
Equivariant Motion Manifold Primitives

Byeongho Lee∗1 Yonghyeon Lee∗2 Seungyeon Kim1 Minjun Son1 Frank C. Park1

1 Seoul National University 2 Korea Institute for Advanced Study (KIAS)
{bhlee, ksy, mjson}@robotics.snu.ac.kr ylee@kias.re.kr fcp@snu.ac.kr

Abstract: Existing movement primitive models for the most part focus on repre-
senting and generating a single trajectory for a given task, limiting their adaptabil-
ity to situations in which unforeseen obstacles or new constraints may arise. In
this work we propose Motion Manifold Primitives (MMP), a movement primitive
paradigm that encodes and generates, for a given task, a continuous manifold of
trajectories each of which can achieve the given task. To address the challenge
of learning each motion manifold from a limited amount of data, we exploit in-
herent symmetries in the robot task by constructing motion manifold primitives
that are equivariant with respect to given symmetry groups. Under the assumption
that each of the MMPs can be smoothly deformed into each other, an autoencoder
framework is developed to encode the MMPs and also generate solution trajecto-
ries. Experiments involving synthetic and real-robot examples demonstrate that
our method outperforms existing manifold primitive methods by significant mar-
gins. Code is available at https://github.com/dlsfldl/EMMP-public.

Keywords: Movement primitives, Manifold, LfD, Equivariance

1 Introduction

Learning basic motion skills as movement primitives has been an enduring focus of learning
from demonstration (LfD) research [1, 2, 3]. A primary challenge is constructing movement
primitive models adaptable to diverse situations, such as when unforeseen obstacles or new con-
straints emerge. Current approaches to movement primitives encompass dynamic movement primi-
tives [4, 5, 6, 7, 8, 9, 10, 11, 12, 13], stable dynamical systems [14, 15, 16, 17, 18, 19, 20, 21, 22],
methods based on Gaussian processes [23, 24, 25] and Gaussian mixture models [26, 27, 28, 29],
along with other methods [30, 31, 32].

The limited adaptability of existing primitive models largely stems from their design which encodes
and generates a single trajectory for a specific task, since they have no alternatives when their pri-
mary trajectory becomes infeasible in new environments (e.g. when an unexpected obstacle blocks
the trajectory). Although dynamical system-based methods can integrate, for instance, obstacle
avoidance potential function terms [33, 34, 35, 36], the resulting motions might violate other task
constraints. For adaptable motion primitives, a method that encodes multiple trajectories for a single
task is essential.

In this paper, we propose to learn a continuous manifold of motion trajectories that can perform the
given task, which we refer to as Motion Manifold Primitives (MMP). As the MMP encodes multiple
successful trajectories, even if some trajectories are obstructed by obstacles or violate constraints,
alternative feasible trajectories remain accessible within the MMP. As such, the MMP is highly
adaptable, although more diverse demonstration data are needed for training, compared to the single
trajectory-based primitives.

Given a set of task-trajectory paired data – where multiple demonstration trajectories are collected
for a single task parameter τ –, our objective is to learn a set of manifold primitives {Mτ} for

∗ The two lead co-authors contributed equally.

7th Conference on Robot Learning (CoRL 2023), Atlanta, USA.

https://github.com/dlsfldl/EMMP-public

all τ . However, given a limited amount of demonstration data, learning accurate manifolds and
their boundaries is a very challenging task. In fact, the TC-VAE [37] is the first work to adopt this
manifold primitives approach but shows less-than-desirable performance given a small dataset as we
show later in our experiments.

Figure 1: An illustration of
the motion manifold primitives and
equivariant transformation.

In this paper, we develop a data-efficient motion man-
ifold primitives learning algorithm, where we adopt the
autoencoder-based manifold learning framework [38, 39, 40,
41, 42, 43, 44]. First, we propose Equivariant Motion Mani-
fold Primitives (EMMP), which takes into account the inher-
ent symmetry in robot tasks. For example, consider a water-
pouring task where the initial cup and bottle’s positions are
defined as the task parameter. Given a symmetry transforma-
tion on τ that preserves the relative positional relation between
the cup and bottle (e.g., rotating bottle around the cup), the set
of water-pouring trajectories, the motion manifold primitives
Mτ , should also be transformed in a consistent manner, more precisely, equivariantly (see Figure 1).
We show that using an invariant encoder and equivariant decoder can guarantee the equivariance of
the MMP and propose a strategy to construct invariant and equivariant mappings. Meanwhile, equiv-
ariance has been increasingly recognized as a pivotal factor in robotics tasks in general [45, 46, 47].

Second, to further enhance data efficiency, we find a shared latent coordinate space Z , by assuming
that Mτ for all τ are homeomorphic (i.e., can be smoothly deformed into each other). In practice, we
consider the latent coordinate variable z ∈ Z to be independent of τ . This means that p(z|τ) = p(z)
for all τ , making the support of p(z) the shared latent coordinate space Z . To enforce this condition,
we newly propose an independence regularization term in autoencoder training.

Through comprehensive experiments involving synthetic and real-world robot water-pouring exper-
iments, we compare our EMMP model with the existing manifold primitives method TC-VAE [37]
through a systematic evaluation on (i) manifold learning, (ii) independence between z and τ , (iii)
density learning, and (iv) success rate. We find that our method significantly outperforms TC-VAE.
Further, an in-depth ablation study reveals that the use of an invariant encoder and equivariant de-
coder is the primary factor driving this performance improvement.

2 MMPs: Motion Manifold Primitives

Figure 2: An illustration of a task parameter τ , feasible trajectories
that achieve the task, and a manifold that the trajectories form. The
resulting manifold Mτ consists of two disjoint components.

In this section, given a con-
figuration space Q, we con-
sider a motion as a dis-
crete and fixed-length con-
figuration trajectory x =
{qt ∈ Q}Tt=1; the space
of all trajectories is denoted
by X := QT . Let a com-
pact space T represent a
space of parameters that define specific tasks. We assume that, for each τ ∈ T , a set of motions
that can perform the given task forms an m-dimensional differentiable manifold, which we refer
to as the Motion Manifold Primitives (MMP) denoted by Mτ , and that is a submanifold lying in
the ambient space X . We assume that we are given a set of task-trajectory paired data, denoted by
D := {(τi, xij) ∈ T × X}i=1,...,N,j=1,...,Mi , where Mi represents the total number of trajectories
for the task parameter τi and xij is sampled from Mτi . For readers unfamiliar with geometric con-
cepts such as manifold and homeomorphism, we include brief introductions of them in Appendix C.

2

2.1 MMP described via Manifold and Density

This section introduces how to represent the set of motion manifold primitives Mτ ⊂ X for all
τ ∈ T . First, we assume that each manifold primitive Mτ can be parametrized by a nonlinear map
fτ : Rm → X with a coordinate space Zτ ⊂ Rm as Mτ = fτ (Zτ). To represent the set of motion
manifold primitives simultaneously, we consider a differentiable mapping f : Rm × T → X such
that f(z, τ) := fτ (z). Second, to represent each coordinate space Zτ , we employ a conditional
probability density function in Rm given τ denoted by p(z|τ). Then, we consider the support of
p(z|τ) as Zτ . As a result, each motion manifold for τ is represented as Mτ = f(Zτ , τ); the motion
manifold primitives Mτ is said to be parametrized by the mapping f and the density p(z|τ) or
parametrized by f and Zτ (see Figure 2).

2.2 Autoencoder-based Manifold and Density Learning

We adopt the autoencoder framework for learning Mτ via f(z, τ) and p(z|τ), where f is considered
as the decoder and p as the latent space density in Rm. An additional component that specifies the
coordinates of an input trajectory x ∈ Mτ needs to be introduced, called an encoder, and we denote
it by g : X × T → Rm such that z = g(x, τ). We use parametric models (e.g., neural networks) for
encoder gϕ, decoder fθ, and density pγ(z|τ), where θ, ϕ, and γ represent the model parameters. We
propose a two-step approach where we first learn the coordinate systems, i.e., fθ, gϕ, and then learn
the density, i.e., pγ(z|τ).

The standard autoencoder reconstruction loss can be employed to learn fθ, gϕ, that is an expectation
of d2X (fθ(gϕ(xij , τi), τi), xij) where dX (·, ·) is a proper distance measure on X . Minimizing the
reconstruction loss results in that fθ(gϕ(Mτ , τ), τ) ≈ Mτ for the ground truth manifold Mτ .
fθ(·, τ) becomes a coordinate system for Mτ and gϕ(Mτ , τ) becomes the coordinate space Zτ .
Secondly, we can learn pγ(z|τ) given a trained encoder gϕ via standard likelihood maximization
framework, i.e., maximizing an expectation of log pγ(gϕ(xij , τi)|τi).

