned RL agent
which generates future subgoal states through trajectory optimization within the latent space of a
Variational Autoencoder (VAE) [30]. [6] introduces the concept of collocation to model-based RL
for visual robot manipulation and optimizes state-action sequences directly with a second-order
optimizer. [10] solve dexterous manipulation tasks through latent trajectory optimization using a
reward-weighted adaptation of MPPI [9]. Similarly, the method in [7] uses value estimates as cost
within an MPPI-based latent policy. The line of work in [31, 32, 33] combines model-based RL
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with Monte Carlo Tree Search (MCTS) [34] for long-horizon decision-making in vision-based tasks
such as playing Atari games. While MCTS is mainly designed for discrete settings, [35] presents an
adaptation for continuous action spaces where the search and the policy improvement are based on
action sampling.

To address the offline RL setting, [36] modifies the MPPI agent in [10]. Their approach ensures
adherence to the data support by sampling actions from an imitation learning policy, thus addressing
the issue of out-of-distribution actions [17]. Similar, [11] presents a model-based agent for online
and offline RL which uses MPPI to maximize the expected return of imagined trajectories while
being guided by a learned policy. [37] designed a hierarchical agent for sparse reward manipulation
tasks. A VAE-based manager policy predicts subgoal states which a worker policy must achieve
within a fixed contingent of steps. In [38], a RRT-like [39] latent planner is presented for planning
from high-dimensional data. Compared to ours, their method relies on collision checking data and
is not designed for the more general reward-based setting. [14] leverages play data obtained from
a human operator to train a task-conditioned policy which guides a tree search in a learned latent
space. Our method is most related to the one recently presented in [15]. The authors introduce
a sampling-based latent planner similar to the classical Expansive Space Trees (EST) algorithm
[40]. Nevertheless, notable differences arise in terms of the problem types we tackle, resulting in
the adoption of distinct sets of tools. While their approach is confined to goal-reaching navigation
tasks, our method accommodates more general task specifications by leveraging sparse rewards. To
accomplish this, we employ value-based reinforcement learning to (a) jointly optimize representa-
tions for planning alongside the control policy, (b) integrate learned heuristics for node and action
selection during planning, and (c) identify suitable goals based on value estimates. These advance-
ments significantly enhance the capabilities and versatility of our method, surpassing the scope of
the previous work.

3 Preliminaries

MDPs and Offline RL A Markov decision process (MDP) is defined by a tuple M =
(S,A,P, r, γ), where S and A are state and action spaces, P(s′|s, a) are state dynamics, r(s, a)
is a scalar reward function, and γ is a discount factor. The goal of reinforcement learning [1] (RL) is
to find a policy π(a|s) that maximizes the expected discounted future reward R[τ ] over all trajecto-
ries τ given an initial state distribution p0 and induced by π, i.e., to optimize Eπ[R[τ ]]. The problem
of offline RL [16] arises when training from a fixed datasetD consisting of trajectories generated by
a behavior policy πβ . Due to the limited coverage of D across the state-action space, effectively ad-
dressing the adverse consequences of poor approximations outside the data support becomes crucial
in the development of offline RL methods [17].

Hindsight data relabeling Relabeling data has emerged as a popular technique in goal-
conditioned off-policy RL [41, 42, 43, 44, 45] for the purpose of enhancing training efficiency. The
underlying idea behind hindsight relabeling is to transform unsuccessful trajectories into success-
ful ones by retrospectively modifying their goals [41]. This approach extends to offline trajectory
datasets, where relabeling can be used to synthesize experiences for learning state-reaching behav-
ior [46, 47]. Failed transitions are relabeled by designating the subsequent state as the desired goal
and adjusting the corresponding reward accordingly. A connection between hindsight relabeling and
contrastive learning was recently discussed in [48].

Sampling-based motion planning Sampling-based motion planners [13] compute feasible paths
connecting two points in a robot configuration space. At the core, these methods explore and con-
struct a graphical representation of the continuous search space. The rapidly-exploring random tree
(RRT) [39] is a widely used single-query planner, particularly suitable for scenarios with varying
environments. It incrementally expands a tree structure by alternately sampling collision-free states
from the robot’s configuration space and attempting to connect these to the nearest neighbor in the
tree. Once a node reaches the vicinity of the target, a possible solution path is given by backtracing
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to the root of the tree. Instead of sampling states from the configuration space, the expansive space
trees (EST) planner [40] generates new states by expanding existing tree nodes using randomly-
sampled actions.

4 Value-guided Expansive Latent Trees

In this section, we detail the elements that comprise VELAP, our proposed offline RL planning agent.

Problem definition We are interested in solving sparse reward continuous control tasks from high-
dimensional inputs. For this purpose, we choose the example of visual control for a state space S and
action space A = Rdaction . S = RW×H×C×N describes sequential image data where W is the image
width, H the height, C the channel dimension and N the number of frames. Note that we employ
the MDP formulation, hence assume that states s ∈ S are informative to predict the distribution of
future states. A sparse binary reward r : S ×A→{0, 1} is designed which provides a positive signal
only when reaching the final goal for which we terminate the episode. For training, we use an offline
dataset D consisting of recorded transitions obtained from a sub-optimal policy.

