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Figure 1: REBOOT achieves 2X sample efficiency boost on learning a variety of contact-rich real-world
dexterous manipulation skills on three different objects autonomously by bootstrapping on prior data across
different objects and tasks with sample-efficient RL and imitation learning-based reset policies.

Abstract: Dexterous manipulation tasks involving contact-rich interactions pose a
significant challenge for both model-based control systems and imitation learning
algorithms. The complexity arises from the need for multi-fingered robotic hands
to dynamically establish and break contacts, balance non-prehensile forces, and
control large degrees of freedom. Reinforcement learning (RL) offers a promising
approach due to its general applicability and capacity to autonomously acquire
optimal manipulation strategies. However, its real-world application is often hin-
dered by the necessity to generate a large number of samples, reset the environ-
ment, and obtain reward signals. In this work, we introduce an efficient system
for learning dexterous manipulation skills with RL to alleviate these challenges.
The main idea of our approach is the integration of recent advances in sample-
efficient RL and replay buffer bootstrapping. This combination allows us to utilize
data from different tasks or objects as a starting point for training new tasks, sig-
nificantly improving learning efficiency. Additionally, our system completes the
real-world training cycle by incorporating learned resets via an imitation-based
pickup policy as well as learned reward functions, eliminating the need for man-
ual resets and reward engineering. We demonstrate the benefits of reusing past
data as replay buffer initialization for new tasks, for instance, the fast acquisition
of intricate manipulation skills in the real world on a four-fingered robotic hand.
(Videos: https://sites.google.com/view/reboot-dexterous)
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1 Introduction

Dexterous manipulation tasks involving contact-rich interaction, specifically those involving multi-
fingered robotic hands and underactuated objects, pose a significant challenge for both model-based
control systems and imitation learning algorithms. The complexity arises from the need for multi-
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Figure 2: REBOOT System Overview: Our method learns various dexterous manipulation skills in the real
world using raw image observations. This is enabled by using sample-efficient RL and bootstrapping with data
from other tasks and even other objects, with autonomous resets.

fingered robotic hands to dynamically establish and break contacts, balance non-prehensile forces,
and control a high number of degrees of freedom. Reinforcement learning (RL) offers a promising
solution for such settings. In principle, RL enables a robot to refine its manipulation skills through
a process of trial-and-error, alleviating the requirement for strong modeling assumptions. However,
making RL methods practical for learning such complex behaviors directly in the real world presents
a number of obstacles. The main obstacle is sample efficiency: particularly for tasks that require
complex interactions with many possibilities for failure (e.g., in-hand reorientation where the robot
might drop the object), the number of trials needed for learning a skill with RL from scratch might
be very high, requiring hours or even days of training. Additionally, real-world learning outside of
the lab requires the robot to perform the entire training process using its own sensors and actuators,
evaluating object state and rewards using camera observations, and resetting autonomously between
trials. Because of these challenges, many prior works on RL for dexterous manipulation have ex-
plored alternative solutions, such as sim-to-real transfer [1, 2, 3], imitation learning [4, 5, 6], or the
use of tools like motion capture [7, 2] or separately-engineered reset mechanisms [8, 9].

In this paper, we instead propose a system that is designed to make direct RL in the real world
practical without these alternatives, so as to take a step toward robots that could one day learn under
assumptions that are sufficient for autonomously acquiring new skills in open-world settings, even
outside the laboratory. This means that the entire learning process must be conducted using the
robot’s own sensors and actuators, without simulation or additional instrumentation, and be efficient
enough to learn skills quickly. We posit that a key enabling factor for this goal is to reuse data from
past skills, and we instantiate this with a simple buffer initialization method, where the replay buffer
of each skill is initialized with data from other tasks or even other objects. In combination with a
vision-based method for learning reward functions from user-provided images and a learned reset
procedure to automatically pick up an object between trials, we demonstrate that our system enables
a robotic hand to learn in-hand reorientation skills in just a few hours of fully autonomous training,
using only camera observations and joint encoder readings.

Our main contribution is REBOOT, a system to Reuse Data for Bootstrapping Real-World Dex-
terous Manipulation, which we illustrate in Figure 2. By simply preloading the replay buffer using
prior data from other objects and tasks, our system avoids starting from scratch for every new task.
By combining recent advances in sample-efficient online RL [10] with buffer initialization to boot-
strap learning from prior tasks and objects, we show that in-hand manipulation behaviors can be
learned in a few hours of autonomous practicing.

