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Figure 1: Our proposed Deception Game framework improves safety and efficiency of uncertain, multi-modal
interactions with other agents by closing the safety decision loop around the robot’s runtime learning algorithm.
(a) An autonomous vehicle is uncertain of the type of a human crossing the road. Our method computes a safe,
yet non-conservative control policy by explicitly accounting for how interaction uncertainty will evolve. Color-
shaded areas denote the complement of the safe sets projected onto the 2D plane. (b) Our framework can scale
to systems using modern data-driven trajectory predictors such as the Motion Transformer [1].

Abstract: An outstanding challenge for the widespread deployment of robotic
systems like autonomous vehicles is ensuring safe interaction with humans with-
out sacrificing performance. Existing safety methods often neglect the robot’s
ability to learn and adapt at runtime, leading to overly conservative behavior. This
paper proposes a new closed-loop paradigm for synthesizing safe control policies
that explicitly account for the robot’s evolving uncertainty and its ability to quickly
respond to future scenarios as they arise, by jointly considering the physical dy-
namics and the robot’s learning algorithm. We leverage adversarial reinforcement
learning for tractable safety analysis under high-dimensional learning dynamics
and demonstrate our framework’s ability to work with both Bayesian belief propa-
gation and implicit learning through large pre-trained neural trajectory predictors.

Keywords: Learning-Aware Safety Analysis, Active Information Gathering, Ad-
versarial Reinforcement Learning.

1 Introduction

With the rise of autonomous vehicles on the road, robots are operating at new scales and around real
people. A daily challenge for these systems is maintaining human safety in close-proximity interac-
tions without impeding performance. This balance is made difficult by inherent interaction uncer-
tainty: uncertainty induced by others’ intents (e.g., does a human driver want to merge, cut behind,
or stay in the lane?), responses (e.g., if the robot accelerates, how will the human react?), and seman-
tic class (e.g., is this person a pedestrian or cyclist?). These aspects are all unknown a priori, so the
robot must learn about them at runtime. As the robot and the human take action over time, the robot
gathers more information about the human’s internal state and can make more effective decisions.
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Unfortunately, existing safety methods predominantly ignore the robot’s ability to learn about the
human during runtime interaction, instead making static modeling assumptions [2, 3, 4, 5, 6]. For
example, if the robot currently believes that the human driver intends to stay in their lane, then it
will compute a safety controller assuming that the human always intends to stay in their lane during
the safety analysis horizon. Put more formally, these safety methods only account for the evolution
of the physical system state while assuming that the information available to the robot remains
constant throughout the safety analysis horizon. This simplification can lead to overly conservative
robot decisions and—in extreme cases—catastrophic safety failures.

Contributions. We propose a novel Deception Game safety analysis framework that closes the
loop between the robot’s interactive decisions and the runtime learning process by which it updates
its prediction of other agents. Safety is assessed in an augmented state space that jointly describes
agents’ physical motion and the robot’s internal belief updates, explicitly accounting for how interac-
tion uncertainty will evolve as a function of agents’ upcoming behavior and, crucially, how rapidly
the robot can detect and respond to safety-threatening tail events (Figure 1). We demonstrate the
effectiveness of our approach on 200-dimensional state space problems involving black-box learn-
ing dynamics by leveraging a recently introduced approximate solution method [7] for zero-sum
dynamic safety games via model-free adversarial reinforcement learning (RL).

Related work. A common approach to safe multi-agent interaction is to compute robust predictions
of other agents’ behavior. Forward reachability methods use (possibly learned) predictive agent
models [8, 9, 10] alongside exact Hamilton-Jacobi (HJ) reachability analysis or approximations such
as zonotopes [5, 11, 12, 13, 14, 15] to compute possible future states that are used as constraints
by downstream motion planners [16, 17]. While safe, these methods tend to be overly conservative
since they do not account for the robot’s ability to take evasive maneuvers in response to the human.

Another approach is to directly synthesize robust robot control policies. One common tool are
control barrier functions (CBFs) [18], which encode safety as an algebraic constraint in runtime
optimization. However, CBFs lack general constructive methods, often requiring manual per-system
design and leading to restrictive underapproximations of the safe set [19]. On the other hand,
game-theoretic HJ backward reachability analysis computes the optimal safety value function and
the corresponding safety controller for the robot [20, 21]. We ground our work in this literature,
and introduce a novel formulation of game-theoretic HJ reachability in belief space.

To date, all provably safe human-robot interaction schemes treat the human model as static during
the entire safety analysis horizon. In other words, they assume that the robot will never gain new in-
formation about the human’s behavior; we refer to this as open-loop safety in the information space.
In reality, however, robots can gain information about other agents intent’, semantic class, etc., dur-
ing interaction. By reasoning about the future information they might receive, robots can afford to
be less conservative: for example, in occluded environments, safety can be maintained less conser-
vatively by leveraging the future observability of hypothetical yet-undetected objects [22, 23]. Our
approach accounts for runtime inference, yielding a novel closed-loop-information safety analysis.

Finally, any approach that considers multiple agents and/or hypotheses will face challenges with the
curse of dimensionality. Although HJ reachability has traditionally been intractable for systems with
more than five continuous state variables, neural approximations have shown promise in scaling to
high-dimensional systems [24, 25, 7]. In this work, we leverage recent advancements in adversarial
reinforcement learning approximations [7] to scale our novel safety problem.

