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Abstract: Reinforcement Learning (RL) methods are typically sample-inefficient,
making it challenging to train and deploy RL-policies in real world robots. Even
a robust policy trained in simulation requires a real-world deployment to assess
their performance. This paper proposes a new approach to evaluate the real-world
performance of agent policies prior to deploying them in the real world. Our
approach incorporates a simulator along with real-world offline data to evaluate
the performance of any policy using the framework of Marginalized Importance
Sampling (MIS). Existing MIS methods face two challenges: (1) large density
ratios that deviate from a reasonable range and (2) indirect supervision, where
the ratio needs to be inferred indirectly, thus exacerbating estimation error. Our
approach addresses these challenges by introducing the target policy’s occupancy
in the simulator as an intermediate variable and learning the density ratio as the
product of two terms that can be learned separately. The first term is learned
with direct supervision and the second term has a small magnitude, thus making
it computationally efficient. We analyze the sample complexity as well as error
propagation of our two step-procedure. Furthermore, we empirically evaluate our
approach on Sim2Sim environments such as Cartpole, Reacher, and Half-Cheetah.
Our results show that our method generalizes well across a variety of Sim2Sim
gap, target policies and offline data collection policies. We also demonstrate the
performance of our algorithm on a Sim2Real task of validating the performance
of a 7 DoF robotic arm using offline data along with the Gazebo simulator.
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1 Introduction
Reinforcement Learning (RL) algorithms aim to select actions that maximize the cumulative returns
over a finite time horizon. In recent years, RL has shown state-of-the-art performance over a range
of complex tasks such as chatbots, [1], games [2], and robotics [3, 4, 5, 6]. However, RL algorithms
still require a large number of samples, which can limit their practical use in robotics [7, 8].

A typical approach is to train robust robot policies in simulation and then deploy them on the
robot [9, 10]. Such an approach, although useful, does not guarantee optimal performance on the
real robot without significant fine tuning [11]. In this work, we propose an approach that evaluates
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the real world performance of a policy using a robot simulator and offline data collected from the
real-world [6]. To achieve this, we employ the framework of off-policy evaluation (OPE) [12].

OPE is the problem of using offline data collected from a possibly unknown behavior policy to
estimate the performance of a different target policy. Classical OPE methods are based on the
principle of importance sampling (IS) [13, 14, 15], which reweights each trajectory by its density
ratio under the target versus the behavior policies. More recently, significant progress has been made
on marginalized importance sampling (MIS), which reweights transition tuples using the density
ratio (or importance weights) over states instead of trajectories to overcome the so-called curse of
horizon [16, 17, 18]. The density ratio is often learned via optimizing minimax loss functions.

Most existing MIS methods are model-free, relying on data from the real environment to approx-
imate the MIS weight function. However, a direct application of MIS methods to robotics carries
two main disadvantages. (1) Large ratios: MIS method learns distribution mismatch between the
behavior and the target policies. When the mismatch between the behavior and the target policy is
large, which is often the case, MIS method tend be challenging to learn. (2) Indirect supervision:
MIS methods requires no samples from target policies, which requires the weight being learned in-
directly via the Bellman flow equation. In states where coverage of the offline dataset is scarce, MIS
methods tend to perform poorly.

In robotics, it is reasonable to assume access to a good but imperfect simulator of the real environ-
ment [19, 20, 21]. In this work, we propose an improved MIS estimator that estimates the density
ratio mismatch between the real world and the simulator. We further show that such a MIS estimator
can be used to evaluate the real-world performance of a robot using just the simulator. As described
in figure 1, we estimate the discrepancy between the real world and the simulator by using the target
policy’s occupancy in the simulator as an intermediate variable. This allows us to calculate the MIS
weights as a combination of two factors, which can be learned independently. The first factor has di-
rect supervision, while the second factor has a small magnitude (close to 1), thereby addressing both
large ratios and indirect supervision issues mentioned above. We present a straightforward deriva-
tion of our method, examine its theoretical properties, and compare it to existing methods (including
existing ways of incorporating a simulator in OPE) and baselines through empirical analysis.