We additionally use learned reset skills to make training autonomous, and extend adversarially
learned rewards to handle our buffer initialization method, allowing users to specify tasks with a
few examples of desired object poses and without manual reward engineering. Some of the skills
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learned by our system, shown in Figure 3, include in-hand reorientation of a three-pronged object,
handling a T-shaped pipe, and manipulating a toy football.

2 Related Work

A number of designs for anthropomorphic hands have been proposed in prior work [11, 12, 13].
Prior learning-based methods to control such hands utilize trajectory optimization [14, 15], policy
search [16, 17, 18], demonstration-based learning [19, 20, 21, 22], simulation to real-world transfer
[3, 23, 24, 25], reinforcement learning directly in the real world [26, 8, 27, 28, 29], or a combination
of these approaches [30].

Most of the aforementioned works leveraged accurate simulations or engineered real-world state-
estimation systems to provide compact state representations. In contrast, we seek to learn visuomo-
tor policies autonomously and entirely in the real world without access to privileged state informa-
tion, under assumptions that more closely reflect what robots might encounter when learning “on
the job” outside of laboratory settings. Prior work has explored learning these policies in simulation
[31, 32], where autonomy is not of concern due to the ability to reset the simulated environment.
Most real-world methods either rely on instrumentation for state estimation [28] or deal with sim-
pler robots and tasks [27]. An important consideration in our system is the ability to specify a task
without manual reward engineering. Although task specification has been studied extensively, most
prior works make a variety of assumptions, ranges from having humans-provided demonstrations
for enabling imitation learning [4, 33, 34], using inverse RL [35, 36, 37], active settings where
users can provide corrections [38, 39, 40], or ranking-based preferences [41, 42]. Our in-hand RL
training phase learns from raw high-dimensional pixel observations in an end-to-end fashion using
DrQ[43] and VICE[44], although our system could use any reward inference algorithm based upon
success examples [45]. With users defining the manipulation task by providing a small number of
image goals instead of full demonstrations, our method not only removes the barrier to orchestrate
high-dimensional finger motions [46, 47] but also accelerates robot training progress by offering suf-
ficient reward shaping for RL in real-world scenarios without per-task reward engineering. While
AVAIL [29] also learns dexterous manipulation skills from raw images, we show in our comparison
that our system is faster, and our buffer initialization approach significantly speeds up the acquisition
of in-hand manipulation skills compared to starting from scratch.

Buffer initialization has also been employed by Smith et al. [48] in the context of transfer learning
for robotic locomotion, where a similar approach was used to create a curriculum for locomotion
skills or adapt to walking on new terrains. Our method differs in several significant ways. First, our
method learns from raw image observations with learned reward functions defined through a few
example images, whereas [48] uses hand-programmed rewards. Second, our focus is on learning
intricate dexterous manipulation skills from scratch in the real world, whereas [48] uses initializa-
tion in simulation. Although the methodology is closely related, our proposed system extends the
methodology in significant ways, enabling the use of vision and learned rewards in a very different
domain.

Reset-free learning is essential for autonomous real-world training of dexterous skills (see [49] for
a review of reset-free methods). Most of the prior works [27, 28, 29, 50, 51, 52, 53, 54] rely on
“backward” policies to reset the environment so the “forward” policy can continue learning the
task of interest. Similarly, we divide training into two phases due to different skills having unique
demands for control complexities and user-provided supervision. Specifically, the skill needed to
pick up objects in reset is better studied and developed for immediate usage through imitating user-
provided demonstrations [55].

3 Robot Platform and Problem Overview

In this work, we use a custom-built, 4-finger, 16-DoF robot hand mounted to a 7-DoF Sawyer robotic
arm for dexterous object manipulation tasks. Our platform is shown in Figure 3. Our focus is on
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learning in-hand reorientation skills with reinforcement learning. During the in-hand manipulation
phase, the RL policy controls the 16 degrees of freedom of the hand, setting target positions at 10
Hz, with observations provided by the joint encoders in the finger motors and two RGB cameras,

Figure 3: Depiction of our hardware plat-
form and tasks. (a) custom-built 16 DoF
robotic hand (c) teleoperation using the 3-D
mouse, to interact with the following objects
in-hand (b) blue football, (d) 3-pronged
valve, (e) T-shaped pipe.

one overhead and another embedded in the palm of the
hand. To facilitate autonomous training, we also use im-
itation learning to learn a reset policy to pick up the ob-
ject from the table in-between in-hand manipulation tri-
als. This imitation policy uses a 19-dimensional action
space, controlling the end effector position of the wrist
and 16 finger joints to pick up the object from any loca-
tion.