2.3 Homeomorphic Manifold Assumption

Learning densities for all τ , i.e., p(z|τ) is challenging given the small training dataset D. In this
section, we introduce a homeomorphic manifold assumption to make the density learning problem
more tractable. We assume that Mτ for each τ are homeomorphic to each other and there exists a
latent coordinate variable z statistically independent of τ , i.e. p(z) = p(z|τ) for all τ , which results
in a shared latent coordinate space Z = Zτ for all τ . The training of autoencoder and density can
be greatly simplified under this assumption.

First, we can restrict the encoder’s input space to X , i.e., g : X → Rm, because τ should not
contribute to z. Second, p(z|τ) can be replaced by a shared model p(z). Using g(x) and p(z), we
may sequentially train the autoencoder and density, however, the reconstruction loss alone does not
guarantee the statistical independence between z and τ , hence learning the density p(z) can fail.

In this section, we introduce an independence regularization term for autoencoder training, so that z
and τ become independent and Z = Zτ for all τ :

R(θ, ϕ) :=
E(·,xij)∈D

[
∥gϕ(xij)− gϕ(fθ(gϕ(xij), τ))∥2

]
E(·,xij)∈D∥gϕ(xij)∥2

, (1)

where τ is randomly sampled from the uniform distribution on T . This loss enforces that g(f(z, τ))
does not depend on τ , and eventually, τ does not contribute to z, and becomes independent of z. The
denominator makes the regularization term invariant to the latent value scale. This regularization
term R is added to the reconstruction loss with a proper regularization coefficient.

3 EMMPs: Equivariant Motion Manifold Primitives

In this section, our goal is to construct the motion manifold primitive Mτ that transforms equivari-
antly when symmetry transformations are applied to τ . We denote a symmetry group by H where

3

the group operation between two elements h1, h2 ∈ H is written as h1h2 ∈ H . Then we assume
symmetry transformations are defined as group actions. Two symmetry transformations in T and
X ×T are considered, where we use the same symbol to denote the group action in T by τ 7→ h · τ
and that in X × T by (x, τ) 7→ h · (x, τ). Let

[
·
]
x

denote the x component, i.e.,
[
(x, τ)

]
x
= x.

The ground truth motion manifold primitive is denoted by Mτ , while the learned motion manifold
primitive is denoted by M̂τ parametrized by a decoder f(z, τ) and p(z|τ). We include preliminary
knowledge on group, equivariance, and invariance in Appendix C.

3.1 Invariant Encoder and Equivariant Decoder

We begin this section with the definition of the equivariant motion manifold primitive:

Definition 3.1. Suppose Mτ is a motion manifold primitive. Given a transformed task parameter
τ 7→ h ·τ , if the motion manifold Mτ is equivariantly transformed, i.e., Mh·τ = {

[
h ·(x, τ)

]
x
| x ∈

Mτ}, then the primitive is called an Equivariant Motion Manifold Primitive (EMMP); see Figure 3.

Figure 3: Given a symmetry transformation to the
task parameter τ 7→ h · τ where the relative dis-
tances between the robot, goal, and obstacle are
preserved, the MMP is equivariantly transformed.

We show that using an invariant encoder and
an equivariant decoder can guarantee the equiv-
ariance of the resulting MMP; we first provide
their definitions:

Definition 3.2. An encoder g : X×T → Rm is
invariant if g(h·(x, τ)) = g(x, τ) for all h ∈ H
and x ∈ X .

Definition 3.3. A decoder f : Rm × T → X
is equivariant if f(z, h · τ) =

[
h · (f(z, τ), τ)

]
x

for all h ∈ H and τ ∈ T .

Denoting the ground truth motion manifold by
Mτ , the latent coordinate space Zτ defined as
the support of p(z|τ) can be specified by an en-
coder g(x, τ) as follows: Zτ = (

⋃
x∈Mτ

g(x, τ)) or g(Mτ , τ). If Mτ is equivariant, then an
invariant encoder produces invariant coordinate space:

Proposition 3.1. Suppose Mτ is an EMMP. If g is invariant, then Zτ = Zh·τ for all h ∈ H .

In addition to the encoder invariance condition, the learned MMP parametrized by a decoder f(z, τ)
and Zτ , denoted by M̂τ , is equivariant if a decoder f is equivariant:

Proposition 3.2. Suppose Mτ is an EMMP. If g is invariant and f is equivariant, then the MMP
parametrized by f and Zτ , i.e., M̂τ = f(Zτ , τ) where Zτ = g(Mτ , τ), is equivariant.

By constructing an invariant encoder and an equivariant decoder, we can ensure the equivariance of
the learned motion manifold primitives. When the ground truth MMP is equivariant, it is reasonable
to expect that this equivariance guarantee would enhance the accuracy of manifold learning.

3.2 Construction of Invariant and Equivariant Mappings

In this section, we propose a method for converting arbitrary encoder and decoder models to ones
that are invariant and equivariant to the symmetry group H . Let Gϕ : X × T → Rm and Fθ :
Rm × T → X be arbitrary parametric models for encoder and decoder, respectively. Assuming
we can find an equivariant map h̄ : T → H such that h̄(h · τ) = hh̄(τ) for all h ∈ H, τ ∈ T , an
invariant encoder and equivariant decoder can be constructed as follows:

Proposition 3.3. An encoder g : X × T → Rm defined as gϕ(x, τ) := Gϕ(h̄(τ)
−1 · (x, τ)) is

invariant and a decoder f : Rm×T → X defined as fθ(z, τ) :=
[
h̄(τ)·(Fθ(z, h̄(τ)

−1 ·τ), h̄(τ)−1 ·
τ)
]
x

is equivariant.

4

How to construct the map h̄ is problem-specific. As an example, let X be the set of 3D point cloud
data – a point x ∈ X is of the form x = {x1, . . . , xN} – and H be the group of translations in R3. In
this case, one possible H-equivariant h̄(x) is the point cloud centroid: h̄(x) := 1

N

∑N
i=1 xi, whose

inverse would be h̄(x)−1 = −h̄(x). More examples are in Appendix D.2.1 and Appendix D.3.1.

When we adopt the homeomorphic manifold assumption and use a parametric model Gϕ : X →
Rm, the invariant encoder can be defined as follows: gϕ(x, τ) := Gϕ(

[
h̄(τ)−1 · (x, τ)

]
x
), where gϕ

needs to take τ as an input while Gϕ does not.

4 Experiments

In this section, we compare our EMMP framework mainly with the existing manifold primitives
method, TC-VAE [37], using both synthetic and real-world robot experiments. Additionally, we
compare MMP, MMP + indep, EMMP, and EMMP + indep, where the EMMP uses an invariant
encoder and equivariant decoder, and ‘+ indep’ indicates adding the independence regularization
term in autoencoder training. When training TC-VAE, MMP, and MMP + indep, we always apply
random data augmentation on τ . Throughout, we use Gaussian Mixture Model (GMM) to fit p(z).

Evaluation metrics: We report four evaluation metrics. First, the manifold learning accuracy is
measured by the Reconstruction Error (RE). Second, to measure the degree of independence, we
report estimated Mutual Information (MI) between z and τ , by using MINE [48]. Third, we compute
the probability density learning performance by the Negative Log-Likelihood (NLL) measured in the
data space. Lastly, we report the task Success Rate (SR), of which criteria is task-dependent. Details
on the computations of these measures are described in Appendix D.1.

4.1 Goal-Reaching Task of a Planar Mobile Robot

Figure 4: Demo tra-
jectories.

In this section, we consider a goal-reaching task for a planar mobile robot,
given a cross-shaped wall, without colliding with the wall; the robot is re-
quired to enter through one of the two closest passages (see Figure 4). As
shown, it is reasonable to assume a set of feasible trajectories form a con-
tinuous manifold. Our goal is to learn the motion manifold primitive for an
arbitrarily rotated wall and robot’s initial position.

The configuration space is Q = R2, the trajectory space is X = R2T . The
task parameter τ consists of the initial position of the mobile robot, denoted
by (q1r , q

2
r), and the rotated angle of the wall axis x̂w with respect to x̂s, de-

noted by ωw (see Figure 5 Left). To make demonstration data, a human demonstrator has drawn
feasible trajectories, 6 trajectories for 75 randomly given task parameters. Figure 4 illustrates exam-
ple demonstration trajectories. More details on data generation and data split for training, validation,
and testing are included in Appendix D.2.2.

