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Abstract: Key to rich, dexterous manipulation in the real world is the ability
to coordinate control across two hands. However, while the promise afforded
by bimanual robotic systems is immense, constructing control policies for dual
arm autonomous systems brings inherent difficulties. One such difficulty is the
high-dimensionality of the bimanual action space, which adds complexity to both
model-based and data-driven methods. We counteract this challenge by drawing
inspiration from humans to propose a novel role assignment framework: a stabi-
lizing arm holds an object in place to simplify the environment while an acting
arm executes the task. We instantiate this framework with BimanUal Dexterity
from Stabilization (BUDS), which uses a learned restabilizing classifier to al-
ternate between updating a learned stabilization position to keep the environment
unchanged, and accomplishing the task with an acting policy learned from demon-
strations. We evaluate BUDS on four bimanual tasks of varying complexities on
real-world robots, such as zipping jackets and cutting vegetables. Given only 20
demonstrations, BUDS achieves 76.9% task success across our task suite, and
generalizes to out-of-distribution objects within a class with a 52.7% success rate.
BUDS is 56.0% more successful than a unstructured baseline that instead learns a
BC stabilizing policy due to the precision required of these complex tasks. Sup-
plementary material and videos can be found at https://tinyurl.com/stabilizetoact.

Keywords: Bimanual Manipulation, Learning from Demonstrations, Deformable
Object Manipulation

1 Introduction

Bimanual coordination is pervasive, spanning household activities such as cutting food, surgical
skills such as suturing a wound, or industrial tasks such as connecting two cables. In robotics, the
addition of a second arm opens the door to a higher level of task complexity, but comes with a
number of control challenges. With a second arm, we have to reason about how to produce coordi-
nated behavior in a higher dimensional action space, resulting in more computationally challenging
learning, planning, and optimization problems. The addition of a second arm also complicates data
collection—it requires teleoperating a robot with more degrees of freedom—which hinders our abil-
ity to rely on methods that require expert bimanual demonstrations. To combat these challenges,
we can draw inspiration from how humans tackle bimanual tasks—specifically alternating between
using one arm to stabilize parts of the environment, then using the other arm to act conditioned on
the stabilized state of the world.
Alternating stabilizing and acting offers a significant gain over both model-based and data-driven
prior approaches for bimanual manipulation. Previous model-based techniques have proposed plan-
ning algorithms for bimanual tasks such as collaborative transport or scooping [1, 2, 3], but re-
quire hand-designed specialized primitives or follow predefined trajectories limiting their abilities
to learn new skills or adapt. On another extreme, we turn to reinforcement learning (RL) tech-
niques that do not need costly primitives. However, RL methods are notoriously data hungry and a
high-dimensional bimanual action space further exacerbates this problem. While simulation-to-real
transfer techniques offer an appealing alternative [4, 5, 6, 7], a key component of bimanual tasks is
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closed-chain contacts and high-force interactions (consider cutting or connecting cables), which are
hard to simulate and widen the gap with reality [8, 9, 10]. A more promising data-driven approach
is learning from demonstration. However, collecting high-dimensional bimanual demonstrations
is difficult as simultaneously controlling two high-degree freedom arms often requires specialized
hardware or multiple operators [11, 12, 8, 13, 14]. The increased dimensionality of the action space
also necessitates significantly more data, especially for more precise or dexterous tasks [15].

Figure 1: BUDS: BimanUal Dexterity from
Stabilization: BUDS is a bimanual manipu-
lation framework that uses a novel stabilizing
and acting role assignment to efficiently learn
to coordinate. For the stabilizing role, BUDS
learns a Stabilizing Position Model (1) to pre-
dict a point to hold stationary using a noncom-
pliant controller (2). In this simplified envi-
ronment, BUDS learns to act from single-arm
demonstrations (3). Combined, these two ac-
tions comprise a bimanual policy (4). Finally,
at every timestep, BUDS’s Restabilizing Clas-
sifier (5) predicts whether the stabilizing posi-
tion is still effective or needs to be updated.

Our insight about how humans iterate between sta-
bilizing and acting presents a way to overcome
these challenges. In tasks such as plugging in a
phone or cutting a steak, a stabilizing arm holds
an object (e.g. the phone or steak) stationary to
simplify the environment, making it easier for the
acting arm to complete the task with high preci-
sion. Factoring control across stabilizing and act-
ing additionally offers benefits for data collection;
the role-specific policy can be learned indepen-
dently for each arm, bypassing the need for biman-
ual demonstrations. Adjusting a stabilizing posi-
tion iteratively as the acting arm progresses enables
even more expressive and generalizable behavior.
For example, a fork should skewer a steak at differ-
ent points depending on where the knife cuts.

Thus, the key insight driving this work is that to en-
able sample-efficient, generalizable bimanual ma-
nipulation, we need two roles: a stabilizing arm
stabilizes an object to simplify the environment for
an acting arm to perform the task.