2 Preliminaries and Problem Formulation

Let the discrete-time nonlinear dynamics of an “ego” autonomous robot (e) interacting with an
“opponent” agent (o) be xt+1 = f(xt, u

e
t , u

o
t , wt) where xt = (xe

t , x
o
t ) ∈ X ⊆ Rn is the joint

state vector. The control vectors of the robot and the opponent are ue
t ∈ Ue ⊂ Rme and uo

t ∈
Uo ⊂ Rmo . Finally, wt ∈ W ⊂ Rmw is a bounded process noise (external disturbance), and
f : X × Ue × Uo ×W → X describes the physical system dynamics.
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Background: Hamilton-Jacobi reachability. Game-theoretic HJ reachability analysis [20, 26]
uses robust optimal control theory to compute provable policies to reach and/or avoid re-
gions of the state space. Define the target and failure sets as T := {x | ℓ(x) ≥ 0} ⊆ Rn and
F := {x | g(x) < 0} ⊆ Rn, encoded by Lipschitz-continuous margin functions ℓ(·) and g(·). HJ
analysis captures the opponent’s worst-case behavior by formulating an infinite-horizon zero-sum
dynamic game. In discrete time, the game’s solution can be obtained via the fixed-point Isaacs
equation [27] (the game-theoretic counterpart to the Bellman equation):

V (x) = min

{
g(x),max

{
ℓ(x), max

ue∈Ue
min

uo∈Uo,w∈W
V
(
f(x, ue, uo, w)

)}}
. (1)

The value function V (·) encodes the reach-avoid set RA(T ,F) := {x | V (x) ≥ 0}, from which
the ego agent is guaranteed a policy to safely reach the target set without entering the failure set.
Given a value function V (·), its zero superlevel set contains the ego’s recursively safe states, and the
optimal ego and opponent policies are obtained by taking argmax/argmin controls in (1) [20].

Opponent uncertainty. We model opponent agents as taking actions from an uncertain control set
affected by their unknown individual characteristics θ ∈ Θ. We refer to θ as the opponent’s type,
following game theory literature [28]. This type θ may encode aspects about the agent, including
its semantic class (e.g., a pedestrian or a cyclist) and its internal state (e.g., intended destination,
attention state). We assume that the hypothesis space Θ is discrete, and that each hypothesized type θ
is associated with a known (possibly state-dependent) control set Uo

θ (xt) of admissible actions for
an opponent agent of this type.

Reducing uncertainty via learning. The robot represents its uncertainty over the agent type θ ∈ Θ
through a probabilistic belief b(θ) ∈ ∆. Since Θ is a finite set, b is a categorical distribution and
the belief space ∆ is a (|Θ| − 1)-simplex. The belief evolves over time as the ego agent collects
new observations (e.g., observing the opponent nudging into its lane). Our approach is agnostic to
the specific runtime learning algorithm used for propagating the belief state, which includes, among
others, Bayesian inference and transformer neural networks [1]. Thus, we refer to the abstracted
evolution of the belief state as the learning dynamics of the form

bt+1 = fL(bt, yt), yt = h(xt, u
o
t , vt), (2)

where yt ∈ Y ⊆ Rny is the robot’s indirect observation of the opponent at time t from state xt,
vt ∈ V ⊂ Rmv is a bounded measurement noise, and h : X ×Uo×V → Y is the observation model.
Defining the joint state vector z := (x, b), we can combine the physical dynamics function f and
the learning dynamics fL from (2) into a joint dynamical system:

zt+1 = F (zt, u
e
t , u

o
t , wt, vt) :=

[
f(xt, u

e
t , u

o
t , wt)

fL
(
bt, h(xt, u

o
t , vt)

)
]
, (3)

which compounds the physical evolution of the system with the robot’s belief update. We note that
the learning dynamics need not impose (or be aware of) the type-specific control bounds Uo

θ (xt)
used for safety analysis purposes.

Running example: In Figure 1, the autonomous vehicle (ego) is uncertain about whether the crossing
human (opponent) is a pedestrian or a Segway rider. We model the opponent’s unknown type as
θ ∈ Θ := {ped, seg}, with associated control sets Uo

ped = [−0.75, 0.75] × [−2, 2] m/s and Uo
seg =

[−0.75, 0.75]× [−8, 0] m/s. The joint state space is defined as z := (xe, xo, b(θ = ped)) ∈ R8 with
xe ∈ R5 and xo ∈ R2. The robot uses Bayesian inference as the learning dynamics fL.

3 Closing the Safety Loop Around Runtime Learning

Our approach reduces conservativeness by explicitly modeling the dynamic coupling between the
opponent’s control bound and the robot’s internal runtime learning. For example, imagine that
the robot begins with a strong prior that humans do not cross highways: by the time the human
does begin to cross the highway, the robot must have observed enough evidence that suggests that
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Figure 2: Deployment of the Deception Game policy trained with adversarial deep RL in closed-loop with a
pretrained deep neural network learning dynamics model. The robot policy takes as inputs both the physical
state xt and belief state bt, and operates under the inference hypothesis that the opponent behaves according to
the inferred control bound Ûo(zt) imposed by the learning dynamics.

the human’s true intent might be to cross. Note that this results in a belief-based restriction of the
opponent’s behavior that is not causal, but inferential: it is based on the premise that an agent cannot
take actions only explained by θ without the robot’s belief already placing nonnegligible probability
on this type. We formalize this below as the inference hypothesis.