Figure 5: Left: The task parameter of 2D mobile robot’s
goal reaching task. Right: Symmetry transformations.

Symmetries: There exist three sym-
metries that preserve the relative geo-
metric relation between the wall and
initial mobile robot position: (i) flip-
ping of the robot over the wall axis
x̂, (ii) rotation of the robot around the
origin by 90, 180, and 270 degrees,
and (iii) rotation of the wall and mo-
bile robot around the origin by the
same amount (see Figure 5 Right).
These symmetry transformations can
be described as group actions with the symmetry group H := p4m × SO(2), where p4m is a
specific type of wallpaper group and SO(2) is the group of 2 × 2 rotation matrices. We de-
note p4m := {(i, j)|i ∈ {0, 1}, j ∈ {0, 1, 2, 3}}, where i ∈ {0, 1} represents flipping and

5

j ∈ {0, 1, 2, 3} represents nπ/2 rotation. Details on the group operations in H and group actions
on T and X × T are discussed in Appendix D.2.1.

Figure 6: Illustration of the (p4m,SO(2))-equivariant
map h̄(τ).

Construction of h̄: Figure 6 visualizes the
equivariant map h̄(τ) = (h̄1(τ), h̄2(τ)).
h̄1(τ) ∈ p4m is determined based on the
robot’s position relative to the wall state as
shown in Figure 6 (Left). h̄2(τ) ∈ SO(2)
is determined based on the wall axis an-
gle ωw (see Figure 6 Right). The h̄(τ) is
equivariant to p4m× SO(2); more details
including the proof are in Appendix D.2.1.

Table 1: Reconstruction Error (RE), Mutual Informa-
tion (MI), and Negative Log-Likelihood (NLL); the
lower, the better. Success Rate (SR); the higher, the
better.

Method RE (↓) MI (↓) NLL (↓) SR (↑)
TC-VAE [37] 0.257 0.268 1.50 × 104 53.18%
MMP 0.223 0.487 1.49 × 104 50.08%
MMP + indep 0.225 0.329 1.48 × 104 52.39%
EMMP 0.223 0.082 1.25 × 104 92.40%
EMMP + indep 0.229 0.077 1.24 × 104 86.66%

Assuming a one-dimensional latent space,
we train fully connected autoencoders for
MMPs and EMMPs, and TC-VAE where
temporal convolutional neural networks
are used as in [37]. Table 1 shows the
four evaluation metrics, where the success
rate is measured as follows: (i) we sam-
ple (τ, z) from the uniform distribution on
T and learned density p(z), (ii) generate
trajectories via f(z, τ), and (iii) the gener-
ated trajectory is considered successful if it is consistent with the task parameter and reaches the
goal without colliding to the wall. More details are in Appendix D.2.2.

Figure 7: p(z|τ) of the MMP + indep
and EMMP.

First of all, the EMMP methods show much higher suc-
cess rates than both the MMP methods and TC-VAE,
which is in large part attributed to the independence be-
tween z and τ and latent density fitting as shown in Ta-
ble 1. As observed from the MI scores of the MMP +
indep (0.329) and EMMP (0.082), using invariant and
equivariant mappings is much more effective than the in-
dependence regularization term at making z and τ inde-
pendent, which consequently makes learning p(z) easier
(see Figure 7).

Figure 8: Top: p(z). Bottom: Generated
trajectories.

Second, the success rates of MMPs and TC-VAE do not
show a noticeable difference. This suggests that the net-
work architecture (temporal CNN or FCN) and autoen-
coder method (VAE or AE) do not have a significant im-
pact on performance. A further comparison using EMMP
in this regard is provided in Appendix D.2.3. Third, while
the independence regularization term slightly improves
the success rate of MMP, for EMMP, it rather shows a
negative effect. Given the already low MI of EMMP, fur-
ther reducing it at the expense of RE appears to have neg-
atively impacted the success rate.

Figure 8 (Top) visualizes learned latent space densities
p(z) of TC-VAE and EMMP + indep. We select equally-
spaced 6 latent points {zi}6i=1 in Z for each model as
shown in Figure 8 (blue points). The trajectories are then
generated by the decoders as shown in Figure 8 (Bottom).
The EMMP + indep shows a much higher success rate than the TC-VAE; the support of p(z) in
our method has two connected components, each corresponding to the set of trajectories that passes
through one of the two closest passages to the robot.

6

4.2 Water-Pouring Task of a Franka Panda Robot

Figure 9: Demonstration data.

In this section, we consider a water-pouring task for a
Franka Emika Panda robot arm; the robot is assumed to
hold the bottle initially upright and is required to pour
150g of water into the cup (see Figure 9 Left). As shown
in Figure 9 Right, a human demonstrator provides multi-
ple water-pouring trajectories, which are assumed to form
a continuous manifold. Our goal is to learn the motion
manifold primitive for an arbitrary cup position, a bot-
tle’s initial pose, and the amount of water in the bottle. In
particular, depending on the amount of water in the bottle, the demonstration trajectories have very
different characteristics (see Figure 15 Left in Appendix D.3.3).

The configuration space is the space of the bottle pose, Q = SE(3), the trajectory space is X =
SE(3)T . The task parameter τ consists of the cup position on the table (q1c , q

2
c) ∈ R2, the bottle’s

initial pose Tb ∈ SE(3), and the mass of the water mw ∈ [0.2, 0.41] (See Figure 10 Left). We
collect 5 demonstration trajectories for 35 different task parameters in a total of 175 trajectories
(details are included in Appendix D.3.2). The demonstration trajectories are collected by recording
a video of a human demonstrator performing the water-pouring task and extracting the bottle’s SE(3)
trajectories using AprilTag [49]. Figure 9 Right shows 5 trajectories demonstrated for a given single
task parameter τ . More details on the task parameter selection, data generation, and data split for
training, validation, test are included in Appendix D.3.2.

Figure 10: Left: The task parameter of water-pouring task. Right:
Symmetry transformations.

Symmetries: There exist
three symmetries that pre-
serve the relative positional
and geometric relationship
between the cup and the
bottle: (i) translation of
the cup and the bottle by
the same amount, (ii) rota-
tion of the bottle around the
cup, and (iii) rotation of the
bottle around itself (see Figure 10 Right). The symmetry transformations can be described as group
actions with the symmetry group H := R2 × SO(2)× SO(2). Details on the group operations in H
and group actions on T and X × T are discussed in Appendix D.3.2.

Figure 11: (R2,SO(2),SO(2))-equivariant module h̄(τ).

Definition of H and h̄: We de-
fine h̄(τ) = (h̄1(τ), h̄2(τ), h̄3(τ)) as
shown in Figure 11. h̄1(τ) is deter-
mined as the cup’s position as shown
in Figure 11 Left. h̄2(τ) is deter-
mined based on the position of the
bottle relative to the cup (see Fig-
ure 11 Middle). h̄3(τ) is determined
based on the bottle’s orientation relative to the base frame (see Figure 11 Right).

Assuming a two-dimensional latent space dimension, we train EMMP + indep with fully connected
neural networks and TC-VAE. Table 2 shows the four evaluation metrics (RE, MI, NLL, SR) –
where the generated robot motion is considered successful if even a little water can be poured into
the cup without spilling – and one additional metric that measures the error in the amount of poured
water (150g water has been poured in demonstration data), which we refer to as the Water-Pouring
Error (WPE). To generate motions given a task parameter τ from T , we sample z from the learned
density p(z) and generate the bottle’s trajectory via f(z, τ). If the generated SE(3) trajectory is out
of the robot’s workspace, i.e., the inverse kinematics solution does not exist, then we re-sample z

7

until we obtain a feasible trajectory. We measure the SR and WPE with 4 task parameters each with
5 samples, where we run a total of 20 generated trajectories on the real Panda robot.

Table 2: Reconstruction Error
(RE), Mutual Information (MI),
Negative Log-Likelihood (NLL),
and Water-Pouring Error (WPE);
the lower, the better. Success Rate
(SR); the higher, the better.

Method TC-VAE EMMP + indep
RE (↓) 0.183 0.129
MI (↓) 0.758 0.081
NLL (↓) 1.18 × 105 6.40 × 104

SR (↑) 9/20 20/20
WPE (↓) 86.8 ± 59.1 23.0 ± 11.9

As shown in Table 2, the EMMP + indep significantly outper-
forms TC-VAE. The large margin in RE and MI leads to lower
NLL and a much higher task success rate of EMMP. Out of 20
trials of the TC-VAE, 7 trials fail to pour water into the cup and
4 trials spill water, resulting in only 9 successful pourings. On
the other hand, EMMP + indep results in a 100% success rate.
In addition, the WPE in EMMP + indep is also much lower
than that of TC-VAE.