We propose BimanUal Dexterity from Stabilization
(BUDS), a method that realizes this coordination
paradigm by decomposing the bimanual problem
into two single-arm problems: learning to stabilize
and learning to act. The stabilizing policy decides
where to stabilize in the scene and when to adjust,
while the acting arm learns to perform the task in
this simpler environment. For example when cut-
ting a steak, our stabilizing policy learns where to
hold a steak and when to adjust so the steak remains
stationary while the acting policy makes the cut.

To learn where to stabilize, we use a vision-based
system that takes an environment image as input
and outputs a stabilization keypoint position. We then learn a restabilizing classifier that determines
from images when the stabilizing keypoint is no longer effective and needs to be updated. We deploy
this stabilizing policy while collecting single-arm trajectory demonstrations for an acting policy to
sidestep the need for a precise and expensive bimanual demonstration collection interface. Using
these demonstrations, the acting arm learns a policy via imitation learning to accomplish the task
in this simplified, stationary environment. We demonstrate the efficacy of this paradigm on four di-
verse, dexterous manipulation tasks on a physical UR16e dual-arm platform. BUDS achieves 76.9%
success, and outperforms an unstructured baseline fully learned from expert trajectory demonstra-
tions by 56.0%. Additionally, BUDS achieves 52.7% when generalizing to unseen objects of similar
morphology (e.g. transferring a cutting policy trained on jalapeños to cutting zucchini and celery).

Our contributions are: (1) A paradigm for learning bimanual policies with role assignments, where
the stabilizing arm stabilizes the environment and reduces the non-stationarity present while an
acting arm learns to perform a task allowing in a simpler learning setting, (2) A framework for
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collecting bimanual demonstrations that bypasses the need for a dual-arm interface by collecting
demonstrations for the stabilizing and acting roles independently, and (3) A system, BUDS, that
instantiates this paradigm to learn a centralized bimanual policy to perform a broad range of tasks.

2 Related Work

In this section, we describe the current data-driven and model-based methods available for bimanual
manipulation tasks, along with prior work using ideas of stabilizing for manipulation.

Learning-based Bimanual Manipulation. A recurring challenge throughout bimanual manipu-
lation is the high-dimensionality of the action space. This appears both in reinforcement learning
(RL) and imitation learning (IL) works [16, 11, 17, 18, 19, 20, 21]. Prior multi-agent coordination
works have considered shrinking the high-dimensionality of the problem by using a second agent
stabilizing a latent intent [22], however learning a stabilizing policy and a latent intent mapping both
require a significant amount of data that is not realistic for physical robot manipulation tasks.

RL methods for learning high-frequency bimanual control policies can require a large number of
samples and many hours of robot time, which makes simulation to real policy transfer an appealing
approach [21, 7, 6]. However, sim-to-real approaches are limited to settings where the sim-to-
real gap is small, which precludes many contact-rich bimanual tasks such as zipping a zipper or
cutting food [8, 9, 10]. Instead, works in both RL and IL settings have proposed using parame-
terized movement primitives to reduce the action space, and have achieved reasonable success on
tasks such as opening a bottle and lifting a ball [17, 19, 20, 23, 24, 25, 26, 27, 28, 29, 15, 30].
However, these movement primitives greatly limit the tasks achievable by the method as they often
require costly demonstrations or labor-intensive hard-coded motions for each task-specific primi-
tive. Additionally, learning from demonstrations in bimanual settings is difficult as teleoperating
two high-degree-freedom robots or collecting kinesthetic demonstrations on both arms simultane-
ously is challenging and sometimes impossible for a single human and may require specialized
hardware [16, 11, 31, 12, 8, 13]. Recent works have demonstrated more effective interfaces for data
collection in a bimanual setting, but these interfaces are limited to specific hardware instantiations
and would still require large amounts of expert data to learn a high dimensional policy [14]. To avoid
the need for expert bimanual demonstrations, we use a novel stabilizing paradigm to decouple the
arms’ policies and learn a role-specific policy for each arm from single-arm demonstrations. This
added structure also brings down the dimensionality of the large action space in a task-agnostic way.

Model-based Bimanual Manipulation. The majority of model-based bimanual manipulation
methods are limited to using planning and constraint solving methods to jointly move or hold a
large object [32, 33, 34, 35, 12, 2, 1, 36]. Bersch et al. [37] and Grannen et al. [3] present systems
using a sequence of hard coded actions for folding a shirt and scooping food respectively. However,
as tasks become more complex, the primitives required also become more unintuitive and costly to
hand-design. We instead learn a control policy from single-arm demonstrations, avoiding the need
for labor-intensive hand-coded primitives while performing dexterous bimanual manipuation tasks.