State encoder: ϕ : S → Z
Dynamics: h : Z ×A → Z (1)

Action model: g : Z × Rm → A
Local policy: πl : Z×Z→A Ql : Z×Z×A→R

Global policy: πg : Z→A Qg : Z×A→R

Components To tackle the specified
problem, we propose a model-based
RL agent that incorporates a tree-based
search, inspired by ESTs [40], within a
learned representation space. Our prefer-
ence for EST over an RRT-based approach
[39] is driven by the reasoning that the ex-
pansion step in ESTs eliminates the need for a global state sampler. It should be noted that
learning such generative models can be challenging, as they require high-fidelity predictions to
prevent negative assessment of out-of-distribution samples. Our approach involves several key
components outlined in Eq. 1. The encoder ϕ maps input states to latent encodings, while the
dynamics model h predicts future latent states based on actions, serving as a tool for expand-
ing the search tree during planning. A local policy πl is trained to navigate between neighbor-
ing states in the tree. The global policy πg determines optimal actions with respect to our task
goal. During planning, we will use Ql to derive a distance proxy between states and Qg to es-
timate the remaining number of steps to the goal. Among various actor-critic offline RL meth-
ods available, we select TD3-BC [49] due to its robustness and ease of implementation. To im-
prove the predictions of Ql and measure value uncertainty, we employ an ensemble of nens Q-
heads {Ql

1, ..Q
l
nens
} similar to [50] (see App. B). For the following, we use k to denote the k-

th ensemble member and define Qi,j
min := min{Ql

k(zi, zj , π
l(zi, zj))}nens

k=1 as the minimum and
Qi,j

std := std({Ql
k(zi, zj , π

l(zi, zj))}nens
k=1) as the standard deviation of the ensemble predictions be-

tween two states zi and zj with respect to πl. Finally, a conditional generative model, representing
our action model g, enables sampling actions from the state-conditioned action distribution. We use
Rm to denote the input noise used during the generation process.

Alignment of representation and planner To achieve long-horizon planning and control in Z ,
we seek a state representation which favors accurate learning of dynamics in order to generate valid
future waypoint states over many time steps. Secondly, the state encoding should facilitate the
optimization of our value functions and control policies. Existing model-based RL approaches often
rely on surrogate metrics for model learning, such as mean-squared prediction error or pixel-wise
reconstruction. These metrics do not ensure alignment with actual control performance, leading to
a mismatch between the environment model and the planner [51], which can adversely affect the
controller’s performance. To address the challenge of long-horizon predictions, we optimize our
state encoder ϕ together with the latent dynamics h. In addition, we facilitate the approximation of
the local and global value functions by training their models jointly with the encoding. Our model
training objective Lmodel is shown in Eq. 2. Here, LQl

k
represents the temporal difference (TD) loss
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for training Ql
k, LQg corresponds to the TD loss for training Qg , and Lh denotes the loss function

for the dynamics model h. The hyperparameters c0 and c1 act as weighting factors.

Lmodel =
1

nens

∑
k

LQl
k
+ c0 · LQg + c1 · Lh (2)

LQl
k
= E

D′
[(Ql

k(zt, z∗, at)− (rt + γQt+1,∗
min ))2] (3)

LQg =E
D
[(Qg(zt, at)− (rt + γQg(zt+1, π

g(zt+1))))
2] (4)

In accordance to the standard TD3-BC training objective, we simultaneously optimize the corre-
sponding policies πl and πg in Lπl and Lπg (Eq. 5). Note that this step is done by alternating
between optimizing Lmodel and policy improvement while the encoder parameters are kept fixed
during the policy update1.

Lπl = E
D′
[−Qt,∗

min] + c2 · E
D′
[(πl(zt, z∗)− at)

2]

Lπg = E
D
[−Qg(zt, π

g(zt))] + c3 · E
D
[(πg(zt)− at)

2]
(5)

To provide data for training the local policy and value functions πl and Ql
k, we synthesize a dataset

of state-reaching experiences D′ by relabeling the transitions in D. More specifically, we achieve
this using hindsight goal relabeling [46, 47] to sample goals s∗ ∈ S and use a binary reward to
indicate success (see App. B.4). For training the dynamics model, we use the contrastive loss
presented in [53]. In practice, we found this approach to work better in maintaining accurate long-
term predictions compared to a standard mean-squared error objective (App. E.3).

Algorithm 1 Node sampling and tree expansion

1: Given: zinit, niter, nsim, g, h, πg , Qg , Ql
k, πl

2: Initialize: V ← {zinit}, E ← ∅
3: for niter steps do
4: Sample node zexp from V given Pnode(V)
5: znew ← zexp
6: Simulate forward using dynamics for nsim steps
7: for nsim steps do
8: Sample action a∼g(.|znew) (or a=πg(znew))
9: znew ← h(znew, a)

10: end for
11: Reject node if too close to existing one in the tree or
12: if the value uncertainty is too high
13: if Qexp,new

min > τ low
discard and Qexp,new

std < τ std
discard then

14: if max{Qi,new
min |zi ∈ V} < τ high

discard then
15: Add new node to tree
16: V←V ∪ {znew}; E←E ∪ {zexp→new}
17: end if
18: end if
19: end for