We make the following contributions. (1) We derive an MIS estimator for off-environment evalu-
ation (Section 4). (2) We explore the theoretical properties of our off-environment evaluation es-
timator by proposing a sample-complexity analysis (Section 4) and studying its special cases in
linear and kernel settings. (3) We empirically evaluate our estimator on both Sim2Sim as well as
Sim2Real environments (Section 5). For the Sim2Sim experiments, we perform a thorough ablation
study over different Sim2Sim gap, data-collection policies and target policies, environments (Taxi,
Cartpole, Reacher, and Half-Cheetah). Furthermore, we demonstrate practicality of our approach
on a sim2real task by validating performance of a Kinova robotic arm over using offline data along
with Gazebo based Kinova simulator.

2 Preliminaries

Robot learning problems are often modelled as an infinite-horizon discounted Markov Decision
Process (MDP). MDP is specified by (S,A, P,R, γ, d0). Here, S and A are the state and the action
spaces, P : S × A → ∆(S) is the transition function (∆(·) is the probability simplex). We also
define the reward function R : S × A → ∆([0, Rmax]), γ ∈ [0, 1) is the discount factor, and
d0 ∈ ∆(S) is the initial state distribution. A policy π : S → ∆(A) induces a distribution of
trajectory: ∀t ≥ 0, s0 ∼ d0, at ∼ π(·|st), rt ∼ R(·|s, a), st+1 ∼ P (·|st, at). The performance
of π is measured by its expected discounted return under the initial state distribution, defined as
JP (π) = (1 − γ)E[

∑∞
t=0 γ

trt|π, d0]; here, we use the subscript P in JP (π) to emphasize the
dynamics w.r.t. which the return is defined, since we will consider both the true environment and the
simulator in the rest of this paper and the subscript will help distinguish between them. JP (π) also
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Figure 1: For a given policy π, we first collect on-policy data dπPtr
from a simulator environment.

Using dπPtr
and offline data dDPte

on the real world, we first calculate the importance sampling fac-
tor β = dπb

Pte
/dπPtr

. This importance sampling factor essentially allows us to re-weight existing
off-policy evaluation algorithm to estimate w = dπPte

/dπPtr
which helps us estimate real-world per-

formance of the agent JPte(π) using on-policy simulator data.

has an alternative expression JP (π) := E(s,a)∼dπ
P ,r∼R(s,a)[r], where

dπP (s, a) = (1− γ)
∑∞

t=0 γ
tP[st = s, at = a|π, d0] (1)

is the discounted state-action occupancy induced by π from d0. An important quantity asso-
ciated with a policy is its Q-function Qπ

P , which satisfies the Bellman equation Qπ
P (s, a) =

Er∼R(s,a),s′∼P (s,a)[r + γQπ
P (s

′, π)], where f(s′, π) := Ea′∼π(·|s′)[f(s
′, a′)]. We can also define

the state-value function V π
P (s) = Qπ

P (s, π), and J(π) = (1− γ)Es∼d0
[V π

P (s)].
OPE and Marginalized Importance Sampling: In off-policy evaluation (OPE), we want to eval-
uate a target policy π using data collected from a different policy in the real environment, de-
noted by its dynamics P . As a standard simplification, we assume data is generated i.i.d. as
(s, a) ∼ µ, r ∼ R(s, a), s′ ∼ P (s, a), and the sample size is n. When the data is generated from
some behavior policy πb, µ can correspond to its occupancy dπb

P . We will use Eµ[·] as a shorthand for
taking expectation over (s, a, r, s′) generated from such a data distribution in the real environment.

The key idea in marginalized importance sampling (MIS) is to learn the weight function
w

π/µ
P (s, a) :=

dπ
P (s,a)
µ(s,a) . Once this function is known, J(π) can be estimated as J(π) =

E(s,a)∼dπ
P ,r∼R(s,a)[r] = Eµ[w

π/µ
P (s, a) · r]. Note that Eµ[·] can be empirically approximated by

the dataset sampled from the real environment. The real challenge in MIS is how to learn w
π/µ
P . Ex-

isting works often do so by optimizing minimax loss functions using Q-functions as discriminators,
and is subject to both difficulties (large ratios and indirect supervision) mentioned in the introduc-
tion. We refer the readers to [22] for a summary of typical MIS methods.
Learning Density Ratios from Direct Supervision: Given two distributions p and q over the same
space X , the density ratio p(x)/q(x) can be learned directly if we have access to samples from both
p and q, using the method proposed by [23]:

p(x)

q(x)
= arg max

f :X→R>0

Ex∼p[ln f(x)]− Ex∼q[f(x)] + 1. (2)