While the EMMP’s WPE (23.0g) out of 150g seems high, we
note that this error is not caused by the manifold primitive
learning error, but rather is attributed to the error caused when
processing AprilTags and smoothing the trajectories. Even when we replay the demonstration tra-
jectories on the robot, the water pouring error exists and it is 19.3g on average, implying 23.0g error
is not that high.

Figure 12: Obstacle avoid-
ance.

To show the strong adaptability of our framework, we perform an
obstacle avoidance task using EMMP + indep. Suppose there is an
obstacle, not seen during training, that blocks some water-pouring
trajectories in the learned manifold primitives (e.g., Figure 12 Left).
Since we have learned a motion manifold, not a single trajectory,
even if some trajectories are blocked, we can easily find an alterna-
tive collision-free trajectory from the learned manifold primitives as
shown in Figure 12 Right. More details on the collision detection
and obstacle avoidance algorithms are in Appendix D.3.2

5 Limitations

One of the key assumptions in our framework is the homeomorphic manifold assumption, that is
Mτ for all τ ∈ T are homeomorphic, which may not hold depending on the problem. In such
cases, instead of p(z), we need to fit p(z|τ), which would require more demonstration data. Second,
to construct an invariant encoder and equivariant decoder, we need to define an equivariant map h̄
for a given symmetry group H . Although, in our case studies, it is relatively straightforward to
construct h̄, this process may not be trivial or even impossible depending on the problem. Lastly, as
our experimental results show, the independence regularization term itself is not sufficient to enforce
independence between z and τ . Finding a better independence regularization method would be an
important future research direction.

6 Conclusion

In this paper, we have proposed a new family of highly adaptable movement primitive models,
motion manifold primitives – which is a set of trajectory manifolds {Mτ} for all task parameters τ
–, and an autoencoder-based framework for learning them. To tackle the challenges in learning Mτ

such as requiring many demonstration data, (i) under the homeomorphic manifold assumption, we
develop the motion manifold primitives framework and introduce the independence regularization
term – where we enforce independence between z and τ so that it is sufficient to learn p(z) instead
of p(z|τ) – and (ii) we propose equivariant motion manifold primitives for an arbitrary symmetry
group H in the robot task and a method to parameterize it by constructing an invariant encoder and
equivariant decoder. Extensive experiments have confirmed the strong adaptability of our framework
and that the equivariant manifold modeling is highly effective at learning accurate Mτ , which leads
to superior performance compared to the existing method by a significant margin.

8

Acknowledgments

B. Lee, S. Kim, and F. C. Park were supported in part by SRRC NRF grant RS-2023-00208052,
IITP-MSIT grant 2021-0-02068 (SNU AI Innovation Hub), IITP-MSIT grant 2022-0-00480 (Train-
ing and Inference Methods for Goal-Oriented AI Agents), KIAT grant P0020536 (HRD Program for
Industrial Innovation), ATC+ MOTIE Technology Innovation Program grant 20008547, SNU-AIIS,
SNU-IAMD, SNU BK21+ Program in Mechanical Engineering, and SNU Institute for Engineering
Research. Y. Lee was the beneficiary of an individual grant from CAINS supported by a KIAS Indi-
vidual Grant (AP092701) via the Center for AI and Natural Sciences at Korea Institute for Advanced
Study.

References
[1] H. Ravichandar, A. S. Polydoros, S. Chernova, and A. Billard. Recent advances in robot

learning from demonstration. Annual review of control, robotics, and autonomous systems, 3:
297–330, 2020.

[2] B. D. Argall, S. Chernova, M. Veloso, and B. Browning. A survey of robot learning from
demonstration. Robotics and autonomous systems, 57(5):469–483, 2009.

[3] Z. Zhu and H. Hu. Robot learning from demonstration in robotic assembly: A survey. Robotics,
7(2):17, 2018.

[4] M. Saveriano, F. J. Abu-Dakka, A. Kramberger, and L. Peternel. Dynamic movement primi-
tives in robotics: A tutorial survey. arXiv preprint arXiv:2102.03861, 2021.

[5] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal. Dynamical movement
primitives: learning attractor models for motor behaviors. Neural computation, 25(2):328–
373, 2013.

[6] A. J. Ijspeert, J. Nakanishi, and S. Schaal. Trajectory formation for imitation with nonlinear
dynamical systems. In Proceedings 2001 IEEE/RSJ International Conference on Intelligent
Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat.
No. 01CH37180), volume 2, pages 752–757. IEEE, 2001.

[7] A. J. Ijspeert, J. Nakanishi, and S. Schaal. Learning rhythmic movements by demonstration
using nonlinear oscillators. In Proceedings of the ieee/rsj int. conference on intelligent robots
and systems (iros2002), number CONF, pages 958–963, 2002.

[8] S. Schaal, P. Mohajerian, and A. Ijspeert. Dynamics systems vs. optimal control—a unifying
view. Progress in brain research, 165:425–445, 2007.

[9] A. Pervez, A. Ali, J.-H. Ryu, and D. Lee. Novel learning from demonstration approach for
repetitive teleoperation tasks. In 2017 IEEE World Haptics Conference (WHC), pages 60–65.
IEEE, 2017.

[10] Y. Fanger, J. Umlauft, and S. Hirche. Gaussian processes for dynamic movement primitives
with application in knowledge-based cooperation. In 2016 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 3913–3919. IEEE, 2016.

[11] J. Umlauft, Y. Fanger, and S. Hirche. Bayesian uncertainty modeling for programming by
demonstration. In 2017 IEEE International Conference on Robotics and Automation (ICRA),
pages 6428–6434. IEEE, 2017.

[12] A. Pervez, Y. Mao, and D. Lee. Learning deep movement primitives using convolutional
neural networks. In 2017 IEEE-RAS 17th international conference on humanoid robotics (Hu-
manoids), pages 191–197. IEEE, 2017.

9

[13] S. Bahl, M. Mukadam, A. Gupta, and D. Pathak. Neural dynamic policies for end-to-end
sensorimotor learning. Advances in Neural Information Processing Systems, 33:5058–5069,
2020.

[14] S. M. Khansari-Zadeh and A. Billard. Learning stable nonlinear dynamical systems with gaus-
sian mixture models. IEEE Transactions on Robotics, 27(5):943–957, 2011.

[15] K. Neumann, A. Lemme, and J. J. Steil. Neural learning of stable dynamical systems based on
data-driven lyapunov candidates. In 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 1216–1222. IEEE, 2013.

[16] S. M. Khansari-Zadeh and A. Billard. Learning control lyapunov function to ensure stability
of dynamical system-based robot reaching motions. Robotics and Autonomous Systems, 62(6):
752–765, 2014.

[17] A. Lemme, K. Neumann, R. F. Reinhart, and J. J. Steil. Neural learning of vector fields for
encoding stable dynamical systems. Neurocomputing, 141:3–14, 2014.

[18] K. Neumann and J. J. Steil. Learning robot motions with stable dynamical systems under
diffeomorphic transformations. Robotics and Autonomous Systems, 70:1–15, 2015.

[19] C. Blocher, M. Saveriano, and D. Lee. Learning stable dynamical systems using contraction
theory. In 2017 14th International Conference on Ubiquitous Robots and Ambient Intelligence
(URAI), pages 124–129. IEEE, 2017.

[20] N. Figueroa and A. Billard. A physically-consistent bayesian non-parametric mixture model
for dynamical system learning. In CoRL, pages 927–946, 2018.

[21] V. Sindhwani, S. Tu, and M. Khansari. Learning contracting vector fields for stable imitation
learning. arXiv preprint arXiv:1804.04878, 2018.

[22] J. Z. Kolter and G. Manek. Learning stable deep dynamics models. Advances in neural infor-
mation processing systems, 32, 2019.

[23] G. Maeda, M. Ewerton, T. Osa, B. Busch, and J. Peters. Active incremental learning of robot
movement primitives. In Conference on Robot Learning, pages 37–46. PMLR, 2017.

[24] N. Jaquier, D. Ginsbourger, and S. Calinon. Learning from demonstration with model-based
gaussian process. In Conference on Robot Learning, pages 247–257. PMLR, 2020.

[25] M. Schneider and W. Ertel. Robot learning by demonstration with local gaussian process
regression. In 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 255–260. IEEE, 2010.