Tree expansion Our aim is to solve the
RL decision-making problem by search-
ing the latent state space for the short-
est connection towards valid goal states.
Similar to [15], we follow the concept of
EST planners [40] which iteratively ex-
pand the current set of nodes through ac-
tion sampling. The tree T =(V, E) can
be seen as a growing memory of latent
nodes V ⊂ Z and transitions E ⊂ Z×Z .
The core mechanism behind our expan-
sion strategy is summarized in Alg. 1.
We first initialize T = (V={zinit}, E=∅)
where zinit ∈ Z is the latent encoding of
the current state sinit ∈ S obtained from
ϕ. For niter steps, a node zexpand is drawn
using a categorical distribution Pnode de-
fined over V . Starting from zexpand, the
dynamics h rolls out a short nsim-step
state sequence given actions drawn from our generative model g (or πg). Since Ql

k estimates the
return for reaching towards a particular node under sparse binary rewards, a temporal distance proxy
is given by logγ Q

l
k. To account for value approximation errors [17], we will use the minimum value

among the ensembles predictions to compute a conservative distance estimate. After every nsim-step
expansion with h, we determine if the transition from zexp to znew is feasible by checking if Qexp,new

min
is above a threshold τ low

discard. If it lies below this threshold, we discard znew. Secondly, we also reject
it if the corresponding value of Qexp,new

std is above a threshold τ std
discard. The purpose of this second

rejection step is filter states in which the epistemic uncertainty, i.e. model uncertainty, is high and
thereby avoid the evaluation of high-uncertainty areas, for example outside the support of the latent

1We optimize the state representation during the critic update instead of the policy improvement step as
motivated by the empirical analysis in [52].
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data distribution. Lastly, we determine if the newly generated node is sufficiently novel given the
existing ones in T and discard it otherwise. This sparsification step avoids redundant tree nodes
and is important to keep the computations at a moderate level. More specifically, we discard znew if
max{Qi,new

min |zi ∈ V} is above a threshold τ high
discard. In other words, we find the closest neighbor zneigh

in the tree and reject znew if there already exists a node which can transition to it within few steps.
If znew passes the previous stages, it is added to T , i.e. V←V ∪ {znew} and E←E ∪ {zexp→new}. For
more details on the expansion step see App. B.6.

Psparse(zi) =
e−nneigh

i /Tsparsity∑
zj∈V e−nneigh

j /Tsparsity
(6)

Pvalue(zi) =
eQ

g
i /Tvalue∑

zj∈V eQ
g
j /Tvalue

(7)

Node sampling So far we haven’t defined the node
sampling distribution Pnode. To achieve fast and task-
oriented exploration, we combine two sampling heuris-
tics based on (a) the inverse number of neighbors around
each node and (b) the state-action value Qg . (a) leads
to quick exploration of undiscovered latent states, while
(b) drives the planner towards high-valued areas. For
both parts, we use exponential weighting as shown in Eq. 6 and 7. In this regard, nneigh

i corresponds
to the number of incoming neighbors for a node (Vneigh

→i ). We compose Pnode by sampling according
to Psparse with probability psparse and from Pvalue with pvalue (otherwise random uniform).

Action sampling The model g mimics the state-dependent action distribution of our data and is
represented by a conditional VAE [30]. Sampling actions from g reduces the evaluation of undesired
state-actions pairs which were not observed in D. To help our planner discover task-relevant areas
quicker, we further predict actions using πg with a probability ppolicy.

Planning objective and control Our planner builds a sparse tree representation in the latent space
whose expansion is guided by value and sparsity heuristics. To choose the best path in T , we must
define an objective that ranks all explored paths. In practice, we first identify all nodes for which the
value of Qg surpasses a threshold τgoal and gather the associated paths from the root zinit in a set G.
Among the elements in G, we then choose the path g∗ which has the shortest temporal length using
Qi,j

min to derive a distance proxy between subsequent nodes (Eq. 8). If G = ∅, we simply pick the
path that contains the node with the highest value of Qg .

g∗ = argmin
g∈G

c(g) with c(g) =
∑

(i,j)∈Eg

logγ Q
i,j
min (8)

To use our planner for control, we embed it into a model-predictive control loop (Alg. 2). The
controller queries our planner every nreplan steps and uses the local policy πl to navigate between
nodes in the planned sequences of latent states. If close enough, the controller switches to the next
waypoint, which we determine by checking the value of Qi,j

min against a threshold τwp.

5 Experiments

5.1 Empirical evaluation in simulation

Baselines To assess the effectiveness of VELAP, we measured its performance against the following
baselines. Behavioral cloning (BC), a simple but often successful method that imitates the behavior
policy using a supervised learning objective. We evaluated a second version of this approach only
trained on the subset of successful trajectories (D∗). TD3-BC [49], an adaptation of the Twin
Delayed DDPG algorithm [54] which circumvents the effect value overestimation by adding an
imitation objective to the policy update. IQL [55], a state-of-the-art offline RL baseline. MPPI [9]
provides the base planning algorithm in various model-based RL methods ([10, 7]). We consider
an implementation for the offline learning setup which uses TD3-BC within the cost update during
optimization. MBOP [36], a model-based agent which uses an imitation learning policy to bias the
action sampling in MPPI. IRIS [37], an offline RL method particularly designed for sparse reward
settings. It uses a hierarchical decomposition of the policy for which a manager predicts feasible
subgoals given future candidate states (n-step horizon) sampled from a generative model (cVAE)
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(a) SpiralMaze (b) ObstacleMaze (c) WindowClose (d) FaucetClose (e) ButtonWall (f) DrawerButton

Figure 2: Evaluation environments adapted from meta-world robotics benchmark.