Assumption 1 (Inference Hypothesis). At each time t, the robot’s belief bt must have assigned no
less than ϵθ probability to at least one type θ consistent with the opponent’s next action uo

t . That is,
the opponent’s action uo

t from joint state zt must belong to the inferred control bound given by

Ûo(zt) :=
⋃

θ∈Θ

Ûo
θ (zt), Ûo

θ (zt) :=

{Uo
θ (xt), if bt(θ) ≥ ϵθ

∅, if bt(θ) < ϵθ
(4)

where ϵθ ≥ 0 is a designer-specified threshold capturing the reliability of the runtime inference.

Assumption 1 implies that when bt(θ) falls below ϵθ the corresponding control set Uo
θ (xt) can be

temporarily omitted, reducing the opponent action uncertainty to a smaller inferred bound Ûo(zt).
The belief threshold ϵθ encodes the designers’ confidence in the reliability of the robot’s runtime
inference. A suitable value can be determined empirically by evaluating the inference mechanism
on a large dataset, or it may be provided by an upstream component in the autonomy stack as part
of a “contract” [29]. As ϵθ approaches zero (no confidence in the robot’s inference), we recover the
purely robust formulation, where the robot safeguards against all hypotheses regardless of its belief.

Remark 1. Unlike scenario pruning approaches [30, 31, 32], within our framework no hypothesis
is ever permanently ruled out, but only provisionally set aside until and unless its probability
increases. Specifically, a previously small b(θ) may regain probability and surpass threshold ϵθ, at
which point the corresponding control set Uo

θ (xt) is immediately added back to the overall inferred
control bound Ûo(zt). This possibility is factored into our safety analysis via the learning dynamics.

Belief-space HJ reachability: formalizing learning-aware safety. The coupling between the
robot’s learning dynamics and the opponent’s action uncertainty induces a new safety problem:
a belief-space reach-avoid game in which the ego agent attempts to robustly ensure safety against
the worst-case behavior of an opponent whose actions must be plausible in light of past behav-
ior, yet may be strategically deceptive. To model this game, we extend the game-theoretic HJ
reachability formulation (Section 2) to the joint physical–belief state z. Although the target set
T := {z | ℓ(x) ≥ 0} ⊆ X ×∆ and failure set F := {z | g(x) < 0} ⊆ X ×∆ are still defined in
terms of only the physical state, the reach-avoid game entangles physical and belief states through
the joint dynamics (3). This interdependence is characterized by a new belief-space Isaacs equation:

V (z) = min

{
g(z),max

{
ℓ(z), max

ue∈Ue

min
uo∈Ûo(z),w∈W,v∈V

V (F (z, ue, uo, w, v))

}}
. (5)

The key differences with respect to the standard Isaacs equation (1) are highlighted in red. In par-
ticular, the state space now is defined over z (the joint state that additionally includes the robot’s
belief b) and the inferred control bound Ûo(z) becomes a function of the joint state instead of fixed
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a priori. We also are robust to observation noise as modelled by v. Note that the ego and opponent
controls given by solving (5) are optimal in the sense of a zero-sum partially observable stochastic
game [33] (or dual control [34, 35]): they not only aim to influence the physical state x, but also the
ego’s uncertainty about the opponent, encoded by the belief state b. The ego’s control ue strategi-
cally forces the opponent to reveal information about its type θ whenever reducing the uncertainty
is critical to safely reaching the target. The opponent’s control uo is also dual: to sabotage the ego’s
reach-avoid task completion, it may behave deceptively to maintain strategic ambiguity that it can
exploit later, for example, by forcing a collision (safety failure). This is formalized in the result
below, which is a direct consequence of HJ reachability theory [21].

Proposition 1. If the opponent satisfies the inferred control bound (4), i.e uo
t ∈ Ûo(zt),∀t ≥ 0, then

the superlevel set {z | V (z) ≥ 0} is a robust reach-avoid set from which the robot has a guaranteed
control strategy—the maximizer of (5)—to drive the joint system (3) into T while avoiding F .

Remark 2. The above proposition guarantees that, as long as the inference hypothesis encoded
through (4) holds, the reach-avoid policy is recursively feasible when joint state z is initialized
within the reach-avoid set {z | V (z) ≥ 0}. This naturally accounts for future belief updates, which
may discard low-probability hypotheses or add one back as it regains probability (see Remark 1).

Running example: The ego vehicle’s target set is defined as T = {z | pex ≥ 85 m}, where pex denotes
the ego vehicle’s longitudinal position. Failure set F captures the ego colliding with the opponent
or driving out of the road boundary. The complement of the belief-space reach-avoid set RA(T ,F)
computed numerically (with simplified motion models) on a grid is visualized in blue in Figure 1.