[26] S. Calinon. A tutorial on task-parameterized movement learning and retrieval. Intelligent
service robotics, 9:1–29, 2016.

[27] D. A. Duque, F. A. Prieto, and J. G. Hoyos. Trajectory generation for robotic assembly opera-
tions using learning by demonstration. Robotics and Computer-Integrated Manufacturing, 57:
292–302, 2019.

[28] C. Yang, C. Chen, N. Wang, Z. Ju, J. Fu, and M. Wang. Biologically inspired motion modeling
and neural control for robot learning from demonstrations. IEEE Transactions on Cognitive
and Developmental Systems, 11(2):281–291, 2018.

[29] S. Chernova and M. Veloso. Confidence-based policy learning from demonstration using gaus-
sian mixture models. In Proceedings of the 6th international joint conference on Autonomous
agents and multiagent systems, pages 1–8, 2007.

10

[30] A. Paraschos, C. Daniel, J. R. Peters, and G. Neumann. Probabilistic movement primitives.
Advances in neural information processing systems, 26, 2013.

[31] Y. Huang, L. Rozo, J. Silvério, and D. G. Caldwell. Kernelized movement primitives. The
International Journal of Robotics Research, 38(7):833–852, 2019.

[32] T. Osa, A. M. G. Esfahani, R. Stolkin, R. Lioutikov, J. Peters, and G. Neumann. Guiding
trajectory optimization by demonstrated distributions. IEEE Robotics and Automation Letters,
2(2):819–826, 2017.

[33] D.-H. Park, H. Hoffmann, P. Pastor, and S. Schaal. Movement reproduction and obstacle
avoidance with dynamic movement primitives and potential fields. In Humanoids 2008-8th
IEEE-RAS International Conference on Humanoid Robots, pages 91–98. IEEE, 2008.

[34] H. Hoffmann, P. Pastor, D.-H. Park, and S. Schaal. Biologically-inspired dynamical systems
for movement generation: Automatic real-time goal adaptation and obstacle avoidance. In
2009 IEEE international conference on robotics and automation, pages 2587–2592. IEEE,
2009.

[35] S. M. Khansari-Zadeh and A. Billard. A dynamical system approach to realtime obstacle
avoidance. Autonomous Robots, 32:433–454, 2012.

[36] M. Ginesi, D. Meli, A. Calanca, D. Dall’Alba, N. Sansonetto, and P. Fiorini. Dynamic move-
ment primitives: Volumetric obstacle avoidance. In 2019 19th international conference on
advanced robotics (ICAR), pages 234–239. IEEE, 2019.

[37] M. Noseworthy, R. Paul, S. Roy, D. Park, and N. Roy. Task-conditioned variational autoen-
coders for learning movement primitives. In Conference on robot learning, pages 933–944.
PMLR, 2020.

[38] D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[39] Y. Lee, H. Kwon, and F. Park. Neighborhood reconstructing autoencoders. Advances in Neural
Information Processing Systems, 34:536–546, 2021.

[40] Y. Lee, S. Yoon, M. Son, and F. C. Park. Regularized autoencoders for isometric representation
learning. In International Conference on Learning Representations, 2022.

[41] C. Jang, Y. Lee, Y.-K. Noh, and F. C. Park. Geometrically regularized autoencoders for non-
euclidean data. In The Eleventh International Conference on Learning Representations.

[42] Y. Lee, S. Kim, J. Choi, and F. Park. A statistical manifold framework for point cloud data. In
International Conference on Machine Learning, pages 12378–12402. PMLR, 2022.

[43] Y. Lee and F. C. Park. On explicit curvature regularization in deep generative models. arXiv
preprint arXiv:2309.10237, 2023.

[44] Y. Lee. A geometric perspective on autoencoders. arXiv preprint arXiv:2309.08247, 2023.

[45] S. Kim, B. Lim, Y. Lee, and F. C. Park. Se (2)-equivariant pushing dynamics models for
tabletop object manipulations. In Conference on Robot Learning, pages 427–436. PMLR,
2023.

[46] D. Wang, R. Walters, and R. Platt. So(2)-equivariant reinforcement learning. arXiv preprint
arXiv:2203.04439, 2022.

[47] H. Huang, D. Wang, R. Walters, and R. Platt. Equivariant transporter network. arXiv preprint
arXiv:2202.09400, 2022.

11

[48] M. I. Belghazi, A. Baratin, S. Rajeshwar, S. Ozair, Y. Bengio, A. Courville, and D. Hjelm.
Mutual information neural estimation. In International conference on machine learning, pages
531–540. PMLR, 2018.

[49] E. Olson. Apriltag: A robust and flexible visual fiducial system. In 2011 IEEE international
conference on robotics and automation, pages 3400–3407. IEEE, 2011.

[50] S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio. Contractive auto-encoders: Explicit
invariance during feature extraction. In Proceedings of the 28th international conference on
international conference on machine learning, pages 833–840, 2011.

[51] A. Creswell, Y. Mohamied, B. Sengupta, and A. A. Bharath. Adversarial information factor-
ization. arXiv preprint arXiv:1711.05175, 2017.

[52] M. M. Bronstein, J. Bruna, T. Cohen, and P. Veličković. Geometric deep learning: Grids,
groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478, 2021.

[53] S. Albawi, T. A. Mohammed, and S. Al-Zawi. Understanding of a convolutional neural net-
work. In 2017 international conference on engineering and technology (ICET), pages 1–6.
Ieee, 2017.

[54] T. Cohen and M. Welling. Group equivariant convolutional networks. In International confer-
ence on machine learning, pages 2990–2999. PMLR, 2016.

[55] T. S. Cohen, M. Geiger, J. Köhler, and M. Welling. Spherical cnns. arXiv preprint
arXiv:1801.10130, 2018.

[56] A. Simeonov, Y. Du, A. Tagliasacchi, J. B. Tenenbaum, A. Rodriguez, P. Agrawal, and V. Sitz-
mann. Neural descriptor fields: Se (3)-equivariant object representations for manipulation. In
2022 International Conference on Robotics and Automation (ICRA), pages 6394–6400. IEEE,
2022.

[57] S. Kim, T. Ahn, Y. Lee, J. Kim, M. Y. Wang, and F. C. Park. Dsqnet: A deformable model-
based supervised learning algorithm for grasping unknown occluded objects. IEEE Transac-
tions on Automation Science and Engineering, 2022.

12

A Proofs of Propositions

Proof of Group-Equivariance of (3.1). The equivariance of the ground truth EMMP and the invari-
ance of g proves the proposition as follows:

Zh·τ = g(Mh·τ , h · τ) = g(
⋃

x∈Mτ

h · (x, τ)) = g(
⋃

x∈Mτ

(x, τ)) = g(Mτ , τ) = Zτ . (2)

Proof of Group-Equivariance of (3.2). The equivariance of f and invariance of g proves the propo-
sition as follows:

M̂h·τ = f(Zh·τ , h · τ) =
⋃

z∈Zτ

[
h · (f(z, τ), τ)

]
x
=

⋃
x∈M̂τ

[
h · (x, τ)

]
x
= {

[
h · (x, τ)

]
x
| x ∈ M̂τ}. (3)

Proof of Group-Equivariance of (3.3). Invariance of gϕ can be seen by the equivariance of h̄, as
follows:

gϕ(h · (x, τ)) = Gϕ(h̄(h · τ)−1 · (h · (x, τ))) = Gϕ((hh̄(τ))
−1

h) · (x, τ)) = Gϕ(h̄(τ))
−1 · (x, τ)) = gϕ(x, τ) (4)

Equivariance of fθ can be seen as follows:

fθ(z, h · τ) =
[
h̄(h · τ) · (Fθ(z, h̄(h · τ)−1 · (h · τ)), h̄(h · τ)−1 · (h · τ))

]
x

=
[
h · h̄(τ) · (Fθ(z, h̄(τ)

−1
(τ)), h̄(τ)

−1 · τ)
]
x

= [h · (fθ(z, τ), τ)]x (5)

B Related Works

In this section, we provide an overview of areas related to our work.