Table 1: Success rates and std. deviations (%) on test cases with unseen object variations (except SpiralMaze).

METHOD BC BC (D∗) TD3-BC IQL MPPI MBOP IRIS IRIS (MULTI-STEP) VELAP

SPIRAL MAZE 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 15± 31 94 ± 3
OBSTACLE MAZE 0± 0 15± 6 35± 22 6± 3 83± 11 40± 25 50± 25 62± 14 97 ± 2

WINDOW 0± 0 34± 11 16± 8 9± 4 70± 7 23± 4 69± 3 43± 20 78 ± 4
FAUCET 0± 0 36± 6 13± 7 8± 4 41± 7 33± 2 10± 2 3± 1 51 ± 12
BUTTONWALL 0± 0 0± 0 2± 2 0± 0 9± 10 0± 0 35± 5 8± 8 76 ± 9
DRAWERBUTTON 0± 0 0± 0 0± 0 1± 0 0± 0 0± 0 5± 3 0± 0 11 ± 3

which a worker policy must achieve. We also examine IRIS (multi-step), where the set of subgoals
is generated by shooting a future state sequence using the cVAE. To establish a fair comparison and
disentangle the effects of the representation and planner, we use the same representations, dynamics
models across all methods. Further details are provided in App. D.

Tasks We consider the simulated visuomotor control tasks depicted in Fig. 2. In SpiralMaze, the
velocity of a block robot is controlled in order to navigate from the outermost point of a maze to
the inner region. This task was designed to require farsighted planning, as the temporal distance to
the goal is approximately 150 steps. In the ObstacleMaze environment, the block robot must travel
to the opposite wall of the room while two randomly positioned obstacles appear in the center of
the workspace. Additionally, we evaluate the WindowClose and FaucetClose environments from
the meta-world [18] benchmark. As done in [6], we use sparse binary rewards and render images
from a static camera. Moreover, we propose two new settings ButtonWall and DrawerButton. In
ButtonWall, the robot must first navigate around a wall (varying position) and then press a button.
To solve the task DrawerButton, the agent must first close a drawer and then press a button (both
randomly initialized). Our training data D consists of random trajectory data and a small number of
noisy expert demonstrations. We use a latent space of size 32 and RGB images of resolution 64×64.
For details on the environments, data collection and hyperparameters see App. B.

Results An overview of the numerical benchmark evaluation is given in Table 1. VELAP consis-
tently outperform the baselines across all environments in terms of average episode success rate.
The improvements are particularly visible in tasks which require far-sighted planning such as Spi-
ralMaze and ButtonWall. These results support that our tree-based exploration strategy is indeed
effective at planning for sparse-reward offline RL. Fig. 3 illustrates a 2D embedding of a latent path
for the SpiralMaze task computed with VELAP. It suggests that our method explores global solutions
and identifies one which reaches through the entire maze. Fig. 3 demonstrates similar capabilities
for the ObstacleEnv task. Further, it supports that our representation accommodates for the different
locations of obstacles, creating latent spaces that mirror the topology of the underlying state space.
Ablation results concerning the embedding and dynamics model are provided in App. E.

5.2 Physical robot experiments

To test our method under realistic conditions, we designed two manipulation tasks using a low-
cost robot arm (Fig. 4). In the first, the robot must push a sponge into the marked region. In
the second task, the robot holds a rope which it must unravel from a cylindrical object. Then it
needs to position the held end of the rope precisely onto a designated colored area. The robot is
controlled by providing desired end effector position and wrist orientation displacements, resulting
in a 4-dimensional action space. Both tasks are challenging in terms of perception and control as
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(a) (b) (c) (d) (e) (f)
Figure 3: Supporting visualizations for SpiralMaze (top row) and ObstacleMaze (bottom row) tasks. (a) x-y
robot positions for a uniformly sampled set of states (b). 2D Isomap embeddings of learned latent space (color
encodes correspondence to robot positions in (a)).(c) approximated global Q-values for x-y robot positions. (d)
approximated global Q-values for Isomap embedding of learned latent state space. (e) example image input
frames. (f) planned latent paths (red) computed with VELAP and projected to Isomap embedding.

Figure 4: Physical manipulation of a
sponge (left) and rope (right).

the initial configuration of the objects are randomized. The
results of a comparison with BC, BC (D∗) and IRIS are pre-
sented in Table 11 (more details in App. E.1). Our method sur-
passes the performance of its baselines achieving 14/20 suc-
cessful episode on the sponge manipulation and 8/20 on the
rope manipulation task. Video demonstrations can be found at
https://sites.google.com/view/velap-corl/home.

6 Limitations and Future Directions

Our method lays the groundwork for future enhancements. While VELAP was designed for offline
RL, it can be adapted to the online setting by interleaving data collecting and learning [3, 6]. It
could also enhance sample efficiency by improving policy and critic updates through planning. [56,
4, 31]. Currently, VELAP uses deterministic dynamics and encoder models, limiting it to fully-
observable MDPs. By incorporating probabilistic transition models and state filtering approaches
(similar to [3, 57]), it can be extended to partially observable and stochastic settings. While our
method outperforms existing baselines, it still struggles with complex tasks which we account to
the remaining difficulty in estimating accurate latent dynamics for long-horizon planning. Presently,
our planner selects paths by minimizing the distance to high-valued states. To further minimize
the effects of model inaccuracies, the planning strategy could incorporate uncertainty propagation
and assessment in the tree branches. Notably, we discovered that in more complex tasks, such as
DrawerButton and the rope manipulation scenario, failures often occurred when the agent moved
to the final goal region without completing the required subtask, like first closing the drawer or
maneuvering the rope around the pole. We believe that improved handling of uncertainties, along
with risk-aware measures, could potentially lessen the planner’s greedy exploitation of model errors.
In this context, planning in belief spaces [58] provides another potential improvement avenue.