Synthesizing safe robot policies. Given a pre-computed value function V (z), and any joint
physical-belief state z, the optimal agent policies are obtained by argmin/argmax over (5). The
resultant value functions and safety policies can seamlessly integrate with existing safety-aware
control frameworks (e.g., HJ value functions are optimal Control Barrier Functions (CBFs) [18, 36],
and the HJ safety policy can be used as a fallback controller [37, 38, 39]).

Scaling-up: embracing model-free deep RL. Since the Isaacs equation (5) is generally intractable
to solve exactly, and an explicit Markovian model of the belief dynamics may not always be avail-
able, we introduce an adversarial RL approach to approximate a time-discount variant of (5) based on
the recently developed Iterative Soft Adversarial Actor-Critic for Safety (ISAACS) framework [7].
During training, a runtime learning algorithm is queried at each time step with the current obser-
vation (y or, depending on the algorithm, a history of recent observations) to produce an updated
belief state bt+1, without the explicit requirement to be Markovian as in (2). The physics simulator
enforces the inference hypothesis during training by projecting the opponent’s action πo(z) onto the
inferred control bound Ûo(z) defined in (4). At runtime, the ego agent receives the current state es-
timate x and an observation y of the opponent, queries the same learning algorithm used in training
for a belief state b, and executes control action ue = πe(z). Figure 2 presents a schematic of our
proposed safe control framework.

4 Case Studies

In this section, we illustrate the applicability and scalability of our approach in three simulated driv-
ing examples that differ in problem scale, computation approach, and runtime learning mechanism.
Our main hypothesis is that the proposed Deception Game policy yields a planning performance
close to an optimistic baseline while achieving a much lower failure rate.

4.1 Low-dim (5D): Exact solution with Bayesian learning dynamics

We first consider a simplified variant of the running example. The ego vehicle’s motion is de-
scribed by a 3D point mass model and the human is restricted to travel along the poy = 90 m
line, with possible agent classes θ ∈ {ped, seg}. The robot learns via updating a Bayesian belief:
bt+1(θ) ∝ P (uo

t | xt; θ)bt(θ). The likelihood function is a Gaussian P (uo
t | xt; θ) = N (µθ,Σ)
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Metric/Method Opponent policy MAP (optimistic) Contingency Robust (w/o learning) Deception Game (ours)

Failure rate 11 % 3.1 % 0 % 0 %
Completion time (s) Modeled (ϵθ = 0.2) 4.49 ± 0.6 5.2 ± 1.12 6.27 ± 0.86 4.73 ± 0.97

Failure rate 16.4 % 3.7 % 0% 3.3 %
Completion time (s) Unmodeled (ϵ̃θ = 0.05) 4.54 ± 0.6 5.13 ± 1.14 6.26 ± 0.85 4.81 ± 0.85

Table 1: Case study: Low-dim (5D). Failure rate and mean completion time in 1000 randomized trials with
policies synthesized with numerical dynamic programming [40]. The Deception Game is computed with ϵθ =
0.2. We also tested with an unmodeled human that violated the inference hypothesis by taking actions from
types as unlikely as ϵ̃θ = 0.05. In the modeled human case, the proposed Deception Game policy ensures
safety in all trials while closely matching the performance of an optimistic, but unsafe MAP policy. In the
unmodeled case, the Deception Game policy incurs a non-zero failure rate, although lower than the MAP and
contingency baselines.

where µθ is the average control of the bound Uo
θ (xt). The joint system (3) is 5-dimensional, which

lends itself to numerical grid-based dynamic programming [40] for solving Isaacs equation (5) to
high accuracy. We compare our Deception Game policy to three baselines (all synthesized with the
same grid resolution as the proposed method): (1) a maximum a posteriori (MAP) policy [41],
which optimistically uses a standard (belief-less) reach-avoid policy based on the MAP estimate
θ̂t ∈ argmaxθ∈Θ bt(θ) during each planning cycle, (2) a contingency policy [30, 31], which dis-
cards currently unlikely hypotheses for which b(θ) < ϵθ while safeguarding against all remaining
hypotheses, and (3) a robust policy that conservatively safeguards against all hypotheses θ ∈ Θ at
all times. Note that the Robust baseline is equivalent to the optimal control barrier function [18].
We consider two metrics: the failure rate, defined as Nfail/Ntrial × 100%, where Ntrial is the number
of trials and Nfail is the number of failed trials in which zt ∈ F for some t, and the completion time
averaged across all trials, which measures a policy’s ability to make progress. A trial is considered
complete if pex ≥ 100 m. For each policy, we simulated under the same random seed Ntrial = 1000
randomized scenarios, each with a different initial state, prior belief, and the (hidden) opponent
type. Table 1 displays results obtained from all 1000 trials. The Deception Game policy maintained
a zero failure rate when the inference hypothesis held, which empirically validated Proposition 1,
and achieved an average completion time close to that of the optimistic but unsafe MAP baseline.