Our tasks are parameterized by images of desired object
poses in the palm of the hand. Since the reset policy
can grasp the object in a variety of poses, the in-hand
policy must learn to rotate and translate the object care-
fully to achieve the goal pose. We train and evaluate our
method entirely in the real world. In the following sec-
tions, we describe how data from different objects can be
used to bootstrap new manipulation skills for more effi-
cient learning.

4 Reinforcement Learning with Buffer Initialization

In this work, we propose a system for efficiently learning visuomotor policies for dexterous ma-
nipulation tasks via bootstrapping with prior data. We describe our learning method and real-world
considerations for our system in the following subsections.

Problem setting. Our method leverages the framework of Markov decision processes for rein-
forcement learning as described in [56]. In RL, the aim is to learn a policy π(at|st) that obtains
the maximum expected discounted sum of rewards R(st, at) under an initial state distribution ρ0,
dynamics P(st+1|st, at), and discount factor γ. The formal objective is as follows:

J(π) = E s0∼ρ0
at∼π(at|st)

st+1∼P(st+1|st,at)

[
T∑
t=0

γtR(st, at)

]
(1)

The particular reinforcement learning algorithm that we build on in this work is RLPD [10], a
sample-efficient RL method that combines a design based on soft actor-critic (SAC) [57] with a
number of design decisions to enable fast training. This approach trains a value function Qπ(st, at)
in combination with an actor or policy π(at|st), though in principle our system could be compatible
with a variety of off-policy RL algorithms that utilize a replay buffer. For more details on RLPD,
we refer readers to prior work [10].

Reinforcement learning with buffer initialization. While using a sample-efficient RL algorithm
such as RLPD to acquire in-hand manipulation skills can be feasible in the real world, the training
process can take a very long time (see Section 5). A central component of our system design is
to utilize data from other tasks or even other objects to bootstrap the acquisition of new in-hand
manipulation skills. In our experiments, we will show that a very simple procedure can make this
possible: for every RL update, we sample half the batch from the growing buffer for the current task,
and half the batch from a buffer containing the experience from all of the prior tasks. Thus, if n− 1
skills have been learned, to learn a new n-th skill, we pre-load the replay buffer with trajectories
from each of the n − 1 prior skills and sample half of each training batch from prior data and the
other half from the new agent’s online experience. This 50-50 sampling method has been used in
some prior works, including
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RLPD [10, 58], in order to initialize online RL with offline data from the same task. However, in
our system, we adapt this procedure to bootstrap a behavior from other skills. Since all of the tasks
use visual observations, the generalization ability of the value function and policy networks can then
learn to make use of this prior experience to assist in learning the new task. Note that it is not at all
obvious that prior experience like this should be directly useful, as other tasks involve visiting very
different states or manipulating different objects. However, if the networks are able to extract for
example a general understanding of contacts or physical interactions, then we would expect this to
accelerate the acquisition of the new task.

Demonstration-based reset-free learning. In-between in-hand manipulation trials, the robot may
drop the object and need to pick it back up again to attempt the task again. To automate training, we
must also acquire an autonomous pick-up policy to serve as a reset mechanism for the in-hand task,
retrieving objects that may have fallen out of the hand during in-hand manipulation. We observe
that the reset task is composed of essentially the same reaching, power grasping, and lifting up skills
across different objects. Unlike complex manipulation tasks in the in-hand phase, a human operator
can provide demonstrations for these skills more conveniently and effectively, overcoming the wide
initial state distribution issue due to the fact that objects can fall to anywhere in the environment. As
shown in prior work [27], exploration is especially challenging for RL in such settings. Thus, we use
behavioral cloning (BC) to train policies for the reset phase from simple demonstrations provided
with a 3D mouse and a discrete finger closing command. Note that no demonstrations are used for
the actual in-hand reorientation skill (which is difficult to teleoperate), only for the comparatively
simpler reset skill, which only requires picking up the object.