7 Conclusion

We introduced VELAP, an agent designed for model-based planning in sparse reward offline RL.
Diverging from the usual model-based RL planners, our approach employs a tree-based exploration
algorithm inspired by sampling-based planners commonly used in robot motion planning. Through
empirical evaluation on visual control tasks, we showcased substantial enhancements achieved by
our method compared to existing benchmarks. Our aim is that these outcomes will inspire additional
exploration into the fusion of sampling-based planning, representation learning, and model-based
RL
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A Additional material

Code examples and additional material will be uploaded here https://sites.google.com/view/velap-
corl/home. All models were implemented in Python using the PyTorch library. The total training
time including all models and baselines amounts to approximately 150 hours (wall clock) on a single
GPU.

B Hyperparameters and algorithm details

Here we present a description of the hyperparameters of our trained models and planning module.

B.1 Model architectures

Table 2: Hyperparameters of the encoder ϕ

Parameter Value

Batch-norm. yes
Filters [32,32,64,64]
Kernels [4,4,4,4]
Strides [2,2,2,2]
Activation LeakyRelu
Dense layers [256, 128, 32]

Table 3: Hyperparameters of dynamics model h

Parameter Value

Batch-norm. yes
Activation LeakyRelu
Dense layers [128,128,128,128,32]

Table 4: Hyperparameters of action sampler g (β-VAE)

Parameter Value

Batch-norm. yes
Activation LeakyRelu
Latent dimension 16
β (kl-weight) 0.01
Encoder dense layers [128,128,128, 2*16]
Decoder dense layers [128,128,128, daction,]

Table 5: Hyperparameters of policy networks πl and πg

Parameter Value

Batch-norm. yes
Activation LeakyRelu
Dense layers [128,128,128, daction]
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Table 6: Hyperparameters of critic networks Ql
k and Qg

Parameter Value

Batch-norm. yes
Activation LeakyRelu
Dense layers [128,128,128, 1]

B.2 Training hyperparameters

Table 7: Model training hyperparameters

Parameter Value

batch size 64
learning rate 0.0003
c0 0.2
c1 (SpiralMaze) 0.001
c1 (ObstacleMaze) 0.01
c1 (metaworld tasks) 0.01
c2 0.001
c3 0.001
c3 (expert) 0.5
γ (discount factor) 0.96
dZ 32
T (temperature) 1.0
nens 3

B.3 Planner and controller hyperparameters

Table 8: Hyperparameters of planner

Name Description Value

niter Number of planner iterations 250 (500 in ButtonWall)

nsim Number of simulation steps during tree expansion 5 (10 in SpiralMaze, ButtonWall and
DrawerButton)

τ high
discard

Q-value threshold for discarding node
if too close to existing nodes in the tree γ2

τ low
discard

Q-value threshold for discarding node
if too far from expansion node γnsim

τ std
discard

Q-value threshold for discarding node
if standard deviation of ensemble prediction is too high 1.0− γ

τneigh Q-value threshold to determine neighboring nodes γ3

τgoal Q-value threshold to determine goal nodes γ5

dneigh
Euclidean distance threshold

to determine candidate neighbors
3 x upper 5-percentile of Eucl. distances
between encoding of subsequent states

Table 9: Hyperparameters of controller

Parameter Description Value

nreplan Planning frequency 15 (25 in SpiralMaze, ButtonWall)
τstop Q-threshold to stop planning when close to the goal γ5

τwp Q-threshold for switching to the next waypoint γ3
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B.4 Training of policy and value functions

We use TD3-BC [49] as the base offline RL algorithm to train our local and goal policies πl and πg ,
respectively state-action value functions a Ql

k and Qg . Within our planning framework Ql
k takes an

important role as it provides us with a distance proxy. To further improve the accuracy of Ql
k, we use

nens Q-networks (instead of 2 usually used in TD3). During the training update of the Q-network,
we then determine the Q-target by taking the minimum value among the predictions given by the
ensemble of Q-networks (similar to [50]). The ensemble further allows us to filter out unlikely or
out-of-distribution transitions generated during the tree expansion. This is done by assessing the
minimum predicted ensemble Q-value and the standard deviation among the predicted values (Sec.
4).

Our models πl and Ql
k describe goal-reaching policy and state-action value functions which require

a set of goal-conditioned reaching experiences for training. Since our original dataset D might not
describe this particular setting, we can augment it using hindsight goal relabeling. In particular, we
create a new datasetD′ consisting of transitions (zt, at, rt, zt+1, z∗, γ) ∈ D′ by relabeling the values
of rt, γ (γ also indicates terminal condition, i.e. γ = 0) and adding a goal state z∗. We apply a
combination of three different relabeling strategies (a) set goal z∗ to be next state in the relabeled
transition and set γ = 0; rt = 1 (b) sample z∗ from the set of future states within the same trajectory
and set rt = 0 (c) sample z∗ from another trajectory in the data and set rt = 0.