Stabilizing for Manipulation. Stabilizing and fixturing can yield large benefits in a manipulation
context by providing additional steadiness for high precision tasks and unwieldy object interactions.
Early works in industrial robotics have proposed planners for autonomous fixture placement that
reason about friction forces [38] or use CAD model designs [39] to add structure to the environment.
More recent works have used additional fixture arms or vises to bootstrap sample efficiency [40]
or avoid robot force and torque limits [41]. Similarly, Chen et al. [42] consider a collaborative
setting—an assistive robot arm reasons about forces to hold a board steady for a human to cut or
drill into. The addition of an assistive stabilizing role naturally points towards a bimanual setting,
and indeed many bimanual manipulation works implicitly use a stabilizing role in their designs [23,
11, 3, 21]. Holding food in place while cutting is, perhaps, an obvious application of stabilizing, and
this assistance is critical for overcoming the highly variable geometries and dynamics of food [43,
44, 45]. While prior stabilizing works are limited as a task-specific systems, we propose a general
bimanual system that learns from demonstrations how to stabilize and act for a variety of tasks.
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3 Stabilizing for Bimanual Tasks

Given a set of expert demonstrations, we aim to produce a bimanual policy for executing a variety
of manipulation tasks, such as capping a marker or zipping up a jacket. We formulate each bimanual
task as a sequential decision making problem defined by components (O,A). Each observation ot
comprises an RGB image frame ft ∈ RH×W×3 and the proprioceptive state of each arm pt ∈ R14.
A is the action space for the two robot arms containing 14 degrees of freedom (DoF) joint actions at.
We define at = (ast , a

a
t ), where ast , a

a
t ∈ R7 are the stabilizing and acting arm actions respectively.

We are in a model-free setting, and make no assumptions on the unknown transition dynamics.
To perform these bimanual tasks, we use a bimanual manipulator operating in a workspace that is
reachable by both arms, along with a standard (x, y, z) coordinate frame in this workspace. We use
depth cameras with known intrinsics and extrinsics, which allows us to obtain a mapping (fx, fy) in
pixel space to a coordinate (x, y, z) in the workspace, which we later refer to as a keypoint.
To learn our bimanual policies, we first assume access to a set of expert bimanual demonstra-
tions D, and later relax this assumption to two sets of expert unimanual demonstrations Da and
Ds to avoid the challenges of collecting bimanual demonstrations. Each demonstration is a se-
quence of observation, action pairs that constitute an expert trajectory. First, we consider bimanual
demonstrations [(o1, a

s
1, a

a
1), (o2, a

s
2, a

a
2), . . . ] ∈ D to discuss the challenges of learning a Mono-

lithic policy. Next, we pivot to decoupling the bimanual policy with two unimanual datasets:
[(o1, a

a
1), (o2, a

a
2), . . . ] ∈ Da and [(o1, a

s
1), (o2, a

s
2), . . . ] ∈ Ds.

3.1 Monolithic 14-DoF Policy

Let us first consider learning a monolithic 14-DoF policy πθ(ast , a
a
t |ot) parametrized by θ via be-

havioral cloning, which takes an observation ot as input and outputs a bimanual action (ast , a
a
t ). We

aim to find a policy that matches the expert demonstrations in D by minimizing this supervised loss:

L(θ) = −E(o,as,aa)∼D log πθ(a
s, aa|o). (1)

While this is feasible in theory, in practice learning policies in this way is highly dependent on clean
and consistent demonstration data for both arms acting in concert. However, as mentioned in Sec-
tion 2, collecting such data is challenging and these difficulties are further exacerbated for precise
and dexterous tasks. Motivated by stabilizing structures across many bimanual tasks, we sidestep
these challenges by utilizing a task-agnostic role-assignment while learning bimanual policies.

3.2 Stabilizing for Reducing Control Dimensionality

We observe that a wide variety of human bimanual tasks leverage a similar paradigm: one arm
stabilizes objects in the scene to simplify the environment while the other arm acts to accomplish
the task. We translate this observation into a generalizable robotics insight: assign either a stabilizing
or acting role to each arm to specify a coordination framework. Thus, we decompose our bimanual
policy ⟨ast , aat ⟩ ∼ π(·|ot) into two role-specific policies: a stabilizing policy ast ∼ πsθs(·|ot, aat ) and
an acting policy aat ∼ πaθa(·|ot, ast ). These policies are co-dependent; we aim to disentangle them.
Given these roles, we make a crucial insight: for a given acting policy subtrajectory (aai , a

a
i+k), there

exists a single stabilizing action ās that works as a “fixture” for holding constant a task-specific part
of the environment. For example, consider the role of a fork pinning a steak to a plate to facilitate
cutting with the knife. These stabilizing fixtures act to reduce the dimensionality of the control
problem for the other arm, as the environment is less susceptible to drastic changes. We charac-
terize this constant task-specific region with a learned task-relevant representation ϕ : O ↦→ Rj
for some j, and we later instantiate a stabilizing fixture ās with a keypoint representation in Sec-
tion 4.1 and execute non-compliant motions at this keypoint. Finally, we isolate our stabilizing
policy πsθs(a

s
t |ϕ(ot−1), ϕ(ot)) from the acting policy with a loss that penalizes the expected change

in a task-relevant region of the environment:

L(θs) =
k∑︂
t=0

Eaat ∼πa
θa

(·|ot,ast )||ϕ(ot)− ϕ(ot−1)||. (2)
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Given the stabilizing action āst ∼ πsθs(ϕ(ot−1), ϕ(ot)), we obtain an acting action aat ∼
πaθa(·|ot, āst ). This stabilizing action is valid for k timesteps, afterwards which the stabilizing fixture
must be updated. To obtain this variable length k, we threshold the change in ϕ(oi+n) from the
initial observation ϕ(oi) to indicate when a stabilizing fixture is no longer effective:

k = inf{n : n ≥ i and ||ϕ(oi+n)− ϕ(oi)|| > ϵ} (3)

In practice, we instantiate the task-relevant representation to be stabilized ϕ(ot) as a keypoint model
learned from expert demonstrations (using a learned mapping from an image to a keypoint fk : i ↦→
ws). We do not solve Eq. (2) but instead utilize a noncompliant controller to hold this point stationary
over time (see Section 4.1). Given a stabilizing fixture that is effective for acting actions aa[i,i+k],
we additionally learn a restabilizing classifier fr(ot) = {0, 1} that determines when k has been
surpassed and a new learned stabilizing action should be predicted. We describe this implementation
further in Section 4 and show in our experiments in Section 5 that this approximation holds.

4 BUDS: BimanUal Dexterity from Stabilization

We describe BimanUal Dexterity from Stabilization (BUDS), which instantiates the stabilizing and
acting role assignments in Section 3. As shown in Fig. 1, we learn a model for each role: fkθ
for stabilizing and πaϕ for acting, parameterized by weights θ and ϕ. We also learn a restabilizing
classifier frψ , parameterized by weights ψ. All models are learned from human-annotated images
or single-arm teleoperated robot demonstrations, avoiding the difficulties of collecting bimanual
demonstrations. All labels and demonstrations are consistent across both arms for any given image.

4.1 Learning a Stabilizing Policy Algorithm 1 Stabilizing with BUDS

1: while Task Incomplete do
2: ŵst = fkθ (ot)
3: while frψ(ot) = 0 do
4: ast = πs(ŵst−1, ŵ

s
t ) ▷ {ast : ŵ

s
t ≃ ŵst−1}

5: aat ∼ πaϕ(ot, a
s
t )

6: Execute ast , a
a
t . Observe ot+1, f

r
ψ(ot+1).

7: end while
8: end while

From Section 3, we aim to find a sta-
bilizing policy π̄s(s(ot−1), s(ot)) = āst .
Specifically, we aim to learn a task-
specific representation s to be stabilized.
We observe that when humans stabilize in
bimanual tasks, they hold a point station-
ary over time. Thus, Ds contains two ac-
tion types: stationary or zero-actions that
hold a point in place and transient actions that move between stabilizing positions. Additionally,
this observation implies s can be instantiated as a mapping from an observation ot to a stabilization
position wst . We decompose the stabilizing role into two parts: (1) selecting a stabilization position
ws to hold stationary and (2) sensing when to update the stabilization position (as in Eq. (3)).
We parameterize ws as a keypoint on an overhead image of the workspace. We use a ResNet-
34 [46] backbone to learn a mapping fkθ : R640×480×3 → R640×480, which takes as input an
overhead image and outputs a Gaussian heatmap centered around the predicted stabilizing keypoint
ŵs. This mapping is learned from the stationary actions in the demonstration data Ds, indicating
that the arm is at a stabilizing position in this demonstration. In practice, we bypass the need for
full trajectory demonstrations and provide supervision in the form of keypoint annotations. Given
ŵs and a depth value from the overhead camera, a non-compliant controller grasps this 3D point
and holds it stationary. Thus, we approximate the stabilizing action ast with the action that keeps
the keypoint stationary, i.e., ŵst ≈ ŵst−1. We can then write πs(s(ot−1), s(ot)) as πs(ŵst−1, ŵ

s
t ),

a function of two consecutive keypoints learned from demonstrations: ŵst = fkθ (ot). The learned
keypoint mapping fkθ is trained with a hand-labelled dataset of 30 image and keypoint pairs, where
the keypoint is annotated as the stabilizing keypoint wst for the image. We fit a Gaussian heatmap
centered at the annotation with a standard deviation of 8px. This dataset is augmented 10X with a
series of label-preserving image transformations [47] (see Appendix A). From this dataset, fkθ learns
to predict the keypoint ŵs for the stabilizing policy to hold stationary.
To determine when to update ws, we close the feedback loop by learning a restabilizing classifier
frψ : R640×480×3 → {0, 1} that maps input workspace images to a binary output indicating whether
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or not to update ws. This mapping is learned from the transient actions in the demonstration data
Ds—indicating that the stabilizing positions at these states need to be updated. In practice, we
forgo using full trajectory demonstrations for supervision in the form of binary expert annotations.
We instantiate frψ with a ResNet-34 [46] backbone and train this classifier with an expert-labelled
dataset of 2000 images. For each rollout, an expert assigns when in the rollout a new stabilizing
position ws is needed; the preceding images are labelled 0 while the following images are labelled
1. This dataset is augmented 2X with affine image transformations (See Appendix A for details). frψ
learns to predict a binary classification of when the stabilizing point is no longer effective and needs
to be updated with fkθ . Together, fkθ and frψ define a stabilizing policy πs as outlined in Algorithm 1.