4.2 High-dim (18D): Approximate solution with Bayesian learning dynamics

Now, we turn to the full setup of the running example with the 7D physical system (the ego and
opponent are modeled as a 5D kinematic bicycle model and a 2D particle with velocity control) and
two agent class hypotheses θ ∈ {ped, seg}, and additionally model the human’s intent with hidden
goal position θgoal ∈ Θgoal := {gi}Ngoal

i=1 , respectively, where gi ∈ R2 denote each of Ngoal = 9
goal hypotheses scattered along the road boundary. Since the resulting 18-dimensional state space is
intractable for exact dynamic programming, we apply the deep RL framework in Sec. 3. We simu-
lated 1000 randomized scenarios with different initial states, prior belief, opponent types, and latent
goals for each policy under the same random seed. The simulation was repeated for four different
human policies: (1). Belief-space adversarial (modeled): The human uses adversarial policy πo(z)
trained with the belief-space deep RL that approximates (5) and was projected to the inferred con-
trol bound Ûo(z) at simulation time, (2). Belief-space adversarial (unmodeled): Same as (1) but
without the projection step, thereby allowing violations of the inference hypothesis, (3). Non-belief
adversarial: The opponent uses adversarial policy πo(x) trained with the non-belief deep RL that
approximates (1) while the ego safeguards against all hypotheses, and (4). Noisily-rational: The
human uses a perturbed LQR policy to reach a goal position (randomized across trials). The failure
rate and completion time results are shown in Table 2 and Figure 3, respectively. The proposed
Deception Game policy outperforms both the MAP and contingency baselines in all scenarios in
terms of the failure rate. Remarkably, the completion time statistics of the Deception Game policy
closely resemble that of the optimistic MAP policy in all four scenarios. The robust policy, albeit
safe, was, however, overly conservative and unable to complete the task within 10 seconds in most
trials. These results empirically support our main hypothesis.

In Figure 4, we examine one representative simulation trial of the running example initialized with
a uniform prior belief. As the ego vehicle approached the human during t ∈ [0, 4.4] s, the human
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Metric/Method Opponent policy MAP (optimistic) Contingency Robust (w/o learning) Deception Game (ours)

Belief Adv. (Modeled) 40.7 % (40.7 %) 31.2 % (39.5 %) 22.3 % (84.6 %) 5.7 % (5.9 %)
Belief Adv. (Unmodeled) 62.5 % (62.5 %) 51.3 % (53.6 %) 8.1 % (84.4 %) 36.4 % (36.4 %)Failure rate
Non-belief Adv. 5.2 % (5.2 %) 1.5 % (2.3 %) 7.4 % (81.2 %) 1 % (1.5 %)(Incompletion rate)
Noisily-rational 10.3 % (10.3 %) 6 % (14.5 %) 5.2 % (54.5 %) 0.5 % (0.7 %)

Table 2: Case study: Running example (18D). Failure rate and task incompletion rate (counting both failures
and time-outs) in 1000 randomized trials with deep RL–trained policies. The Deception Game policy achieves a
consistently lower failure rate than the MAP and contingency baselines and leads completion across the board.

Figure 3: Case study: Running example (18D). Completion time over 1000 randomized trials. Approximations
via deep adversarial RL. Deception Game policy performance closely matches the optimistic MAP baseline.
The robust baseline is overly conservative and often times out ( > 10 s).

Figure 4: Case study: Running example (18D). Simulation snapshots and b(type) over time. Both agents
use the optimal Deception Game policies synthesized with adversarial RL. Red circles denote the human’s goal
hypotheses and color intensity represents their belief probability. A line between the human and a goal gi means
that b(gi) ≥ ϵθ . The pedestrian and Segway icons indicate the ground-truth human type. The orange question
mark implies that neither hypothesis has a probability below the threshold. Despite the human’s adversarial
and deceptive motion, the ego vehicle managed to safely complete the task.

deceptively alternated between applying pedestrian and Segway actions in order to hide its type.
The ego vehicle then deliberately turned left, causing the adversarial human to move upwards and
be exposed as a pedestrian. Due to the pedestrian’s limited ability to move downwards compared to
the Segway type, the ego vehicle could safely turn right and pass in front of the human.

4.3 High-dim (200D): Implicit learning dynamics from neural predictor

Finally, we demonstrate that our method can scale to a data-driven, non-Markovian learning process.
Consider a scenario from the Waymo Open Motion Dataset (WOMD) [42], where an autonomous
car aims to cross the intersection without colliding with the oncoming human-driven car or violating
the road restrictions (left column, Fig. 5). The robot’s learning process is governed by a pretrained
Motion Transformer (MTR) [1] trajectory predictor, which at each timestep produces a Gaussian
mixture model of 64 state trajectories given the scene’s history. Using a proportional controller to
invert the dynamics, the robot infers the human’s action (acceleration, steering angle) from these
state predictions. We use the inferred actions as the mean of each mixture component (mode θ).
Following (4), we add a small dot (θ) around each predicted action when constructing the predictive
control bound Ûo

θ . Since the robot will repeatedly invoke the MTR to forecast the human’s behav-
ior, and these predictions will inevitably change over time during the closed-loop interaction, this
defines the robot’s implicit learning dynamics fL(·). Ultimately, this problem formulation has a
200-dimensional joint state space: an 8D physical state and a belief vector comprised of 64 mixture
components, each with a 2D mean and a scalar weight, totaling 64 × 3 = 192 belief dimensions.