B.5 Training of dynamics model

Our dynamics model h is trained using the InfoNCE contrastive loss introduced in [53]. Given
an initial state zt and a sequence of actions at:t+k−1, we use h to generate predictions z̃t+k for
i=1..k. We compute the NCE loss at each each k with positive pairs (z̃t+k, zt+k) and take negative
examples zj randomly from the batch. We use f = e−||zi−zj ||2/T to compute similarity between
latent encodings. Our overall training loss for h (Eq. 9) takes the average over the contrastive loss
terms computed at all k steps. For all experiments, we use k = 3.

Lh = −1

k

∑
k

E
D

[
log

f(z̃t+k, zt+k)∑
j f(z̃t+k, zj)

]
(9)

B.6 Additional details about planning method

Neighbor computation To determine if a newly sampled node znew is novel, we check its sim-
ilarity to existing nodes in the tree by evaluating the state-action value function. Computing the
goal-conditioned values with respect to all nodes results in an enormous computations overhead.
Yet, we can significantly reduce the amount of computation by first determining a set of candidate
neighbors around znew using the Euclidean metric and a distance threshold dneigh. In practice, we
found it useful to define dneigh based on the statistics of Euclidean distances between subsequent
states in the dataset (see App. B.3).

Batch processing The method in Alg. 1 describes an iterative schema for which at every expan-
sion step one new node is generated and evaluated. Yet, some steps can be computed in parallel on
a GPU in order to speed up the planning time. For a practical implementation, we therefore suggest
to parallelize the tree expansion by sampling multiple expansion nodes at once and generating new
nodes by passing batches through the neural network dynamics model. Similarly, we can compute
state-action values in batches instead of assessing one new nodes at a time. For discussions about
highly-parallelized implementations of classical RRT-like planners, we refer to [59, 60].

B.7 Additional details about MPC controller

Alg. 2 provided below outlines the pseudocode for our MPC controller. The function
update waypoint(zcurr, g

∗) is responsible for determining the subsequent waypoint zwp that our
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local policy aims to attain. Specifically, we estimate the value between the current state and way-
point and switch to the next element in g∗ if the predicted value surpasses a threshold τwp, i.e
Qcurr,wp

min > τwp. As we approach the final goal, indicated by the proximity of our current state zcurr,
we stop the planning and compute actions based on the policy πg . To ascertain our proximity to the
goal, we compare the predicted value of the global value function Qg against a predefined threshold
as τgoal.

Algorithm 2 MPC controller

Given: sinit, nreplan nmax steps, ϕ, πl, πg

zcurr ← ϕ(sinit) ▷ Map state to latent encoding
i← 0
while goal not achieved and i < nmax steps do

if not i mod nreplan then ▷ Replan every nreplan steps
Build tree T rooted at zcurr for niter steps (Alg. 1).
Determine g∗ = {zcurr, z1, .., zn} given T

end if
zwp ← update waypoint(zcurr, g

∗) ▷ Update waypoint if close enough
a← πl(zcurr, zwp) (or use πg within proximity to the overall goal) ▷ Compute next action
Execute a and observe updated state scurr
zcurr ← ϕ(scurr)
i← i+ 1

end while

C Evaluation Environments

C.1 Description of block environments

Similar to the evaluation environments in [15], we implement two long-horizon navigation tasks
characterized by a comparatively low-dimensional underlying state space. This aspect facilitates
a visual examination of the learned latent embeddings via dimensionality reduction methodologies
such as Isomap [61]. Within both scenarios, a block-shaped robot’s motion is controlled through
velocity commands, while its movement remains confined to a two-dimensional plane.

C.1.1 SpiralMaze

To accomplish this objective, the block agent is tasked with maneuvering from the outer edge of a
spiral-shaped corridor to the inner area colored in red (Fig. 2a). The episode’s duration is capped
at 300 steps. During data generation for training, the agent is initialized at collision-free positions
within the workspace. Subsequently, random action sequences are executed by sequentially adding
Gaussian noise to an initially sampled uniformly random action at the start of each episode. For
testing purposes, the agent’s position is uniformly sampled from a small area in proximity to the
outermost point of the spiral-shaped corridor.

C.1.2 ObstacleMaze

Within this setting, the agent is required to move towards the upper wall of the workspace, high-
lighted in red (Fig. 2b). To successfully accomplish this objective, the agent needs to execute
actions that navigate around two obstacles, positioned randomly near the workspace center at the
beginning of each new episode. The maximum permissible number of steps in the environment is
100. During testing, the agent’s initial configuration is randomly set in close proximity to the wall
opposite to the goal. The same data collection policy as for the SpiralMaze task was utilized.

C.2 Description of manipulation environments

We have customized several environments of the meta-world robot benchmark tasks proposed by
[18]. The underyling physics simulation engine is Mujoco, as introduced by [62]. To enable vi-
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sual manipulation, similar to the problems studied in [6], we enable background rendering of RGB
images from a static viewpoint. The robot is controlled by commanding desired end effector and
gripper opening displacements resulting in a 4-dimensional action space. While WindowClose and
FaucetClose were with small modifications adapted from [18], we evaluate two new environments
ButtonWall and DrawerButton. These new scenarios were purposely designed to investigate tasks
with long horizons under sparse rewards. Importantly, they require the integration (”stitching”) of
trajectory data originating from different regions of the workspace to determine viable solutions.