Reward learning via goal images with buffer initialization. Our aim is to enable our system to
learn under assumptions that are reasonable outside of the laboratory: the robot should use the sen-
sors and actuators available to it for all parts of the learning process, including using an autonomous
reset policy and eschewing ground truth state estimation (e.g., motion capture) in favor of visual
observations that are used to train an end-to-end visuomotor policy. However, this requires us to be
able to evaluate a reward function for the in-hand RL training process from visual observations as
well, which is highly non-trivial. We therefore use an automated method that uses goal examples
provided by a person (e.g., positioning the object into the desired pose and placing it on the hand)
to learn a success classifier, which then provides a reward signal for RL. Thus, for each in-hand
manipulation task Ti, we assume a set Gi consisting of a few goal images depicting the successful
completion of the task. Naı̈vely training a classifier and using it as a reward signal is vulnerable to
exploitation, as RL can learn to manipulate the object so as to fool the classifier [44]. We therefore
adapt VICE [44] to address this challenge, which trains an adversarial discriminator pre-defined goal
images as positives (y = 1) and observation samples from the replay buffer as negatives (y = 0).
However, it is necessary to adapt this method to handle our buffer initialization approach, since
VICE is by design an on-policy [44]. We first summarize the VICE algorithm and the regularization
techniques we employ to make it practical for vision-based training, and then discuss how we adapt
it to handle buffer initialization.

A common issue with adversarial methods such as VICE is instability and mode collapse. We
found strong regularization techniques based on mixup [59] and gradient penalty [60] to be essential
to stabilize VICE for learning image-based tasks, and these regularizers additionally aid the RL
process by causing the classifier to produce a smoother, more shaped reward signal. The VICE
classifier predicts log pθ(g|ot), the log probability that the observation ot corresponds to the goal g,
which can then be used as a reward signal for RL training. The VICE classifier parameterized by θ,
Dθ, is then optimized by minimizing a regularized discriminator loss:

L(x; θ) = λ · Lλ(x; θ) + (1− λ) · L1−λ(x; θ) + α(∥∇xDθ(x)∥2 − 1)2 (2)

where the input x is a batch of evenly mixed user-defined goal images and observations collected
during training, Lλ and L1−λ are the Binary Cross Entropy (BCE) loss terms for mixed-up samples
and labels, α = 10 is the weight for Gradient Penalty loss.
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Figure 4: Successful rollouts of in-hand object manipulation policies for the three objects: purple 3-pronged
object (Pose B), black T-shaped pipe, and blue football. The boxes on the right (outlined in green) are repre-
sentative user-provided success state examples for each task. Note that the autonomous pickup policy picks up
the object in a variety of different poses across episodes, requiring the in-hand manipulation skill to reorient it
into the target pose from many starting configurations.

Applying this method with buffer initialization, where prior data from other tasks and objects is
included in the replay buffer, requires additional care. Naı̈vely, if we train a new VICE classifier with
user-provided goal images for the current task as positives, then almost all previous experiences from
other tasks and objects are likely to be assigned a negligible reward during training, which would
not result in beneficial learning signals for the RL agent. Instead, for tasks from other objects in
the prior dataset, rewards are labeled using a task-specific VICE classifier which was trained when
that data was collected for its own task. These classifier rewards are computed and saved prior to
training a new skill, and they remain static throughout training, in contrast to the rewards for online
data and offline data from the same object, which depend on the changing VICE classifier.

We hypothesize that initializing the buffer in this way with data from other objects, or other tasks for
the same object, will allow the RL algorithm to learn more quickly by transferring knowledge about
finger-object interactions, actuation strategies for the hand, and other structural similarities between
the tasks. Of course, the degree to which such transfer can happen depends on the degree of task
similarity, but as we will show in the next section, we empirically observe improvement from prior
data even when transferring to an entirely new object.