4.2 Learning an Acting Policy

Given a stabilization policy πs(ŵst−1, ŵ
s
t ), an acting policy πaϕ learns to accomplish the task in a

simpler stationary environment. We instantiate πaϕ with a BC-RNN architecture that is trained on
20 single-arm demonstrations. A expert teleoperates the acting arm using a SpaceMouse [48], a 3D
joystick interface During data collection, the stabilizing arm is assumed to be in the expert-labelled
stabilizing position ws and the environment is in a simplified state. πaϕ optimizes the standard
imitation learning loss as defined in Eq. (1), and we refer the reader to Appendix A for more details.

To further increase sample efficiency, we assume that our expert acting demonstrations start from
a pre-grasped initial position. To achieve this pre-grasped position, we train an optional grasping
keypoint model fg for the acting policy that maps input workspace images it ∈ R640×480×3 to a
Gaussian heatmap centered around the grasp point. This grasping model is instantiated with the
same ResNet-34 [46] and dataset parameters as used for the stabilizing keypoint model fkθ . The
acting arm moves to the keypoint position in a fixed orientation, and grasps to begin the task.

5 Experiments

We validate BUDS on four diverse bimanual tasks. We use two UR16e arms each with a Robotiq
2F-85 gripper, mounted at a 45◦ angle off a vertical mount, 0.3m apart. We use a RTDE-based
impedance controller [49] and associated IK solver operating at 10Hz on an Intel NUC. End effectors
move along a linear trajectory between positions. All grasps use a grasping force of 225N and a fixed
orientation. We use three Intel Realsense cameras: two 435 cameras mounted at a side view and on
the robot wrist, and one 405 camera mounted overhead. For additional details, see Appendix B.

Bimanual Tasks. We consider four bimanual tasks, as shown in Fig. 3, and test the generalization
of BUDS to unseen objects (Fig. 2). Each task requires both a high-precision acting policy and
a dynamic stabilizing policy that restabilizes multiple times during task execution. We emphasize
the complexity of the coordination required of these dexterous tasks. Together, these four tasks
represent a wide range of real-world bimanual manipulation tasks, which highlights the prevalence
of the stabilizing and acting role assignments. For all tasks, we vary the initial position of all objects
over each trial. For more details and videos, see Appendix B and our website.

• Pepper Grinder. We grind pepper on three plates in order of color—yellow, pink, then blue as
shown in Fig. 3. This task requires restabilizing the pepper grinder over each plate in succession.

• Jacket Zip. We zip a jacket by pinning down the jacket’s bottom and pulling the zipper to the top.
Due to the jacket’s deformability, the robot must pin the jacket as close as possible to the zipper.
We train all models with a red jacket, and the keypoint models on two more jackets: dark grey and
blue. We aim to generalize to light grey and black jackets with different material and zippers.

• Marker Cap. We cap three markers in sequence from bottom to top of the workspace. This task
requires restabilizing after each marker is capped. We train all policies on red, green, and blue
Crayola markers and test generalization with Expo and Redimark markers.

• Cut Vegetable. We cut a vegetable half (7-9cm) into four 1-4cm pieces with three cuts. This task
requires restabilizing the grasp on the vegetable as each cut is made, as the stabilizing arm should
hold the vegetable as close as possible to the cut to prevent tearing and twisting. We train on a
jalapeño and test generalization with zucchini halves (15-18cm) and celery sticks (8-10cm).
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Figure 3: Experiment Rollouts: We visualize BUDS experiment rollouts. All tasks alternate be-
tween updating a stabilizing position ws while the acting arm is paused and executing an acting
policy while the stabilizing arm holds steady. We visualize both ws and the acting actions.

Figure 2: Task Generalization: We present
the Seen and Unseen objects in the Jacket
Zip, Marker Cap, and Cut Vegetable tasks.
We classify these OOD objects into two
classes, Easy and Hard, based on their visual
similarity to the objects seen during training.

Baselines. BC-Stabilizer illustrates the need for
a low-dimensional stabilizing representation by re-
placing the stabilizing keypoint model fkθ with a
policy learned from trajectory demonstrations. This
policy is instantiated with the same BC-RNN ar-
chitecture and training procedure as BUDS’s acting
policy. An oracle classifier determines when BC-
Stabilizer has reached a valid stabilizing position,
where a noncompliant controller then holds the point
stationary as in BUDS while the pre-grasped acting
policy from BUDS accomplishes the task. When the
restabilizing classifier from BUDS frψ is triggered,
the process repeats. No-Restable ablates BUDS’s
restabilizing classifier and only senses a single sta-
blizing point at the beginning of each task. We evaluate No-Restable only on Jacket Zip and Cut
Vegetable because other tasks require an updated stabilizing position to reach complete success. We
do not compare to a Monolithic baseline (as in Section 3.1) as it achieves zero success for all tasks.