In our data collection process, we employ a suboptimal policy that predominantly applies random
actions (using additive Gaussian noise). Infrequently, this policy selects actions from a pre-defined
expert policy. Table 10 provides insight about the number of samples and trajectories in the training
data and presents the portion of successful transitions (reward=1). Across all manipulation tasks, we
set the maximum permitted number of environment steps at 150, with the exception of the Button-
Wall scenario, where we allow up to 250 steps during the evaluation phase.

C.2.1 WindowClose

In order to accomplish this task, the robotic arm must successfully open a window by shifting a
specific handle sideways. We implement environmental variability by randomly determining the x-y
location of the window object in each episode. During the data collection stage, we randomly set
the positioning of the end effector above the surface of the table. The sampling of expert actions is
restricted to areas close to the goal region (window handle). This approach is intended to guarantee
that the strategy employed necessitates to ”stitch” different trajectories together to reach the objec-
tive and complete the task when starting from states that are farther away. To ensure challenging
planning situations during testing, we initiate the robot at a significant distance away from the target.

C.2.2 FaucetClose

This task is similar to the WindowClose task, but it requires the agent to use its end effector to close a
faucet instead. In addition, we employ analogous strategies for data gathering and scenario creation
as those used in the WindowClose environment.

C.2.3 ButtonWall

In this scenario, the robot’s end effector is required to navigate around a wall structure before press-
ing a button. The location of the wall is randomly set at the beginning of each episode. Furthermore,
a height limitation is imposed on the end effector to ensure that the agent takes a more extended
path around the wall, as opposed to simply elevating the end effector. The dataset was produced by
either placing the agent in front of the wall, near the button, or far behind the wall. However, expert
samples in the dataset only exist for scenarios when starting closer to the goal. For testing purposes,
the end effector is sampled within a restricted region behind the wall.

C.2.4 DrawerButton

In this scenario, the agent is tasked to first close a drawer using its end effector and subsequently
press a button. To train the agent, we develop a dataset by separately collecting trajectories for each
subtask. This approach necessitates the use of a method capable of combining different trajectories
in the data to devise a solution that achieves the overall task goal.

C.3 Composition of training dataset

The table below presents the composition of our training datasets. Each context refers to a new
environment initialization (excl. agent) such as the position of obstacles.
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Table 10: Composition of training datasets for each environment

Environment Num. contexts Traj. per context Max. traj. length Successful transitions

SpiralMaze 1 1000 20 0.12 %
ObstacleMaze 250 20 20 0.11 %
WindowClose 200 10 50 0.48 %
ButtonWall 200 10 50 0.16 %
FaucetClose 200 10 50 0.31 %
DrawerButton 150 20 50 0.16 %

D Baseline methods

To enable a fair comparison between different methods, we use the same underlying representa-
tion/encoder ϕ and dynamics model h in the evaluation of all baselines. For assessing the quality
and impact of our representation learner, please review the experimental ablation study in App. E.2.

D.1 BC and BC (D∗)

Simple behavioral cloning baselines for which we use the same network architecture as our policy
networks (see Table 5) and train using a mean-squared error objective on the predicted actions. For
D∗ we train only on the subset of successful episodes in the dataset. For each method, we train for
3 · 105 iterations using a learning rate of 3 · 10−4 and batches of size 128.

D.2 TD3-BC [49]

This baselines resembles the underlying global policy πg used in VELAP. It provides us with a base-
line to assess how well pure offline RL performs without any additional planning methods.

D.3 IQL [55]

This method presents a state of the art model-free offline RL baseline which utilizes expectile regres-
sion to estimate state-conditional expectiles of the target values in order to avoid querying values of
out-of-distribution actions during training. We train IQL for 3 · 105 iterations with a learning rate of
3 · 10−4, batches of size 256 and using hyperparameters τ = 0.7 and β = 3.0.

D.4 MPPI

We implement a trajectory optimization baseline similar to the model-based planning algorithm
introduced in [7]. The method in [7] presents an adaption of MPPI specifically for the online rein-
forcement learning setting which optimizes the expected return of sampled trajectories. To estimate
the return, a learned model is used to predict the reward for each trajectory node while a learned
Q-function predicts the future return beyond the specified planning horizon. Since rewards in our
evaluation environments are sparse, the predicted rewards carry little guidance for the trajectory op-
timization as most states have 0 reward. Therefore, we adapt the objective in [7] and instead use the
accumulated sum of state-action values as the optimization criterion. This type of scoring function
in model-based RL has recently been discussed in [63]. To implement this baseline, we utilize the
Q-function of TD3-BC. For all environments, we use 1000 samples per iteration, a planning horizon
of 50, elite size 64 and 5 iterations. Replanning is done every 5 environment steps.

D.5 MBOP [36]

MBOP presents an adaptation of MPPI which was particularly designed for the offline RL setting.
It generates new candidate trajectories by addding a small amount of Gaussian noise to the actions
predicted by a behavioral-cloned policy. To evaluate the quality of the rollouts it uses a truncated
value function trained on the offline data. Due to the sparse nature of rewards in our experiments, we

19



found that both the behavioral-cloned policies and the truncated value function were insufficient to
generated farsighted behaviors that solve our tasks. To accommodate for the long planning horizons,
we instead sample actions from our TD3-BC policy and use the corresponding Q-values to assess
candidate trajectories during the optimization (similar to our MPPI baseline). For all environments,
we use 1000 samples per iteration, a planning horizon of 50, elite size 64, 5 iterations and β = 0.7.
Replanning is done every 5 environment steps.