5 Experimental Results

In our experiments, we aim to study the following questions:

1. Can our system learn dexterous manipulation skills autonomously in the real world?

2. Can prior data from one object improve the sample efficiency of learning new skills with
the same object?

3. Can data from different objects be transferred to enable faster acquisition of skills with new
objects?

We perform experiments with 3 objects of various shapes and colors: a purple 3-pronged object,
a black T-shaped pipe, and a blue football. For each manipulation task, we collected a set of 400
success example images, as described in the Appendix E.
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We also provide demonstrations per object for the reset policy to enable in-hand training. We
present details of demonstration collection, training procedure, and success rates in Appendix F.
Each demonstration takes roughly 30 seconds to collect, totaling less than 2 hours to collect the
necessary demonstrations. Please check our website https://sites.google.com/view/reboot-dexterous
for videos and further experimental details.

Figure 5: Learning curve showing the performance
as a function of training time of reorienting the 3-
prong object into different poses. Even though both
our method and training from scratch eventually reach
a success rate of 80%, our method gets there about two
times faster.

Figure 6: Bar plot displaying the training time re-
quired for each object to reach their respective target
performance. Buffer initialization leads to more than a
2x speedup across all of the objects compared to train-
ing from scratch.

Figure 7: Pose A for the 3-
pronged object is approximately
60◦ offset from Pose B, with any
leg pointing straight to the wall.

Task transfer. To answer Question 1, we evaluated our method
on each of the 3 objects with varying amounts of prior data. We
first trained a 3-prong object manipulation policy (for a goal pose
we call Pose A, shown in Figure 5) without prior data in order to
gather data to initialize training for subsequent objects/tasks. We
then trained another 3-prong manipulation policy for a different
goal pose (Pose B, shown in Figure 4) as well as a T-pipe manipula-
tion policy, both using prior data from the first 3-prong experiment.
Finally, we trained a football manipulation policy using the 3-prong
and T-pipe experiments as prior data. Our method’s success rate
is shown in Figure 6, and film strips of various manipulation pol-
icy successes during training are shown in Figure 4. Our behavior-
cloned reset policy was sufficient as a reset mechanism for in-hand
training. Furthermore, our in-hand policies are able to successfully
pose the 3-prong and T-pipe objects more than 50% of the time.

To answer Question 2, we consider the Pose B 3-prong experiment described previously. Since
reorienting to both Pose A and B uses the same 3-prong object, we expect the task difficulty to
be similar for both poses. A comparison between training Pose A from scratch and training Pose
B with a pre-loaded replay buffer is shown in Figure 5. The Pose B experiment with our method
outperforms the Pose A experiments training from scratch in terms of training time. Our method
reaches 80% success in around 6 hours while training from scratch yields poor performance at that
point. It takes more than 10 hours for learning from scratch to achieve a comparable success rate.
This suggests that our method can significantly reduce training time when using prior data from the
same object for a new manipulation task.

Object transfer. To answer Question 3, we consider the T-pipe and football experiments described
above. We compare our method to learning from scratch without prior data and display the results
in Figure 8. Our method with prior data from other objects is significantly faster than learning from
scratch for both objects. For the T-pipe experiments, our method achieves a 60% success rate at
6 hours compared to 13 hours for training from scratch. Furthermore, the from-scratch runs have
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Figure 8: Learning curve showing the performance as a function of training time for the T-pipe and football
objects. In both cases, buffer initialization is about two times faster than learning from scratch, though particu-
larly the football object is harder to reorient for all methods.

absolutely no success in evaluation prior to 5 hours of training, while our method achieves some
initial success as early as 1 hour into training. The football task appears to be significantly more
challenging than the 3-prong and T-pipe tasks, as shown in Figure 8, with no methods performing
above a 30% success rate. However, our method still outperforms learning from scratch, achieving a
30% success rate with 5 hours of training; the from-scratch runs required at least 16 hours of training
to achieve a lower 20% success rate.

Ablation Studies. Finally, we conduct ablation experiments in both simulation and the real world
to compare the effects of varying the initial buffer size, the order in which the buffer is initialized,
transfer learning from a trained policy, and training for an extended period of time. Results and
in-depth analysis are provided in Appendix C and Appendix D.

6 Discussion, Limitations, and Future Work

We presented a system for learning in-hand manipulation skills directly by training in the real world
with RL, without simulation, and using only onboard sensing from encoders and cameras. Our
system enables sample-efficient and autonomous learning by initializing the replay buffer of an effi-
cient online RL method with data from other tasks and even other objects. We extend adversarially-
learned classifier-based rewards into this setting to make it possible for users to define tasks with
a collection of goal images, and implement automated resets using an imitation-learned reset pol-
icy, providing a pipeline for fully autonomous training. The complete system avoids any strong
instrumentation assumptions, using the robot’s own sensors and actuators for every part of training,
providing a proof-of-concept for an efficient real-world RL system that could operate outside of
laboratory conditions.