Task BC-Stabilizer No-Restable BUDS BUDS Failures
ŵs πa frψ G

Pepper Grinder 39.9 ± 21 – 100 ± 0 0 0 0 0
Jacket Zip (Clean) 28.2 ± 24 58.8 ± 39 72.1 ± 18 0 3 3 1
Jacket Zip (Occluded) 21.6 ± 17 51.1 ± 37 55.7 ± 37 1 2 1 2
Marker Cap 0.0 ± 0 – 90.1 ± 16 1 2 0 0
Cut Vegetable 15.0 ± 17 46.6 ± 28 66.8 ± 24 2 4 0 3

Table 1: Physical Results: We report average percent success and standard deviation across 10 trials
of 4 bimanual tasks with randomly initialized object positions. For Jacket Zip, we classify initial
configurations as Clean or Occluded, where none or up to 30% of the zipper is occluded respectively.
We report 4 failure modes: ŵs stabilizing keypoint, πa acting policy, frψ restabilizing, and (G) poor
grasps. We compare to two baselines: BC-Stabilizer where a single-arm IL policy replaces the
stabilizing keypoint model, and No-Restable, an ablation of BUDS that disregards restabilizing.

We evaluate BUDS on four bimanual tasks that require dynamic restabilizing. Task success is mea-
sured as the proportion of task completed over total amount to be completed, for example zipped
length over total zipper length. As shown in Table 1, BUDS achieves 76.9% success across four
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tasks, visualized in Fig. 3. We report four failure modes: (1) an incorrect predicted stabilizing po-
sition ws, (2) an acting policy failure πa, (3) a restabilizing error frψ that does not detect when a
stabilizing point needs updating, and (4) a failed grasp. The acting policy failure is the most com-
mon, due to the low amount of data used to train the acting policy and the high precision required.
The stabilizing failures (ws and frψ) are mostly due to large visual differences from the training data,
including occlusions, and cause the environment to quickly move out of distribution from the stable,
simplified states seen in the acting policy training data. Across all tasks, BUDS outperforms the
unstructured BC-Stabilizer baseline due to the high precision required of a stabilizing role. Where
BUDS and BC-Stabilizer both learn a relevant point from a visual input, BC-Stabilizer must also
learn the policy to reach this position. Thus, the BC-Stabilizer policy’s primary failure mode is
selecting a poor stabilizing position—it struggles to learn a stabilizing policy robust across many
task configurations, as indicated by its 20.9% success rate. BUDS also outperforms No-Restable in
Jacket Zip (Clean) and Cut Vegetable, highlighting the need for closed-loop restabilizing. BUDS
and No-Restable achieve similar success on Jacket Zip (Occluded) because the biggest challenge in
this task is the jacket’s deformability and occlusions, which restabilizing alone cannot solve.

Task BUDS OOD 40-Demo BUDS Failures
Easy Hard Hard ws πa frψ G

Jacket Zip 62.3 ± 40 28.8 ± 27 23.1 ± 25 10 3 0 2
Marker Cap 60.0 ± 14 53.3 ± 39 56.7 ± 39 17 1 0 0
Cut Vegetable 85.0 ± 13 26.6 ± 26 30.0 ± 33 4 6 0 6

Table 2: Generalizability Results: We test BUDS’s robustness to OOD objects of similar morphol-
ogy. The Easy and Hard OOD objects are respectively more and less similar in visual appearance
and dynamics to training objects (Fig. 2). We report average and standard deviation success over
ten trials per object, along with failure modes over 20 trials. We compare to 40-Demo, whose acting
policy is trained on 40 demonstrations, but do not observe a performance difference on Hard objects.
We test BUDS’s generalizability to out-of-distribution (OOD) objects classified into two classes
based on visual similarity to training objects (Fig. 2). We run 10 trials per object, and find BUDS
achieves an average success rate of 52.7% (Table 2). In two of the three tasks, we observe a slight
performance drop compared to in distribution settings (Table 1), with a worsening difference for
Hard objects. With this expected performance drop, we observe more stabilizing failures (ws and
frψ) due to the stabilizing policy’s high visual dependence, which struggles with novel object ap-
pearances. For Jacket Zip, we attempt to improve performance by training the stabilizing keypoint
model fkθ on three jackets, but the policy still falls short on the vastly different Hard black jacket.
40-Demo aims to improve robustness by training the acting policy on double the data, but again does
not significantly improve performance due to the Hard objects’ large visual and dynamic differences
compared to the training objects, which cannot be remedied with more in-distribution data. We note
an exception: Easy zucchini in Cut Vegetable has a higher success rate than that of the in-distribution
jalapeño. The hollow jalapeño twists and tears, which is unforgiving of slight acting policy errors,
while the solid zucchini can withstand shear forces from noisy policies, yielding more success.