Both the robot and the human’s control policies were trained using the deep RL approach in sec-
tion 3, taking as inputs the physical states, predicted nominal actions, and the corresponding proba-
bilities. We implement two baselines: (1) a robust policy that safeguards against the entire human
action space Uo, and (2) an iterative linear quadratic regulator (ILQR) policy that re-plans using
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Figure 5: Case study: neural predictor (200D). The adversary suddenly turned left in the intersection. De-
ception Game (top) and Robust policy (middle) safely reached the target T , while ILQR (bottom) leads to a
collision. Compared to the robust policy, our proposed approach is also smoother.

MTR predictions at each timestep. By closing the safety and learning loop, the Deception Game pol-
icy produces proactive ego behaviors, preparing the robot for potential shifts in belief. For example,
in Figure 5, at t = 0.3 s, the robot predicted the human’s left turn and maintained a lower velocity
for a larger safety margin. This allowed the robot to safely pass the human later at t = 1.5 s when it
slowed down, attempting to block the robot. In contrast, the robust baseline produced more radical
evasive actions to protect against the adversary regardless of belief. In Appendix C, we include
additional preliminary results to look closer at our Deception Game policy against two baselines
under different initial states. Moreover, we also demonstrate its generalizability to non-adversarial
human behaviors by replaying ground-truth trajectories from WOMD, as well as its scalability to
multiple-agent scenarios under the commonly used pairwise decomposition assumption [43, 44].

5 Limitations and Future Work

While our empirical results indicate that our Deception Game improves robot efficiency and main-
tains a low failure rate compared to baselines, we cannot provide theoretical safety guarantees when
the solution is approximated via RL. In addition, our approach relies on a designer-specified thresh-
old ϵθ for the control bound, which requires careful construction. Moreover, our MTR case study
only evaluates one intersection scenario with hand-crafted target and failure sets. One direction for
future work is to leverage the learned latent information (about the scene or interactions) from the
scene-centric trajectory prediction models [45, 46, 47, 48] to improve generalization. We are also
interested in incorporating our approach with a full autonomy stack, accounting for raw sensor data
(e.g. camera images) and imperfect state observations (e.g. occlusions [22]). Finally, we see an open
opportunity to extend our methodology for other pressing issues beyond robot safety, e.g., detecting
and preventing manipulative behaviors in generative AI (such as large language models).

6 Conclusion

In this paper, we present the Deception Game, a novel safety framework that closes the loop between
the robot’s prediction-planning-control pipeline and its runtime learning process by jointly reasoning
over agents’ physical states and the robot’s belief states. Our approach builds upon a game theoretic
formulation and can scale up to high-dimensional problems and handle implicit learning dynamics
via model-free adversarial reinforcement learning. Our experiment results indicate that the proposed
method works with different types of interaction uncertainty, can be well combined with off-the-
shelf prediction models, and plan efficient and safe trajectories.
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A Comparison of Learning-Aware Safety Methods

This section provides a table comparing our proposed Deception Game framework with recent
learning-aware safe planning methods. To the best of our knowledge, our method is the first safety
analysis framework that jointly reasons the agent’s physical states and the robot’s belief states in a
closed-loop fashion and can scale up to high-dimensional systems with implicit learning dynamics.

Table 3: Comparison of learning-aware safe planning methods.

Feature/Method Peters et
al. [32]

Tian et
al. [2]

Hu et
al. [49]

Bajcsy et
al. [30]

Zhang et
al. [22]

Packer et
al. [23]

Ours

Recursive safety guarantees N N Y Y Y N Y
Active information gathering N N Y N Y Y Y
Uncertainty-dependent safety analysis N/A N N/A Y Y N/A Y
Belief refinement based on observations N Y Y Y N/A N/A Y
Scaling to high dimension (nz > 10) Y N N N N Y Y
Allowing implicit learning dynamics N N N Y N Y Y
Allowing continuous hypotheses space N N Y N N N/A N
Fully online policy computation Y N Y N Y N N

B When the Prior is Biased and the Inference Hypothesis is Violated

We provide another example of the high-dim (18D) scenario, where the robot’s prior belief is initially
biased towards believing that the human will not cross the road, and that the human is allowed to
take actions that violate the inference hypothesis (Assumption 1). To this end, we give the robot a
biased prior belief on the human’s intent, in which the goal encoding the human not crossing the
road (g8) receives most of the probability mass (0.92), and the prior probabilities of the remaining
goals are set to 0.01, which is below threshold ϵθ = 0.05. The simulation snapshots are plotted
in Figure 6. We observe that as the robot receives new observations of the human’s states and
actions, its runtime learning algorithm gradually adjusts the belief to better explain the observations.
As a result, goal g3 on the other side of the road starts gaining probability, and its associated control
bound is subsequently added to the overall inferred control bound. At t = 6 s, all hypothesized
goals in the upper part of the road are temporarily thresholded out as the human moves down. Then,
the human abruptly begins to move upwards toward g7, violating the inference hypothesis (indicated
by the yellow exclamation mark). In light of this highly unexpected behavior, the robot’s runtime
inference quickly catches on, which reactivates hypotheses g7 and g8 in the robot’s belief. The
Deception Game policy then generates cautious robot motion based on the updated belief. In spite
of the unfavorable conditions of a biased prior and abrupt, assumption-breaking human behavior,
the robot avoids colliding with the human and safely reaches its target. This case study indicates
that the Deception Game policy offers some practical robustness to inaccurate prior beliefs as well
as abrupt changes in agent behavior inconsistent with the inference hypothesis.