Limitations: Our experimental evaluation does have a number of limitations. Although we show
that reusing data from one or two prior tasks improves learning efficiency, a more practical general-
purpose robotic system might use data from tens, hundreds, or even thousands of skills. Evaluating
the potential for such methods at scale might require additional technical innovations, as it is unclear
if buffer initialization with very large datasets will be as effective. Additionally, our evaluation is
limited to in-hand reorientation skills. While such skills exercise the robot’s dexterity and physical
capabilities, many other behaviors that require forceful interaction with the environment and other
manipulation skills could require a different reset process or might require a different method for
reward specification (for example to handle occlusions). Exploring these more diverse skills is an
exciting direction for future work. The current manipulation setup is training with fairly robust
objects where fragility or wear and tear are not major concerns. As we move to more dexterous
tasks, a more directed approach may be required to handle fragile objects or perform tasks that
require force-sensitive interaction. Studying how to integrate our system with tactile sensing is
another exciting avenue to explore.

8



Acknowledgments

This research was partly supported by the Office of Naval Research (N00014-20-1-2383), and ARO
W911NF-21-1-0097. We would like to thank Ilya Kostrikov for the initial versions of the simulator
and codebase, and everyone at RAIL for their constructive feedback.

References
[1] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel. Domain randomization

for transferring deep neural networks from simulation to the real world. In 2017 IEEE/RSJ
international conference on intelligent robots and systems (IROS), pages 23–30. IEEE, 2017.

[2] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel. Sim-to-real transfer of robotic
control with dynamics randomization. In 2018 IEEE international conference on robotics and
automation (ICRA), pages 3803–3810. IEEE, 2018.

[3] OpenAI, M. Andrychowicz, B. Baker, M. Chociej, R. Józefowicz, B. McGrew, J. W. Pachocki,
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Appendix

A Evaluation Success Criteria

We evaluated the trained policy success rate at every 12000 steps for the three real-world in-hand
manipulation tasks considered in the paper. The success criteria are defined as follows to stay con-
sistent with the goal images collected to learn the VICE classifiers:

Task Success Criteria

3-Prong Object Pose A&B 1

{
|θany leg − θgoal pose| ≤ 5◦

}
T-Shaped Pipe 1

{
|θvertical leg − θgoal pose| ≤ 5◦

}
Football 1

{
|θlong axis − θgoal pose| ≤ 5◦

}

1. 3-Pronged Object:

• Pose A is successful if any leg is pointing straight forward (to the wall) with less than
or equal to 5 degrees deviations.

• Pose B is successful if any leg is pointing straight backward (to the robot) with less
than or equal to 5 degrees deviations.

2. T-Pipe: The T-Pipe is successful if the vertical pipe is pointing straight backward (to the
robot) with less than or equal to 5 degrees deviations.

3. Toy Football: The toy football is successful if its long axis is pointing straight to both the
wall and the robot with less than or equal to 5 degrees deviations.

For the reset policies, the success criteria are intuitively defined as whether the hand grasps and
picks up the object in a ready-to-manipulate pose, such that in-hand training can begin without
objects falling out of the palm immediately.

13



B Algorithm Details

In this section, we describe details related to our RL learning algorithms and our imitation learning
algorithm and also provide hyperparameters used in experiments for each method.

REuse Data For BOOTstrapping Efficient Real-World Dexterous Manipulation

Algorithm 1 REBOOT

1: Given: A replay buffer D with prior data, a set of reset demos Dreset, a set of goal images G,
and a start state s0.