To guarantee generalization over a finite sample when we approximate the expectations empirically,
we will need to restrict the space of f that we search over to function classes of limited capacities,
such as RKHS or neural nets, and p(x)/q(x) can still be well approximated as long as it can be
represented in the chosen function class (i.e., realizable). More concretely, if we have n samples
x1, . . . , xn from p and m samples x̃1, . . . , x̃m from q, and use F to approximate p(x)/q(x), the
learned density ratio can be made generalizable by adding a regularization term I(f) to improve the
statistical and computational stability of learning:

argmax
f∈F

1

n

∑
i

ln f(xi)−
1

m

∑
j

f(x̃j) +
λ

2
I(f)2. (3)
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3 Related Work

3.1 Reinforcement Learning applications in Robotics

There are three different themes that arise in reinforcement learning for robotics [24, 25]. (1)
Sim2Real: algorithms are primarily concerned with learning robust policy in simulation by train-
ing the algorithms over a variety of simulation configurations [26, 9, 27]. Sim2Real algorithms,
although successful, still require a thorough real-world deployment in order to gauge the policy’s
performance. (2) Imitation learning algorithms learn an optimal policy by trying to mimic offline
expert demonstrations [28, 29, 30]. Many successful imitation learning algorithms minimize some
form of density matching between the expert demonstrations and on-policy data to learn optimal
policy. A key problem with imitation learning is the fact that it requires constant interaction with
the real-world environment in order to learn an optimal policy. (3) Offline reinforcement learn-
ing is a relatively new area. Here the idea is to learn an optimal policy using offline data without
any interaction with the environment [31, 32, 33, 34]. Offline reinforcement learning has recently
demonstrated performance at-par with classical reinforcement learning in a few tasks. However, of-
fline reinforcement learning algorithms tend to overfit on the offline data. Thus, even offline learning
modules too require an actual deployment in-order to assess performance.

3.2 Off-Policy Evaluation
We review related works in this section, focusing on comparing to existing OPE methods that can
leverage the side information provided by an imperfect simulator. (1) Marginalized Importance
Sampling (MIS): MIS methods tend to assume the framework of data collection and policy eval-
uation being on the same environment. To that end, there are both model-free [35, 36, 37] and
model-based variants of MIS methods and face the aforementioned two challenges (large magnitude
of weights and indirection supervision) simultaneously. Model based variants of MIS sometimes
tend to be doubly robust (DR) in nature [18, 38] and can benefit from Q-functions as control vari-
ates, which can be supplied by the simulator. However, the DR version of MIS is a meta estimator,
and the weight dπPte

/µ still needs to be estimated via a “base” MIS procedure. Therefore, the in-
corporation of the simulator information does not directly address the challenges we are concerned
with, and there is also opportunity to further combine our estimator into the DR form of MIS. (2)
Model-based methods: Model-based estimators first approximate the transition dynamics of the
target environment [39], which is further used to generate rollouts and evaluate performance for any
target policy. One way of incorporating a given imperfect simulator in this approach is to use the
simulator as “base predictions,” and only learn an additive correction term, often known as residual
dynamics [40]. This approach combines the two sources of information (simulator and data from
target environment) in a very different way compared to ours, and are more vulnerable to misspeci-
fication errors than model-free methods.

4 Weight Estimator
Recall that our goal is to incorporate a given simulator into MIS. We will assume that the simulator
shares the same S,A, γ, d0 with the real environment, but has its own transition function Ptr which
can be different from Pte. As we will see, extension to the case where the reward function is un-
known and must be inferred from sample rewards in the data is straightforward, and for simplicity
we will only consider difference in dynamics for most of the paper.
Split the weight: The key idea in our approach is to split the weight wπ/µ

P into two parts by intro-
ducing dπPtr

as an intermediate variable:

w
π/µ
P (s, a) =

dπPte
(s, a)

µ(s, a)
=

dπPtr
(s, a)

µ(s, a)︸ ︷︷ ︸
:=β

(direct supervision)

·
dπPte

(s, a)

dπPtr
(s, a)︸ ︷︷ ︸

:=wπ
Pte/Ptr

(magnitude ≃ 1)

Note that dπPtr
is the occupancy of π in the simulator, which we have free access to. The advantage

of our approach is that by estimating β and wπ
Pte/Ptr

separately, we avoid the situation of running
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into the two challenges mentioned before simultaneously, and instead address one at each time:
β = dπPtr

/µ has large magnitude but can be learned directly via [23] without the difficult minimax
optimization typically required by MIS, and we expect wπ