We also simulate trajectories under the same initial condition and human policy when the ego vehicle
uses the three baseline policies. Figure 7 displays the trajectories with the MAP policy. Due to the
overly optimistic assumption that only the most likely hypothesis is considered during decision-
making, the ego vehicle does not take precautions until the last instant, when the runtime learning
indicates that the human is moving downwards, by which time it is already too late to avoid colliding
with the adversarial human. Simulation snapshots when the ego uses the contingency baseline policy
are shown in Figure 8, which also constitutes a failure case. The main reason for the loss of safety,
in this case, is due to the biased prior—the algorithm is initialized with g8 being the only active goal
hypothesis, with all other goal hypotheses ruled out, in this case permanently. Finally, we investigate
the trajectories with the ego using the robust baseline in Figure 9. As the human strategically moves
to the center of the road to maximize the chance of collision, the planning algorithm fails to find any
safe passing “corridor” before times out, but controls the ego vehicle to stop, resulting in a “freezing
robot” situation [50].
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Figure 6: Simulation snapshots for Appendix B. Both the robot and the human use the Deception Game policy
synthesized with adversarial RL. The human is allowed to take an action that violates the inference hypothesis
(Assumption 1). Yellow exclamation marks indicate when the inference hypothesis is violated as the human
takes an action corresponding to a discarded hypothesis. Red circles denote the human’s goal hypotheses and
their color intensity represents their belief probability. A line drawn between the human and a goal hypothesis gi
means that b(gi) ≥ ϵθ = 0.05. The numbers denote the probabilities of hypothesized goals. The pedestrian and
Segway icons indicate the ground-truth human type. The orange question mark implies that neither hypothesis
has a probability below the threshold. The ego vehicle managed to safely complete the task even if the opponent
human was not conformant to the inference hypothesis and the prior belief was biased towards the human not
crossing the road.

C Deception Game with Motion Transformer

C.1 Problem Setup

Consider the traffic scenario when the robot aims to traverse the intersection without violating the
road bound or causing a collision with the adversary. We model both vehicles using the kinematic
bicycle dynamics with longitudinal acceleration and steering angle controls. In addition, we limit
their state and action space by bounding velocity v ∈ [0, 10] m/s, acceleration a ∈ [−5, 5] m/s2, and
steering angle δ ∈ [−0.5, 0.5] rad.

To infer the adversary’s future actions, the robot uses a state-of-the-art trajectory prediction model,
Motion Transformer (MTR) [1], which outputs a Gaussian Mixture Model of trajectories over the
next 8 seconds from the 1.1 seconds of scene history. To construct the inferred control bound, we
utilize a proportional controller to track the mean trajectory of each mixture component (mode θ) as
the adversary’s nominal policy πo

t (xt; θ). In addition, we set dot (θ) by assuming it can deviate from
the nominal policy up to ±2 m/s2 in acceleration and ±0.1 rad in steering angle. Since MTR outputs
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Figure 7: Simulation snapshots for Appendix B with the ego vehicle applying the MAP baseline policy. The
human uses the Deception Game policy synthesized with adversarial RL, and is allowed to take an action that
violates the inference hypothesis (Assumption 1). The ego vehicle collided with the human at t = 6.2 s.

Figure 8: Simulation snapshots for Appendix B with the ego vehicle applying the contingency baseline policy.
The human uses the Deception Game policy synthesized with adversarial RL, and is allowed to take an action
that violates the inference hypothesis (Assumption 1). The ego vehicle collided with the human at t = 6.7 s.

64 modes using a prior motion query, we aggregate overlapping trajectories using non-maximum
suppression and mask out modes with bt(θ) < 0.05.
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Figure 9: Simulation snapshots for Appendix B with the ego vehicle applying the robust baseline policy. The
human uses the Deception Game policy synthesized with adversarial RL, and is allowed to take an action that
violates the inference hypothesis (Assumption 1). The ego vehicle failed to pass the road section in 10 s.

C.2 Network Architecture and Training Stratergy

The MTR model is first trained with the entire Waymo Open Motion Dataset [42] for 30 epochs
and achieves claimed results in their paper. Then, we set up a simulation environment with the
pre-trained MTR model in the loop to generate predictions and inferred control bounds for the ad-
versaries. We represent the state with the absolute pose of the robot w.r.t the map, the adversary’s
relative pose w.r.t the robot, the nominal actions for each valid prediction mode, and their probabili-
ties. The Deception Game is trained using the Iterative Soft Adversarial Soft Actor-Critic (ISAACS)
framework, where four neural networks are trained asynchronously.

• The ego actor is the policy of the robot. It first encodes the states and each prediction mode
independently by multi-layer perceptions (MLP). Then the state feature is concatenated to
each prediction feature and passed through another MLP. We conduct max-pooling across
all prediction modes to generate the aggregated feature, which is processed by the final
MLP and becomes the mean and standard deviation of the robot’s action. Finally, we
sample the action using the squashed Gaussian distribution described in Soft Actor-Critic
[51].