2: Initialize an empty replay buffer B, RLPD(SAC)[10] with policy πψ and value function Qψ , a
reset policy πϕ, and VICE classifier [44] Dθ

3: Train reset policy πϕ using Dreset via Behavior Cloning
4: for iteration j = 1, 2, ..., T do
5: Execute πϕ to perform reset
6: Execute πψ in environment, storing data in the online replay buffer B
7: Update the RLPD’s policy and value functions πψ , Qψ using a 50/50 batch of samples from

B and D, assigning reward based on Dθ using SAC [57].
8: Update the VICE classifier Dθ using samples from B and goal images from G, using eq2.
9: end for

Shared RL Hyperparameters Value

Shared Images Encoder for DrQ MobileNetV3-Small-100 with ImageNet-1K weights
Learned Spatial Embedding

Actor Architecture FC(256, 256)
FC(256, 19)

Critic Architecture REDQ with 10 Ensembles
FC(256, 256)
FC(256, 1)

Optimizer Adam
Learning rate {3e-4}
Discount γ 0.99

REBOOT UTD 4
AVAIL UTD 1
Target Update Frequency 1
Actor Update Frequency 1

Batch size 256
VICE batch size 512 (256 Goals + 256 Replay Samples)

VICE Classifier Hyperparameters Value

Optimizer Adam
Learning rate {3e-4}
Classifier steps per iteration 1
Mixup Augmentation α 1
Label Smoothing α 0.2
Gradient Penalty Weight λ 10
VICE update interval per episode

Classifier Architecture MobileNetV3-Small-100 with ImageNet-1K weights
Learned Spatial Embedding
Dropout(0.5)
FC(256, 256) → LeakyReLU() → Dropout(0.1)
FC(1)
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C Ablation Studies

Order of tasks to initialize the buffer. To investigate whether the ordering of tasks to initialize the
replay buffer impacts the learning performance in our method, i.e. bootstrapping on one object’s or
task’s data leads to better performance than others, we designed and ran two additional experiments.

The experimental setup follows our method in Figure 5a, where the robot autonomously learns to
reorient the 3-prong object to pose B. In the paper, we experimented and reported the performance
using replay experiences from pose A’s training to bootstrap pose B. Then we bootstrapped the
learning of the T-pipe and football using the 3-prong object’s data.

We now consider bootstrapping the 3-prong object’s pose B learning with replay data from the T-
pipe and football training, while keeping the amount of prior data, replay sampling ratio, and UTD
the same. We report the evaluation success rate every 12000 steps.

Figure 9: Ablation studying the effect of initializing the replay buffer with prior experience from
different objects. Initializing with experience from the same object results in the best performance,
but initializing using football experience provides a similar benefit.

For the same task (reorient 3-prong object) under the same training hours, bootstrapping from the
same object but different task data yields the best performance, initialized with football task data
achieves similar results, T-pipe data’s performance follows, and no buffer initialization performed
the worst. We note two potentially significant differences between these 3 objects:

1. The T-pipe is fully black colored while the 3-prong object and football are more vividly
colored.

2. The in-hand dexterous motions required to solve the tasks are similar between
the 3-prong object and the football (planar rotation) but different from the T-
pipe (vertical flipping). This can be visualized better on the project website link
https://sites.google.com/view/reboot-dexterous).
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Initial buffer size. To investigate how different initial replay buffer sizes affect the performance,
we performed additional real-world experiments for the 3-prong object reorient task. The experi-
mental setup follows our method in Figure 5a, where the robot is tasked with autonomously learning
to reorient the 3-prong object to pose B using buffer initialization from reorienting to pose A. We
compare initializing the buffer with 60k vs. 30k randomly selected transitions and apply our method.

Figure 10: Ablation studying the effect of reducing the amount of data used for buffer initialization
(30k vs. 60k transitions pre-loaded into replay buffer). Our result demonstrates that there is some
benefit to pre-loading with less data, but the 60k setting still learns considerably faster.

The 30k and 60k transitions used to initialize the replay buffers for these experiments were both
sampled uniformly from the same Pose A replay buffer (168k transitions), and both experiments use
a 50/50 sampling ratio between prior and new data. However, the run initialized with 60k transitions
contains more diverse replay experiences, accelerating the online sample efficiency while achieving
a higher success rate under the same training time.
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Comparison to transfer learning. To compare whether our method is more effective at learning
real-world dexterous tasks than alternative approaches such as transfer learning, we ran an additional
experiment with the 3-prong object task (Pose B) by transferring a baseline policy (Pose A, UTD=1,
no initialization) that is trained for a longer period of time (21 hours, 70% evaluation success rate).
We initialized the training by reloading the actor and critics network parameters with the trained
checkpoints from the baseline policy and finetuned with the same experimental setups and no replay
buffer initialization. We report the evaluation success rate here.