6 Conclusion
We present BUDS, a system for dexterous bimanual manipulation that leverages a novel role assign-
ment paradigm: a stabilizing arm holds a point stationary for the acting arm to act in a simplified
environment. BUDS uses a learned keypoint as the stabilizing point and learns an acting policy from
unimanual trajectory demonstrations. BUDS also learns a restabilization classifier to detect when a
stabilizing point should be updated during rollouts. BUDS achieves 76.9% and 52.7% success on
four bimanual tasks with objects seen and unseen from training respectively.

Limitations and Future Work. Because BUDS uses only visual inputs, it struggles with visu-
ally different novel objects unseen during training—BUDS can zip many jackets but struggles with
dresses. Thus, BUDS also falls short when tactile feedback is critical, such as plugging in a USB.
BUDS assumes fixed roles in each task, which would not hold for tasks where the arms must alter-
nate. In future work, we will explore policies for role assignment, which could be planned to avoid
collisions or learned to enable more nuanced tradeoffs. We will incorporate tactile sensing for more
sensitive stabilizing, towards tasks like buttoning a shirt.
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[9] Íñigo Elguea-Aguinaco, A. Serrano-Muñoz, D. Chrysostomou, I. Inziarte-Hidalgo, S. Bøgh,
and N. Arana-Arexolaleiba. A review on reinforcement learning for contact-rich robotic ma-
nipulation tasks. Robotics and Computer-Integrated Manufacturing, 81:102517, 2023. ISSN
0736-5845.

[10] O. Kroemer, S. Niekum, and G. Konidaris. A Review of Robot Learning for Manipulation:
Challenges, Representations, and Algorithms. Journal of Machine Learning Research, 22(30):
1 – 82, January 2021.

[11] L. P. Ureche and A. Billard. Constraints extraction from asymmetrical bimanual tasks and their
use in coordinated behavior. Robotics and Autonomous Systems, 103:222–235, 2018. ISSN
0921-8890. doi:https://doi.org/10.1016/j.robot.2017.12.011.

[12] C. Smith, Y. Karayiannidis, L. Nalpantidis, X. Gratal, P. Qi, D. V. Dimarogonas, and D. Kragic.
Dual arm manipulation—A survey. Robotics and Autonomous Systems, 60(10):1340–1353,
2012. ISSN 0921-8890. doi:https://doi.org/10.1016/j.robot.2012.07.005.

[13] R. Lioutikov, O. Kroemer, G. Maeda, and J. Peters. Learning manipulation by sequenc-
ing motor primitives with a two-armed robot. 302:1601–1611, 01 2016. doi:10.1007/
978-3-319-08338-4 115.

9

https://arxiv.org/abs/1910.07613
https://arxiv.org/abs/1910.07613
https://arxiv.org/abs/2209.12890
https://arxiv.org/abs/2209.12890
https://arxiv.org/abs/2211.14652
https://arxiv.org/abs/2211.14652
https://ieeexplore.ieee.org/document/9398246
https://ieeexplore.ieee.org/document/9398246
http://dx.doi.org/10.1109/TASE.2021.3064065
https://arxiv.org/abs/2210.10044
https://arxiv.org/abs/2210.10044
https://arxiv.org/abs/2206.08686
https://arxiv.org/abs/2203.08277
https://arxiv.org/abs/2203.08277
https://www.sciencedirect.com/science/article/pii/S0736584522001995
https://www.sciencedirect.com/science/article/pii/S0736584522001995
https://arxiv.org/abs/1907.03146
https://arxiv.org/abs/1907.03146
https://www.sciencedirect.com/science/article/pii/S0921889017300465
https://www.sciencedirect.com/science/article/pii/S0921889017300465
http://dx.doi.org/https://doi.org/10.1016/j.robot.2017.12.011
https://www.sciencedirect.com/science/article/pii/S092188901200108X
http://dx.doi.org/https://doi.org/10.1016/j.robot.2012.07.005
http://dx.doi.org/10.1007/978-3-319-08338-4_115
http://dx.doi.org/10.1007/978-3-319-08338-4_115


[14] T. Z. Zhao, V. Kumar, S. Levine, and C. Finn. Learning fine-grained bimanual manipulation
with low-cost hardware, 2023.

[15] F. Xie, A. Chowdhury, M. C. D. P. Kaluza, L. Zhao, L. L. S. Wong, and R. Yu. Deep imitation
learning for bimanual robotic manipulation. 2020.

[16] N. Figueroa and A. Billard. Learning Complex Manipulation Tasks from Heterogeneous and
Unstructured Demonstrations. In Proceedings of Workshop on Synergies between Learning
and Interaction. IEEE/RSJ International Conference on Intelligent Robots and Systems, 2017.
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Stabilize to Act: Learning to Coordinate for
Bimanual Manipulation Supplementary Material

A Training Details

Augmentation Parameters
LinearContrast (0.95, 1.05)

Add (−10, 10)
GammaContrast (0.95, 1.05)

GaussianBlur (0.0, 0.6)
MultiplySaturation (0.95, 1.05)

AdditiveGaussianNoise (0, 3.1875)
Scale (1.0, 1.2)

Translate Percent (−0.08, 0.08)
Rotate (−15◦, 15◦)
Shear (−8◦, 8◦)
Cval (0, 20)
Mode [‘constant’, ‘edge’]

Table 3: Image Data Augmentation Parame-
ters: We report the parameters for the data aug-
mentation techniques used to train the stabiliz-
ing policy’s stabilizing position and restabilizing
classifier models in BUDS. All augmentations are
used from the imgaug Python library [47].