D.6 IRIS [37]

D.7 IRIS (multi-step)

We evaluate an extension of IRIS in which we use the state prediction model (conditional VAE)
to generate multi-step rollouts of suitable subgoals. This strategy increases the exploration horizon
and allows to choose the best subgoal from a larger and potentially more diverse set of states. This
planning strategy can also be seen as random shooting of coarse subgoal sequences. In all experi-
ments, we generate 256 different trajectories using rollouts of length 5 and a conditional generative
model to predict states for a horizon of 5. In our evaluation, we found that this method sometimes
performs worse than IRIS. We attribute this to the fact that the global policy doesn’t align with the
capabilities of the local one, which occasionally results in the selection of subgoal states that might
not be attainable.

E Supplementary Experiments and Analysis

E.1 Physical hardware experiments

The physical evaluation was performed using the WidowX 200 low-cost robot platform. For the
real-world validation of our method, we collected 200 episodes of data for the sponge (∼ 15000
samples) and 150 episodes of data for the rope manipulation (∼ 15000 samples) tasks. Training
data was generated by operating the robot through a gamepad and took less than 1 hour per task.
The collected dataset consist largely of suboptimal and entirely random trajectories. Successful
transitions (positive reward + episode termination) were labeled manually during the data collection.
Similar to our simulated datasets, we collect trajectories in such a way that successful episodes
always start within the vicinity of the goal. Conversely, during testing, we deliberately position
the agent distant from the goal region. Consequently, this configuration emphasizes the need for
an approach capable of internally assessing the connectivity between distinct trajectory segments
within the data. To construct states, we combine three sequential images captured by a stationary
camera. The results of a comparison with BC, BC (D∗) and IRIS are presented in Table 11.

Table 11: Results of phyiscal robot experiments (successful episodes)

Environment BC BC (D∗) IRIS VELAP

Sponge 5/20 6/20 6/20 14/20
Rope 0/20 0/20 2/20 8/20

Sponge task In this setting, the robot needs to push a sponge object onto a marked goal region
(Fig. 4 (left)). To increase the difficulty of this task, we initialize the robot end effector between
the goal region and the sponge. Consequently, the robot must initially maneuver itself behind the
sponge before it can proceed to push the sponge towards the goal. During both training and testing,
the initial poses of the end effector and sponge object were subject to random selection.

Rope task In this particular setting, the robot’s end effector grasps a green rope, requiring the robot
to skillfully maneuver the rope around a central pole in the workspace before ultimately placing the
held end within a designated goal area (as shown in Figure 4 (right)). To elevate the complexity of
this scenario, the agent is required to first unwind the rope from the pole before moving towards the
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goal region. To introduce a challenging long-horizon aspect, we initialize the end effector in close
proximity to the goal region while the rope is partially wrapped around the pole.

E.2 Ablating the impact of the learned representation
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Figure 5: Impact of the type of representation on the performance of our method.

E.3 Influence of the dynamics loss
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Figure 6: Impact of the type of dynamics loss on the performance of our method.
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E.4 Computation time

Here, we provide an assessment of the computation time needed and the resulting success rates
achieved by our approach in comparison to MPPI. Both algorithms were tested on hardware featur-
ing a NVIDIA GeForce RTX 3090 graphics card. Despite utilizing GPU computation and imple-
menting both methods in PyTorch, we didn’t specifically fine-tune either for computational speed. It
is worth mentioning that MPPI recalculates its plans every 5 steps within the environment, whereas
our method follows a 25-step interval in the SpiralMaze and 15 steps in the ObstacleMaze.
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Figure 7: Relationship between average episode success rates and single planning query runtime (test scenarios)
for different planning hyperparameters on SpiralMaze environment. For MPPI, we report results for varying
(iterations, horizon, number of samples).
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Figure 8: Relationship between average episode success rates and single planning query runtime (test scenarios)
for different planning hyperparameters on ObstacleMaze environment. For MPPI, we report results for varying
(iterations, horizon, number of samples).

22


	Introduction
	Related Work
	Preliminaries
	Value-guided Expansive Latent Trees
	Experiments
	Empirical evaluation in simulation
	Physical robot experiments

	Limitations and Future Directions
	Conclusion
	Additional material
	Hyperparameters and algorithm details
	Model architectures
	Training hyperparameters
	Planner and controller hyperparameters
	Training of policy and value functions
	Training of dynamics model
	Additional details about planning method
	Additional details about MPC controller

	Evaluation Environments
	Description of block environments
	SpiralMaze
	ObstacleMaze

	Description of manipulation environments
	WindowClose
	FaucetClose
	ButtonWall
	DrawerButton

	Composition of training dataset

	Baseline methods
	BC and BC (D*)
	TD3-BC fujimoto2021minimalist
	IQL kostrikov2021offline
	MPPI
	MBOP argenson2021modelbased
	IRIS mandlekar2020iris
	IRIS (multi-step)

	Supplementary Experiments and Analysis
	Physical hardware experiments
	Ablating the impact of the learned representation
	Influence of the dynamics loss
	Computation time