B.1 Movement Primitives

In this section, we consider any form of mathematical representation used to describe motions (e.g.,
trajectories) that perform a given task—as specified by a task parameter variable τ—as move-
ment primitives. Dynamic movement primitives encode motion trajectories in the form of time-
dependent nonlinear dynamical systems. These systems consist of mass-spring-damper systems
and parametric force terms, with their task parameters defined by the initial and final configura-
tions. [4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. Stable dynamical system-based approaches use state-dependent
dynamical systems that are globally asymptotically stable [14, 15, 16, 17, 18, 19, 20, 21, 22]. In these
dynamical systems-based methods, the initial and goal configurations can be considered as the task
parameters, and the solution trajectory that connects the two configurations is the motion described
by those systems. ProMP [30] represents motions as a distribution over trajectories. By conditioning
the distribution with the initial configuration, a motion trajectory is achieved. In ProMP, the initial
and final configurations can be considered as task parameters. TP-GMM [26] tries to adapt to unseen
task parameters by encoding trajectories as GMM seen from multiple frames. The task parameters
of TP-GMM are the frames of GMMs. Given unseen frames, TP-GMM generates trajectories by
calculating joint distributions between GMMs. [23, 24, 25] parameterize the demonstration trajec-
tories using Gaussian Pross Regression, and [28, 27, 29] represents the motions using GMR (no
task-parameterization exists).

However, the task parameters of most movement primitives are strictly restricted to the initial and
final configurations. This limits the range of tasks that can be parameterized. In the case of water
pouring, the cup’s position and the amount of water can not be represented by the initial and final
configurations. By adopting conditional variational autoencoder’s structure, MMPs and EMMPs
provide freedom of defining task parameters.

13

B.2 Autoencoder-Based Manifold Learning

Autoencoders have gained prominence in recent years for identifying and generating samples from
a given data distribution’s underlying low-dimensional manifold structure. The main reason autoen-
coders are frequently adopted for manifold learning is that they learn the latent space coordinates
along with the manifolds. To learn more accurate manifolds, researchers have introduced additional
regularization terms [38, 39, 40, 42, 43, 41, 50, 44]. For a specific structure of conditional variational
autoencoder, where the decoder gets an additional conditional parameter, the need to disentangle the
conditional inputs and latent values has risen. [51] introduced a regularization term to disentangle
input spaces of its decoder, by solving adding an auxiliary neural network to estimate conditional
inputs from latent values, and regularizing the autoencoder by making it harder for the auxiliary
network to estimate. However, unlike the independence regularization term that we introduced, the
regularization term does not necessarily guarantee independence between the two spaces.

B.2.1 Autoencoder-Based Motion Manifold Primitives

In this section, we introduce an existing motion manifold primitive framework called TC-VAE [37].
TC-VAE aims to parameterize the motion manifold given a task parameter based on autoencoder
frameworks. As TC-VAE adopts the structure of [51], the decoder of it takes additional task param-
eter inputs other than the latent value inputs. TC-VAE also adopts the regularization term of [51]
for disentangling the task parameters and the latent values, which still shares the shortcoming of not
guaranteeing independence between latent space and the conditional input space.

B.3 Equivariant Models in Robotics

Invariance and equivariance properties have played a role in deep learning models as an inductive
bias to generalize well and be trained data efficiently [52]. Translation equivariance in convolu-
tional neural networks (CNNs) has been effective for image recognition tasks [53]. Group equiv-
ariant CNNs have expanded the equivariance in CNNs to more complex equivariance, e.g. SO(3)-
equivariance achieved by Spherical CNNs [54, 55]. In robot manipulation tasks, [56] proposed an
SE(3)-equivariant object representation, and [45] introduced a SE(2)-equivariant dynamics model
learning for pushing manipulation. Most of the existing equivariant models in robotics are restricted
to certain types of groups, whereas our work can be applied to tasks with arbitrary group symmetries.

C Geometric Preliminaries

This section provides preliminary knowledge of geometric tools used in the paper.

C.1 Manifold Hypothesis

Real-world observations often require a large number of variables to represent numerically. For ex-
ample, an SE(3)-trajectory of length 500 lives in a high-dimensional data space R8000. Dealing with
such high-dimensional data is very challenging as the amount of data needed grows exponentially
with the dimensionality, known as the curse of dimensionality.

The manifold hypothesis states that high-dimensional data (e.g. trajectory) approximately lie on
some lower-dimensional manifold embedded in high-dimensional space, which suggests that the
high-dimensional data can be in fact described by a relatively small number of variables. For exam-
ple, to describe points on a two-dimensional sphere – which are represented as unit vectors in R3 –,
we only need two variables, e.g., the spherical (θ, ϕ)-coordinates.

Of particular relevance to our paper, consider a set of length n trajectories in R2, which start from the
robot and end at the star, as shown in Figure 13 (i.e., trajectories A, B, C, D, E). We note that these
five trajectories are elements in the high-dimensional trajectory data space R2×n. However, it is clear
that they do not fill up the entire space. Rather it is suspected that they form a lower-dimensional
space. Each trajectory may approximately be represented with one variable that indicates how much

14

Figure 13: Trajectories in high-dimensional data space lie on a one-dimensional manifold.

it bends down or up compared to the straight line between the robot and the star, meaning that these
five trajectories approximately lie on a one-dimensional manifold.

C.2 Homeomorphism

A homeomorphism is a continuous, bijective function that has a continuous inverse function between
two topological spaces (for this paper, two manifolds). Two manifolds are said to be homeomorphic
if there exists a homeomorphism between the two manifolds. Intuitively, two manifolds are home-
omorphic if one can be smoothly deformed into another. For example, a sphere can be smoothly
deformed into an ellipsoid, hence a sphere and an ellipsoid are homeomorphic. However, there is
no way to smoothly deform a sphere into a torus, which indicates that a sphere and a torus are not
homeomorphic.

Suppose that there exist two m-dimensional manifolds M1 and M2. Let the latent space of M1 be
Z1 ⊆ Rm and the coordinate space of M2 be Z2 ⊆ Rm. Let f1 : Z1 → M1 and f2 : Z2 → M2 be
invertible maps satisfying f1(Z1) = M1 and f2(Z2) = M2. If M1 and M2 are homeomorphic,
i.e. there exists g : M1 → M2 such that g(M1) = M2, Z2 = (f−1

2 ◦ g ◦ f1)(Z1) is satisfied. M1

and M2 can have shared latent space by replacing f2 as f ′
2(·) := (g ◦ f1)(·).

C.3 Group and Group Action

A group H is a non-empty set, combined with a group operation ∗ : H×H → H , where we simply
denote it by h1 ∗ h2 = h1h2. A group H must satisfy four conditions:

• The group H contains an identity e.

• The group H contains inverses, i.e., h−1h = hh−1 = e for all h ∈ H .

• The group operation is associative, i.e., h1(h2h3) = (h1h2)h3 for all h1, h2, h3 ∈ H .

• The group H is closed under operation, i.e., h1h2 ∈ H for all h1, h2 ∈ H .

A group action · : H × X → X is a function defined on the product space of a group and a set
satisfying two conditions:

e · x = x,

h1 · (h2 · x) = (h1h2) · x for all h1, h2 ∈ H,

where e ∈ H is the identity.

C.4 Equivariance and Invariance

Given a group H , a function f : X → Y and group actions · defined on X and Y , the function f is
said to be H-equivariant if it satisfies

f(h · x) = h · f(x),

15

for all x ∈ X and h ∈ H . f is said to be H-invariant if it satisfies

f(h · x) = f(x),

for all x ∈ X and h ∈ H . Invariance is a special case of equivariance where the group actions
defined on Y is the identity function, i.e. h · y = y for all h ∈ H and y ∈ Y .

D Experimental and Implementation Details

Throughout the experiments, we have used RTX 2080 Ti, RTX 3080 Ti, RTX 3090 for training the
models, and each experiment takes a few hours to 10 hours depending on the model.

D.1 Evaluation Metrics

Recontruction Error: We measure reconstruction error in the test dataset using following equation:

Reconstruntion loss =

√√√√ 1

N

N∑
i=1

1

Mi

Mi∑
j=1

1

T
d2X (fθ(gϕ(xij , τi), τi), xij). (6)

Latent-Task Dataset: To calculate mutual information and negative log-likelihood, we define a
dataset of (z, τ) paired dataset. To build the dataset large enough, we first randomly augment (x, τ)
pairs in the training dataset 100 times. Then, the every z is the encoded values from (x, τ); z =
gϕ(x, τ).

Mutual Information: Mutual information between z and τ is measured using Mutual Informa-
tion Neural Estimator (MINE) [48]. MINE estimates by, which estimates mutual information by
maximizing its lower bound, using the Donsker-Varadhan representation:

DKL(Z||T) ≥ sup
F∈F

EZ [F]− log (ET e
F), (7)

where F is any class of functions F : Ω → R. In our case, Ω = Z × T . By replacing F by
parametric family FΘ, the mutual information is estimated as follows:

IΘ(Z, T) = sup
θ∈Θ

Ep(z,τ)Fθ − log (Ep(z)p(τ)e
Fθ). (8)

We train MINE using the latent-task dataset for 1,500 iterations with a batch size of 5,000 equally
for all models.