Pte/Ptr
= dπPte

/dπPtr
to be close to 1 when

Pte ≈ Ptr (and thus easier to learn).
Estimate wπ

Pte/Ptr
: Since β is handled by the method of [23], the key remaining challenge is how

to estimate wπ
Pte/Ptr

. (Interestingly, β also plays a key role in estimating wπ
Pte/Ptr

, as will be shown
below.) Note that once we have approximated wπ

Pte/Ptr
with some w, we can directly reweight the

state-action pairs from the simulator (i.e., dπPtr
) if the reward function is known (this is only assumed

for the purpose of derivation), i.e.,

JPte
(π) ≈ E(s,a)∼dπ

Ptr
,r∼R(s,a)[w · r],

and this becomes an identity if w = wπ
Pte/Ptr

. Following the derivation in [18, 22], we now reason
about the error of the above estimator for an arbitrary w to derive an upper bound as our loss for
learning w:

|E(s,a)∼dπ
Ptr

,r∼R(s,a)[w · r]− JPte
(π)|

= |E(s,a)∼dπ
Ptr

,s′∼P (s,a)[w · (Qπ
Pte

(s, a)− γQπ
Pte

(s′, π))]− (1− γ)Es∼d0 [Q
π
Pte

(s, π)]|

≤ sup
q∈Q

|Edπ
Ptr

×Pte
[w · (q(s, a)− γq(s′, π))]− (1− γ)Es∼d0

[q(s, π)]|. (4)

Here dπPtr
× Pte is a shorthand for (s, a) ∼ dπPtr

, s′ ∼ P (s, a). In the last step, we handle the
unknown Qπ

P by a relaxation similar to [16, 18, 22], which takes an upper bound of the error over
q ∈ Q for some function class Q ⊂ RS×A, and the inequality holds as long as Qπ

P ∈ conv(Q) with
conv(·) being the convex hull.
Approximate dπPtr

× Pte: The remaining difficulty is that we will need samples from dπPtr
× Pte,

i.e., (s, a) sampled from π’s occupancy in the Ptr simulator, and the next s′ generated in the Pte real
environment. While there is no natural dataset for such a distribution, we can take the data from the
real environment, (s, a, s′) ∼ µ×Pte, and reweight it using β = dπPtr

/µ to approximate expectation
w.r.t. dπPtr

× Pte, i.e.,

(s, a, s′) ∼ dπPtr
× Pte ⇐⇒ (s, a, s′) ∼ µ× Pte reweighted with β := dπPtr

/µ.

Based on such an observation, we can further upper-bound |E(s,a)∼dπ
Ptr

,r∼R(s,a)[w · r] − JPte
(π)|

from end of Equation 4 with:

sup
q∈Q

Lw(w, β, q) := |Eµ[w · β · (q(s, a)− γq(s′, π))]− (1− γ)Es∼d0
[q(s, π)]|. (5)

As our derivation has shown, this is a valid upper bound of the error as long as conv(Q) can represent
Qπ

Pte
. We also need to show that the upper bound is non-trivial, i.e., when w = wπ

Pte/Ptr
, the upper

bound should be 0. This is actually easy to see, as for any q:

L(wπ
Pte/Ptr

, β, q) := |Edπ
Ptr

×Pte
[wπ

Pte/Ptr
· (q(s, a)− γq(s′, π))]− (1− γ)Es∼d0

[q(s, π)]| (6)

= |Edπ
Pte

×P [q(s, a)− γq(s′, π)]− (1− γ)Es∼d0
[q(s, π)]| = 0. (7)

The last step directly follows from the fact that dπPte
is a valid discounted occupancy and obeys the

Bellman flow equation. Therefore, it makes sense to search for w over a function class W ⊂ RS×A

to minimize the loss supq∈Q L(w, β, q).
Final estimator: To summarize our estimation procedure, we will first use [23] to estimate β̂ ≈
dπP ′/µ with a function class F , and plug the solution into our loss for estimating wπ

Pte/Ptr
, i.e.,

ŵ = arg min
w∈W

sup
q∈Q

Lw(w, β̂, q). (8)

As mentioned above, if the reward function is known, we can use E(s,a)∼dπ
Ptr

,r∼R(s,a)[ŵ · r] as
our estimation of JPte(π). We can also demonstrate interesting properties of our optimization like
the effect of a linear function class and RKHS function class. This discussion is deferred to the
supplementary materials section 9.1.