We provide details for training each of the mod-
els for BUDS: fkθ and frψ for the stabilizing pol-
icy and πaϕ and fg for the acting policy.

A.1 Stabilizing Policy Training

The keypoint models fkθ is trained with a hand-
labelled dataset of 30 pairs of images and
human-annotated keypoints. We augment each
image 10X with a series of label-preserving
transformations from ImgAug library [47], in-
cluding rotation, blurring, hue and saturation
changes, affine transformations, and adding
Gaussian Noise. The detailed parameters for
the transformations are listed in Table 3 and
we visualize the image augmentations in Fig. 5.
The restabilizing classifier frψ is trained on a
dataset of images from 20 demonstration roll-
outs with 100 images each. Each image is
paired with binary expert annotation of whether
or not restabilizing is needed and augmented by 2X with the same image transformations from
above.

Figure 4: Experimental Setup: We
present our experimental setup, which
uses three cameras due to heavy occlu-
sion during manipulation. One camera
is mounted overhead, one is on the wrist
of the right arm, and one is facing the
front of the workspace at an angle.

Both the keypoint model and the restabilizing classifier
are trained against a binary cross-entropy loss with an
Adam [50] optimizer. The learning rate is 1.0e−4 and the
weight decay is 1.0e−4 during the training process. We
train these models for 25 epochs on a NVIDIA GeForce
GTX 1070 GPU for 1 hour.

A.2 Acting Policy Training

The acting policy starts from a pre-grasped position,
which we achieve using an optional grasping keypoint
model. The training procedure of grasping keypoint
model fg is the same as that of stabilizing keypoint model
frθ . After the robotic gripper grasps the object, we collect
20 acting demonstration rollouts, each with between 50
and 200 steps. The variation of 20 demonstrations comes
from the randomization of initial object position, differ-
ences in object shape and dynamics, and variations in
grasps. With these demonstrations, we use one set of hy-
perparameters for all tasks to train a BC-RNN model sim-
ilar to prior work [51]. We load batches of size 100 with a
history length of 20. We learn policies from input images
and use a ResNet-18 [46] architecture encoder which is
trained end-to-end. These image encodings are of size 64
and are then concatenated to the proprioceptive input pt
to be passed into the recurrent neural network which uses
a hidden size of 1000. We train against the standard imitation learning loss with a learning rate of

13



1e−4 and a weight decay of 0. We train for 150k epochs on NVIDIA GeForce GTX 1070 GPU for
16 hrs.

Figure 5: Data Augmentation for Image Datasets: We visualize images from the augmentated
dataset used to train the stabilizing position model and restabilizating classifier for the marker cap-
ping task’s stabilizing policy: fkθ and frψ . For fkθ , the dataset of expert-labelled image and keypoint
annotations is augmented 10X to construct a final dataset of size 300. For frψ , the dataset is aug-
mented 2X for a final size of 4000 image and binary classification pairs.

B Experiment Details

For all tasks, BUDS’s acting policy uses a 3D action space. For the three tasks other than Pepper
Grinder, this action space represents change in end effector position, (∆x,∆y,∆z). For the Pepper
Grinder task, this action space instead represents the change in end effector roll, pitch, and yaw,
due to safety concerns involving the closed chain constraint created by using both arms to grasp the
pepper grinder tool.

Task Cameras

Pepper Grinder Overhead, Side

Jacket Zip Overhead, Side

Marker Cap Overhead, Wrist

Cut Vegetable Wrist, Side

Table 4: Task-Specific Cameras: We report the
cameras used for obtaining images as input for the
acting policy and restabilizing classifier by task.

All tasks use the overhead camera for the sta-
bilizing keypoint model and grasping model in-
puts. Depending on the task and the types of
occlusion present during manipulation, we use
two of the three cameras for the acting policy
and the restabilizing classifier as outlined in Ta-
ble 4.
We use the optional grasping model fg for all
tasks except the Pepper Grinder task to ac-
count for variations of the intial positions of
the jacket, markers, and vegetables. Instead for
the Pepper Grinder task, the acting arm instead
moves to the point corresponding to the end effector position of the stabilizing arm, and grasps at
a fixed height above the stabilizing arm corresponding to the height of the pepper grinder. The
pepper grinder begins pregrasped in the stabilizing robot hand, but the plate positions are randomly
initialized.
In the BC-Stabilizer baseline, the stabilizing policy learned via imitation learning is trained with
the same procedure as the acting policy for BUDS, with the exception of using an output of two
Gaussian mixtures to cover the 3D (∆x,∆y,∆z) action space.
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