Figure 11: Ablation studying the effect of fine-tuning a previously trained policy for a different goal
pose with the same object, rather than pre-loading the replay buffer. We find that pre-loading the
replay buffer improves sample efficiency significantly more than fine-tuning an existing policy.

While the policy transfer + finetuning approach outperformed the baseline that learns from scratch
under the same training time, our method with buffer initialization still achieves the highest success
rate.
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Comparison of all ablations. Here we visualize a summary of all ablations and comparisons in
one plot. Our method is the most sample-efficient among all experiments on reorienting the 3-prong
object.

Figure 12: Evaluation plots showing the performance of checkpoints at different points in training
for a number of ablation experiments, all learning to reorient the 3-pronged object into Pose B. This
figure compares the initial replay buffer size, data used to initialize the replay buffer, and policy
initialization ablations against our method. Our method, initialized with 60k transitions from a
previous experiment with the same object, clearly learns faster than the ablations.
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D Longer Training in Simulation

Simulation Environment: For testing and iterating our algorithms, we developed a simulation
replica of our real robot setup using Mujoco and dm-control. This simulation model consists of the
same 16 DoF 4-fingered DHand attached to a 6 DoF Sawyer robot arm as the one built in the real
world.

The simulation task considered here is to reposition the 3-pronged object from anywhere on the
tabletop back to the center. In this environment, the robot correctly solving the task corresponds to
a ground-truth episode reward of -20.

Figure 13: Ground-truth reward vs. training steps for our method and a baseline without buffer initialization
in simulation, demonstrating that the performance of our method remains stable after training for a long period
of time.

Results: Results for simulated experiments are shown in Figure 13. The red line represents the
average eval performance of our method across 4 seeds using buffer initialization (UTD=4, 60k
transitions initialization, same as real-world), while the brown line represents the average eval per-
formance of the baseline method (UTD=1) w/o buffer initialization across 4 seeds. Both lines are
smoothed using an EMA of 0.9. Our method is notably more sample efficient at solving the task
than the baseline method and is more stable at convergence than the baseline when trained up to
500k steps.
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E Goal Images Collection Procedure

For each task considered in the experiment section, we collect a set of 400 goal images by placing
the object in the palm of the robot hand in the desired pose, closing the fingers for 1 second, and
executing random actions for 1.5 seconds. We repeat this procedure multiple times, collecting 25
goal images per iteration until we reach 400 total images

F Behavior-Cloned Reset Policy Details

We began demonstration collection with the 3-prong object for which we collected 160 demonstra-
tions for the reset policy. We provided only 30 additional demonstrations per new object, for a total
of 220 reset demonstrations across all objects. This was sufficient to train a universal reset policy
for all objects with a high enough success rate to enable in-hand training.

In most cases, our behavior cloned reset policy is capable of resetting the environment, or at least
of making contact with the object, but there are a few states where the policy is unable to pick up
or perturb the object in any way. In order to avoid getting stuck attempting unsuccessful resets
in these states, we train two different reset policies. One is trained with reset demonstrations for
multiple objects, while the other is trained with demonstrations for only the current experiment’s
object. For example, when running an experiment with the football, one policy is trained using
reset demonstrations for the 3-pronged object, the T-shaped pipe, and the football, while the other
is trained only with demonstrations for the football. At the start of each training episode, we select
the multi-object reset policy with an 80% probability and the single-object reset policy with a 20%
probability. Since the policies behave differently due to being trained on different data, states in
which one policy might get stuck are unlikely to cause the same issue for the other policy, which
enables training to continue even if one of the two policies is sub-optimal.

Here we report the success rate of each reset policy measured when performing evaluations for the
in-hand policies.

Objects 3-Pronged Object T-Pipe Football

Success Rate 0.608 0.667 0.367

Table 1: Success Rate of Reset Policies

The poor success rate of the toy football could be attributed to its reset success rate. While the
3-pronged object and the T-pipe are more challenging to reorient in-hand due to more complex
geometries and more contacts during manipulation than the toy football, it is harder to pick up the
toy football by the robot hand due to its slim and small shape. With nearly half the success rate
compared to the other two objects, the football in-hand training had fewer opportunities to practice
meaningfully. Hence, the football experiment with our method is able to achieve a 30% success rate
compared to the near zero success in runs without prior data initialization under the same amount of
training time.
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