Negative Log-Likelihood: Given (z, τ) from the latent-task dataset, we calculate negative log-
likelihood − log(pMτ (gϕ(z))) in trajectory space X , using the following equation:

pMτ (gϕ(z, τ)) = pZτ (z)|det [JT
gϕ
Jgϕ]|−

1
2 , (9)

where Jgϕ denotes ∂gϕ
∂z (z, τ).

D.2 Planar Mobile Robot Experiment

D.2.1 Formulas and Proofs

Task Parameter Space: Recall that the configuration space is Q = R2, the trajectory space is
X = R2T . The task parameter τ consists of the initial position of the mobile robot, denoted by
(q1r , q

2
r), and the rotated angle of the wall axis x̂w with respect to x̂s, denoted by ωw.

To uniformly sample from T we make T compact by restricting the initial position of the motile
robot to be on a disk whose center is the origin, the inner radius is 5, and the outer radius is 10.
Also, we have limited the wall rotation axis to −π

4 ≤ ωw < π
4 to make the problem easier for

non-equivariant methods e.g. TC-VAE. since the wall’s geometries are identical every 90 degrees,
the wall still can span all possible geometrical configurations.

16

Trajectory Space and Distance Measure: We set the length of trajectories T = 201, which makes
the trajectory space X = R402. The distance measure is defined as: dX (x1, x2) := ||x1, x2||2.

Group Operations: Recall that the symmetry group H is H := p4m × SO(2), where p4m is
a specific type of wallpaper group and SO(2) is the group of 2 × 2 rotation matrices. We de-
note p4m := {(i, j)|i ∈ {0, 1}, j ∈ {0, 1, 2, 3}}, where i ∈ {0, 1} represents flipping and
j ∈ {0, 1, 2, 3} represents nπ/2 rotation. Throughout this section, we represent an SO(2) element

R =

[
cosα − sinα
sinα cosα

]
∈ SO(2) simply as α.

Given two group elements ((a, b), α), ((c, d), β) ∈ p4m× SO(2), the group operation is defined as:

((a, b), α)((c, d), β) = ((mod(a+ c, 2),mod(b+ (−1)ad, 4)), α+ β), (10)

where mod(x, y) denotes the remainder of x
y .

Group Actions: The procedure of the group actions of H = p4m × SO(2) can be explained as
follows: (i) flip the robot over the wall axis (ii) rotate the robot around the origin nπ

2 , and finally,
(iii) rotated the robot and the wall. Given a task parameter τ = (q1r , q

2
r , ωw) and a group element

h = ((a, b), α), the group action h · τ is then defined as:

h · τ = (Rot(α+ ωw +
bπ

2
) ∗ flip(a) ∗ Rot(−ωw) ∗ (q1r , q2r), α+ ωw) (11)

where ∗ denotes matrix multiplication, flip(a) :=
[
1 0
0 −1

]a
, and Rot(α) :=

[
cosα − sinα
sinα cosα

]
.

Given a trajectory x = {(q1i , q2i)}Ti=1, a task parameter τ = (q1r , q
2
r , ωw) and a group element

h = ((a, b), α), the group action h · (x, τ) is defined as :

h · (x, τ) = ({Rot(α+ ωw +
bπ

2
) ∗ (q1i , q2i)}Ti=1, h · τ). (12)

Group-Equivariant Map h̄: Given a task parameter τ , h̄(τ) can be divided into two elements,
h̄(τ) = (h̄1(τ), h̄2(τ)), where h̄1(τ) = (h̄1

1(τ), h̄
2
1(τ)) ∈ p4m and h̄2(τ) ∈ SO(2). Figure 14

illustrates h̄(τ), and its equivariance for h̄1 using two group actions hflip = (1, 0, 0) and hrot90 =
(0, 1, 0). It can be seen by the commutative diagram that h̄(hflip · τ) = hfliph̄(τ) and h̄(hrot90 ·
τ) = hrot90h̄(τ). The rest cases of flipping and rotating 90, 180, 270 degrees can be shown in the
same way. As shown, h̄2(τ) is defined as h̄2(τ) = ωw. The equivariance of h̄2 can be shown by
hrot = (0, 0, α) and τ = (q1r , q

2
r , ωw):

h̄(hrot · τ) = (q1r , q
2
r , ωw + α) = (0, 0, α)(q1r , q

2
r , ωw) = hch̄(τ). (13)

Equivariance for the case where h = (a, b, α) is then simply shown by dividing it into h =
(0, 0, α)(a, b, 0):

h̄((a, b, α) · τ) = h̄(((0, 0, α)(a, b, 0)) · τ)

= h̄((0, 0, α) · (a, b, 0) · τ)

= (0, 0, α)h̄((a, b, 0) · τ)

= (a, b, 0)(0, 0, α)h̄(τ)

= (a, b, α)h̄(τ). (14)

Below equation is the formal definition of h̄ given a τ = (q1r , q
2
r , ωw):

h̄1
1(τ) =

{
0, if kπ

2 ≤ atan2(q2r , q
2
r)− ωw < kπ

2 + π
4

1, otherwise
,

h̄2
1(τ) =

0, if − π
4 ≤ atan2(q2r , q

2
r)− ωw < π

4

1, if π
4 ≤ atan2(q2r , q

2
r)− ωw < 3π

4

2, if 3π
4 ≤ atan2(q2r , q

2
r)− ωw < π

or − π ≤ atan2(q2r , q
2
r)− ωw < − 3π

4

3, if − 3π
4 ≤ atan2(q2r , q

2
r)− ωw < −π

4

,

h̄2(τ) = ωw,

(15)

17

Figure 14: Illustration of h̄ and its equivariance. hflip := (1, 0, 0) is the flipping motion of the
mobile robot over the wall axis, and hrot90 := (0, 1, 0) is the rotation of the mobile robot 90 degrees
around the origin. It can be seen that hfliph̄(τ) = (1, 0, 0)(0, 1, ωw) = (1,mod(0 − 1, 4), ωw) =
(1, 3, ωw) = h̄(hflip ·τ) and hrot90h̄(τ) = (0, 1, 0)(0, 1, ωw) = (0,mod(1+1, 4, ωw) = (0, 2, ωw) =
h̄(hrot90 · τ).

where k ∈ {−2,−1, 0, 1} and (atan2(q2r , q
2
r) − ωw) is assumed to be satisfying −π ≤

atan2(q2r , q
2
r)− ωw < π.

D.2.2 Experimental Details

Datasets: For dataset generation, we first uniformly sample from the smallest space that can span
T by symmetry transformations, in which the robot’s initial position qr satisfies 5 ≤ ||qr|| < 10
and 0 ≤ atan2(q2r , q

1
1) < π/4, and the wall axis angle is 0. We collect trajectory data by generating

B-splines given via points labeled by humans. The B-splines are then reparameterized so that the
time length of the splines becomes 5 seconds, where the splines accelerate for the first second and
decelerate for the last second. We finally sample 201 points from the splines.

For the training dataset, we have gathered 6 trajectories for 75 randomly given task parameters, a
total of 300 trajectories for training. For the validation dataset, we have gathered a trajectory for 80
randomly given task parameters and randomly augmented them using symmetry transformations 100
times. For the test dataset, we have gathered a trajectory for 40 randomly given task parameters and
randomly augmented them using symmetry transformations 1000 times. The number of validation
and test datasets are then 8,000 and 40,000 repectively.

Network Architectures and Training Details: A task parameter τ is represented as (q1r , q
2
r , ωw),

where (q1r , q
2
r) is the mobile robot’s initial position and ωw is the wall’s axis angle. In practical

implementation, we use (q1r , q
2
r , cosωw, sinωw) ∈ R4 as an input parameter vector. Since T = 201,

the output space is R402.

We use two-layer fully connected neural networks of 512 nodes for MMPs and EMMPs with elu
as their activation function. TC-VAE’s encoder includes a fully connected network and a temporal
convolutional network, and the decoder includes two fully connected networks for z and τ , a tem-
poral convolutional network, and a fully connected network. All four fully connected networks used
in TC-VAE are of two layers with size 434. The output sizes of fully connected networks for z and
τ in the decoder are 36 and 72 respectively. The two temporal convolutional layers in TC-VAE are

18

both with channel sizes (18, 36, 72) and kernel size 3. More details on the structure of TC-VAE are
in [37]. All models in the experiments have similar number of parameters (≈ 9.4× 105).