Sample Complexity Guarantee: We can further provide an upper-bound on the performance of
our final estimator under the following two assumptions.
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Assumption 1 (Boundedness). We assume ∀f ∈ F , 0 < CF,min ≤ f ≤ CF,max. Define CF :=
CF,max + max(logCF,max,− logCF,min). Similarly, ∀w ∈ W , w ∈ [0, CW ], and ∀q ∈ Q,
q ∈ [0, CQ].

Assumption 2 (Realizability of F). dπP ′/µ ∈ F .

Theorem 4.1. Let β̂ be our approximation of dπP ′/µ which we found using [23]. We utilize this
β̂ to further optimize for ŵn (equation 8) using n samples. In both cases, E(s,a)∼dπ

Ptr
[·] is also

approximated with n samples from the simulator Ptr. Then, under Assumptions 1 and 2 along with
the additional assumption that Qπ

Pte
∈ C(Q) with probability at least 1 − δ, the Off Environment

Evaluation error can be bounded as

|E(s,a)∼dπ
Ptr

,r∼R(s,a)[ŵn · r]− JPte(π)| ≤ min
w∈W

max
q∈Q

|Lw(w, β, q)|

+ 2CW · CQ · Õ


√√√√√∥∥∥∥dπP ′

µ

∥∥∥∥
∞

·

4ERn(F) + CF

√
2 log(2δ )

n




+ 2Rn(W,Q) + CQCW

√
log( 2δ )

2n

(9)

where Rn(F),Rn(W,Q) are the Radamacher complexities of function classes {(x, y) → f(x) −
log(f(y)) : f ∈ F} and {(s, a, s′) → (w(s, a) · dπ

P ′ (s,a)

µ(s,a) · (q(s, a) − γq(s′, π)) : w ∈ W, q ∈ Q},
respectively, ∥dπP ′/µ∥∞ := maxs,a d

π
P ′(s, a)/µ(s, a) measures the distribution shift between dπP ′

and µ, and Õ(·) is the big-Oh notation suppressing logarithmic factors.

Note that we do not make realizability assumption for W in the theorem above. Realizability as-
sumption is reflected in the infw∈W supq∈Q |L(w, β, q)|, which equals 0 when dπPte

/dπPtr
∈ W . The

remaining terms vanishes to 0 at an O(1/
√
n) rate when n → ∞.

Generalizing Off-Environment Policy Evaluation: A key advantage of our two-step approach is
that we can improve many existing off-policy evaluation algorithm with a similar two-step process.
In this work, we use our two-step procedure with GradientDICE—which is an empirically state-of-
the-art estimator in the DICE family—can also be similarly adapted as below, which we use in our
experiments. Detailed derivation for the same can be found in the supplementary materials 9.3.

5 Experiments

5.1 Sim2Sim Validation of β-DICE

Experimental Setting: In the Sim2Sim experiments, we aim to show the effectiveness of our ap-
proach across different target policies, offline dataset as well as changing sim2sim gap. We further
show the effectiveness of our approach over different types of Sim2Sim environments like Taxi
(Tabular), Cartpole (discrete-control), Reacher (continuous control), and HalfCheetah (continuous
control) environments. For each of these environments, we refer to the default configurations of

Table 1: Log mean squared error between the performance predicted by our β-DICE algorithm and
the real world performance of the robot. We observe that our method is able to outperform DICE
based baselines by a comfortable margin.

Log10 Mean Squared Error (↓)
Algorithm Kinova (Sim2Real) Taxi Cartpole Reacher Half-Cheetah

Simulator -3.96 -0.19 -2.58 -1.09 1.18
β-DICE (Ours) -4.38 -1.60 -4.19 -4.08 -3.42
GenDICE -3.48 -0.13 -2.84 -2.61 -2.96
GradientDICE -3.49 -0.59 -1.45 -3.17 -2.16
DualDICE -3.48 -0.48 -0.99 -2.88 -2.12
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(a) Target Policy α = 0.2

(b) Target Policy α = 0.0

Figure 2: We demonstrate the effectiveness of β-DICE on Cartpole (a) and Reacher (b) Sim2Sim
environment. For Cartpole environment we demonstrate the performance of β-DICE over for a
Sim2Sim pair of {10, 15}m/s2. Similarly for Reacher the Sim2Sim pair is (0.1m, 0.075m) for
the length of the link. On left hand side, we demonstrate the effect of β-DICE with different data
collection policies while keeping the target policies fixed. On the right hand side, we demonstrate the
impact of β-DICE with increasing Sim2Sim gap keeping the offline data collection policy the same.
We observe that our β-DICE algorithm comfortably outperforms closest DICE based baselines.