• The adversarial actor is the policy of the adversary. It first encodes the states, the action
of the robot, and each prediction mode independently by MLPs. Then we concatenate
the state, action, and each prediction features, which are later aggregated by another MLP.
The final MLP processes the aggregated feature and outputs each prediction mode’s mean,
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standard deviation, and probability. We sample the adversary’s action using a mixture of
the squashed Gaussian distribution to enforce the inferred control bound.

• The static critic is a simple MLP return the Q value of the robot only considering the road
boundary and target set.

• The interaction critic returns the residual Q value of the interaction between the robot and
the adversary. It first encodes the states, the action of both actors, and each prediction
mode independently by MLPs. Then we concatenate the state, action, and each prediction
features, and generate the aggregated feature of each mode through an MLP. The final MLP
processes this feature and outputs Q values for each prediction mode.

Unlike the standard ISAACS procedure, the ego actor and static critic are first trained by ignor-
ing the collision with the adversary. Then we train ego actor, static critic, and adversarial actor
jointly through domain randomization by randomly sampling the initial states of both actors and
the adversary’s action from its inferred control bound. In this process, We take the largest Q value
from adversarial actor among all modes, activate it through the SoftPlus function, and add it to the
output from the static critic as the final Q value for the robot. In this way, the resulting Q value is
strictly equal to or larger than that from the static critic as the robot will lose the game regardless
of the adversary’s state when violating the road constraint. Through our experiment, we found that
pre-training the ego actor and static critic is necessary to stabilize learning process.

C.3 Additional Results

A close-up in Figure 10 confirms that the adversary using the Deception Game policy indeed took
adversarial actions to actively shift the trajectory predictions to intercept the robot. This enables the
adversary to pursue the robot within the predictive action bound and indicates that our framework
can capture the implicit learning dynamics a deep neural network represents. Moreover, even with
one of the state-of-the-art trajectory predictors, small deviations from the nominal action can dra-
matically shift the robot’s belief in the adversary over a short period. Therefore, classical methods
(including the baseline ILQR policy) that rely on “accurate” trajectory prediction in an open-loop
fashion [52] and frequently replan are insufficient for safe interactions. The intelligent robot needs
to close the loop of learning by accounting for its future ability to learn and adapt.

Due to road boundaries and maneuverability limitations, the robust policy could not find feasible
actions, as shown in Figures 11 and 12. The ILQR baseline failed all tests as it cannot account for
the adversary’s ability to change the robot’s prediction in the future. Since our Deception Game
policy is trained for intersections with randomized initial states of both vehicles, it is generalized to
safely navigate different scenarios.

Figure 10: Case study: neural predictor (200D). Our framework can model an adversary whose policy adver-
sarially influences the robot’s implicit learning dynamics.
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Figure 11: The adversary made an unprotected left turn when the oncoming robot entered the intersection.
Robots using Deception Game (top) safely reached the target T by taking a proactive action even when the
adversary was predicted to yield. The Robust Policy (middle) overreacted to the adversary’s action, violated
the road boundary constraints, and entered its failure set F . The ILQR policy (bottom) was overly optimistic
about the prediction and caused a collision

Figure 12: The robot interacted with the merging adversary. Robots using Deception Game (top) safely reached
the target T by yielding to the adversary. The Robust Policy (middle) overreacted to the adversary’s action,
violated the road boundary constraints, and entered its failure set F . The ILQR policy (bottom) was overly
optimistic about the prediction and caused a collision
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In Figure 13, we compared the robot’s behaviors under different policies when interacting with a
non-adversarial vehicle replaying the trajectory from Waymo Open Motion Dataset. We observed all
three policies successfully traversed through the intersection. Both the proposed Deception Game
and the robust policy showed similar evasive behaviors, where the robot using the robust policy
accelerated much faster. The ILQR demonstrated closer maneuvers to the robot’s ground truth
trajectory from the dataset.

Figure 13: Robot’s behaviors under different policies when interacting with a non-adversarial vehicle replaying
the trajectory from Waymo Open Motion Dataset.
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Under commonly used pairwise decomposition assumption [43, 44], Figure 14-17 demonstrate our
proposed Deception Game’s scalability to multiple agents scenarios. In these examples, We treated
the closest vehicle to the ego as the adversary. The ego and the adversarial agent used policies from
the Deception Game, while the third nonplaying vehicle applied the MTR nominal action.

Figure 14: The robot interacted with the merging adversary while a nonplaying vehicle (NPC) attempted to
turn left from the opposite lane. The nonplaying vehicle applies the most likely control from MTR at each
timestep.

Figure 15: The robot interacted with two consecutive left-turning adversaries. Under the pair-wise assumption,
we treated the closest vehicle to the robot as the adversary at each timestep. The further vehicle is a nonplaying
character at each timestep and applies the most likely control from MTR.
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Figure 16: Under the pair-wise assumption, the robot interacted with the left-turning adversary by evading
behind it. Then, the robot interacted with another merging adversary and reached the target without collision.

Figure 17: Under the pair-wise assumption, the robot interacted with the left-turning adversary by evading in
front of it. Then, the robot interacted with another merging adversary and reached the target without collision.
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