these environments as the simulator environment. We further create a “real” world environment by
changing key configurations from each of these environments. For example, we modify the transi-
tion probability in taxi, gravity in cartpole, and link lengths in reacher. These kinds of configuration
changes help us assess the performance limits of our algorithm across a variety of sim2sim gap. In
table 2, we list all the different sim2sim environments configurations over which we experimented
our algorithm. Typically these configurations are such that the real-world performance predicted by
the simulator alone is off by 9-45%
We first collect our offline data by using a noisy pre-trained policy which is parameterised by δ.
Higher the δ, noisier the data-collection policy. For Taxi and Cartpole environment, we using a
uniform random policy for the noise, while we choose zero-mean gaussian policy for continuous
environments like reacher and halfcheetah. Using this offline data as well as our simulator, we now
evaluate the performance of any target policy, which we parameterise by α. Target policy is further
defined by a mixture of another pre-trained policy with noise. More the α, more the randomness in
the policy. Detailed experimental details along with the setup has been detailed in Appendix 9.11
Results and Observations: We present the detailed results for all the four environments in fig-
ures 3 (Taxi), figures 2a, 4 (Cartpole), figures 2b and 6 (Reacher) and figure 7 (HalfCheetah). For
the boxplot, we fix target policy (α) and demonstrate the evaluation error for our algorithm across
a range of offline dataset (δ) while keeping Sim2Sim gap fixed. For the line plots, we demon-
strate the effectiveness of our algorithm across a changing Sim2Sim gap, while keeping the offline
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data (δ) and target policy α fixed. We also compare our algorithm against DICE baselines Gra-
dientDICE [36], GenDICE [37], DualDICE [35]. DICE baselines are currently the state-of-the-art
algorithm in off-policy evaluation and are known to outperform even hybrid off-policy evaluation al-
gorithms. In figure 5, we also compare our algorithm against hybrid off-policy evaluation baselines
for the cartpole environment (further details in section 9.11). We observe that our method is able
to comfortably outperform closest DICE baselines with the help of extra simulator. These results
not only empirically validate the effectiveness of our algorithm, but also point out that we can learn
important information from imperfect simulated environments to help in improving RL policies. We
also observe that as the Sim2Sim gap increases the performance of our algorithm tends to decline.
This means that with increasing Sim2Sim gap the amount of relevant information that can be learned
from the simulator diminishes. We observe that this decline actually becomes significant when the
Sim2Sim gap breaches the 60% threshold.

5.2 Real-world performance validation on Kinova Robotic Arm

Experimental Setting: We demonstrate the effectiveness of our β-DICE algorithm for a sim2real
validation task on a Kinova robotic arm. We first collect offline data by asking users to move the
arm from one-position to another via RC controllers. Our data collection ensures sufficient coverage
of the robotic arm’s task space. We then use this offline data along with our in-house gazebo based
simulator to experimentally validate the real-world performance of a PID controller using β-DICE
that moves our robot from a given initial location to any desired location.
Results and Observations: Our results along with different baselines are averaged over 10 different
locations are tabulated in Table 1. We observe that β-DICE is able to outperform state-of-the-art
showing an improvement of 60% over the nearest baseline. There are two key conclusions from
all of our experiments. One, although β-DICE outperforms state-of-the art baselines in off-policy
evaluation. We observe that the performance drops when the gap between the target policy and
behavior policy increases. Two, prediction error decreases as the gap between the training and test
environments increases, as the transferable information between the two environments decreases.

6 Limitations
We present the limitations of our work that we wish to address in future work. (1) Our algorithm
expects high quality data with sufficient coverage of the state-action space. Identifying the confi-
dence interval of our estimator w will not only ensure sample efficient evaluation, but also help us in
designing robust offline reinforcement learning algorithm. (2) Similar to DICE class of min-max op-
timization, our algorithm also suffers from high variance in their performance. Efforts are required
to reduce this variance.

7 Conclusion and Future Work
We derive a novel MIS estimator that is able to evaluate real world performance of a robot using
offline data and an imperfect robot simulator. We then develop sample complexity bounds, and
empirically validate our approach on diverse Sim2Sim environments and Sim2Real environment like
KinovaGen3 robot. For future work, we wish to utilize this framework of off-environment evaluation
to learn optimal robot policies using simulation and a limited amount of real-world offline data.
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