Success Criterion: We consider a trajectory successful if it is consistent with the task parameter and
reaches the goal without colliding with the wall. More specifically, we check (i) collision avoidance,
(ii) the robot’s initial position, and the robot’s final position. We consider the trajectory satisfies (ii)
and (iii) if the initial configuration and the final configuration are within a radius of 0.3 at the initial
position specified in the task parameter and origin, respectively. The number of sample (z, τ) we
use for success rate calculation is 50,000.

D.2.3 Additional results

Architecture Comparison: We compare MMPs and EMMPs of fully connected autoencoders (de-
noted as AE), fully connected variational autoencoders (denoted as VAE), and variational autoen-
coders of the same structure with TC-VAE (denoted as TC-VAE). Table 3 shows the four evaluation
metrics. Overall, as shown in the success rate scores, regardless of network architecture and autoen-
coder method, EMMPs without regularization perform the best, and MMPs without regularization
perform the worst. Although EMMP (TC-VAE) excels in most measures (MI and NLL) its success
rate (91.2%) is still lower than EMMP (AE)’s (92.40%) and EMMP (VAE)’s (95.72%), which is
caused by the tendency of (TC-VAE) that it violates the initial and final condition in about 6% of
trials, whereas EMMP (AE) only violates them and EMMP (VAE) almost never violate them (0%
∼ 0.01%).

Equivariance Comparison: Here, we qualitatively compare the equivariance performance of ran-
dom data augmentation and equivariant learning method by comparing MMP (AE) and EMMP
(AE). Figure 15 shows trajectories generated by τ and h · τ , with same z. If the decoder f is equiv-
ariant, f(z, h·τ) (blue lines in the figure) and [h·(f(z, τ), τ)]x (grey lines in the figure) must overlap.
However, as shown in the Figure 15 Left, trajectories of the MMP do not , whereas trajectories of
the EMMP perfectly overlap as shwon in Figure 15 Right.

D.3 Water-Pouring Experiment

D.3.1 Formulas and Proofs

Task Parameter Space: The input space Q = R2 × SE(3)× [0.2, 0.41]. A task parameter τ can be
represented as ((q1c , q

2
c), (q

1
b , q

2
b , q

3
b , Rb)),mw), where (q1c , q

2
c) is the cup’s position, (q1b , q

2
b , q

3
b , Rb))

is the bottle’s initial position and orientation, and mw is the weight of water in the bottle. To
construct compact T , we limit (q1c , q

2
c) to be inside a square at the origin with edge length of 0.5,

i.e., −0.25 ≤ q1c , q
2
c ≤ 0.25, and limit the distance between (q1c , q

2
c) and (q1b , q

2
b) to satisfy 0.3 ≤

||q1b − q1c , q
2
b − q2b ||2 ≤ 0.78. Since the bottle is on the table upright, q3b is a constant.

Trajectory Space and Distance Measure: We set the length of trajectories T to be 480, which
makes trajectory space X = SE(3)480. Given x1 = {xi

1}480i=1 and x2 = {xi
2}480i=1, where each xi

j can
be represented by (Rij ∈ SO(3), pij ∈ R3), the distance measure on X is defined as:

dX (x1, x2) :=

√∑
i

(||R−1
i1 ∗Ri2 − I||2F + γ||pi1 − pi2||22), (16)

Table 3: Reconstruction Error (RE), Mutual Information (MI), and Negative Log-Likelihood (NLL);
the lower, the better. Success Rate (SR); the higher, the better.

Method RE (↓) MI (↓) NLL (↓) SR (↑)
MMP (AE) 0.223 0.487 1.49 × 104 50.08%
MMP (VAE) 0.233 0.687 1.57 × 104 42.98%
MMP (AE) + indep 0.225 0.329 1.48 × 104 52.39%
MMP (VAE) + indep 0.229 0.652 1.56 × 104 44.28%
EMMP (AE) 0.223 0.082 1.25 × 104 92.40%
EMMP (AE) + indep 0.229 0.077 1.24 × 104 86.66%
EMMP (VAE) 0.231 0.066 1.23 × 104 95.72%
EMMP (VAE) + indep 0.225 0.167 1.28 × 104 82.02%
EMMP (TC-VAE) 0.227 0.065 1.00 × 104 91.20%
EMMP (TC-VAE) + indep 0.247 0.071 1.15 × 104 88.22%

19

Figure 15: Equivariance comparison between MMP (AE) and EMMP (AE). If the decoder f is
equivariant, f(z, h · τ) (blue lines in the figure) and [h · (f(z, τ), τ)]x (grey lines in the figure) must
overlap. It can be seen that the decoder of MMP is not equivariant, whereas the EMMP’ decoder is
equivariant.

where γ = 5 is a constant.

Group Operations: The symmetry group H = R2 × SO(2)× SO(2), each is for translation of the
cup and the bottle, rotation of the bottle around the cup, and rotation of the bottle around itself. Given
two group elements (a, b, Rc1, Rb1), (c, d,Rc2, Rb2) ∈ R2 × SO(2) × SO(2), the group operation
is defined as follows:

(a, b, Rα, Rβ)(c, d,Rγ , Rδ) = (a+ c, b+ d,Rα ∗Rγ , Rβ ∗Rδ). (17)

Group Actions: The procedure of group actions of h ∈ H can be explained as follows: (i)
translate the cup and the bottle, (ii) rotate the bottle around the cup, and (iii) rotate the bottle
around itself. Given a task parameter τ = ((q1c , q

2
c), (q

1
b , q

2
b , q

3
b , Rb)),mw), and a group element

h = (a, b, Rα, Rβ), the group action h · τ is defined as:

h · τ =
(
(q

1
c + a, q

2
c + b), ((q

1
c + a, q

2
c + b, 0) + (Rα ∗ (q

1
b − q

1
c , q

2
b − q

2
c , q

3
c)), Rα ∗ Rb ∗ Rβ),mw

)
. (18)

Group-Equivariant Map h̄: Given a task parameter τ = ((q1c , q
2
c), (q

1
b , q

2
b , q

3
b , Rb)),mw), h̄(τ) =

(h̄1(τ), h̄2(τ), h̄2(τ)) is defined as follows:

h̄1(τ) = (q1c , q
2
c) ∈ R2, (19)

h̄2(τ) = Rot(ẑ, θ1), (20)

h̄3(τ) = Rot(ẑ, (θ2 − θ1)), (21)

where θ1 := atan2(q2b − q2c , q
1
b − q1c), θ2 := atan2(x̂2

b , x̂
1
b), and x̂b denotes the first column of Rb.

Given an arbitrary h = (a, b, Rα, Rβ), where Rα = Rot(ẑ, α) and Rβ = Rot(ẑ, β), the equivariance
of h̄ is shown by the following equation:

h̄(h · τ) = h̄((q
1
c + a, q

2
c + b), ((q

1
c + a, q

2
c + b, 0) + (Rα ∗ (q

1
b − q

1
c , q

2
b − q

2
c , q

3
c)), Rα ∗ Rb ∗ Rβ),mw)

= ((q
1
c + a, q

2
c + b), Rot(ẑ, α + θ1), Rot(θ2 − θ1 + β)

= ((q
1
c + a, q

2
c + b), Rα ∗ Rot(ẑ, θ1), Rot(ẑ, θ2 − θ1) ∗ Rβ)

= ((q
1
c + a, q

2
c + b), Rα ∗ Rot(ẑ, θ1), Rβ ∗ Rot(ẑ, θ2 − θ1))

= (a, b, Rα, Rβ)((q
1
c , q

2
c), Rot(ẑ, θ1), Rot(ẑ, (θ2 − θ1)))

= hh̄(τ). (22)

D.3.2 Experimental Details

Datasets: The water-pouring demonstration trajectories are collected by recording videos of water-
pouring motions of a human demonstrator for 8 seconds (intended for 3.5 seconds of reaching mo-
tion and 4.5 seconds of pouring motion) at 60fps, with three AprilTags, resulting in 480 frames [49].

20

Figure 16: Task parameters for demonstration. The cup is always at the origin, and the bot-
tle is at (0, r ∈ 0.3, 0.38, 0.54, 0.62, 0.78, 0.145). The mass of water in the bottle is mw ∈
0.2, 0.27, 0.305, 0.34, 0.41.

Then we extract the SE(3) trajectories of the bottle, whose length T = 480. We perform trajectory
smoothing and transform task parameters and the trajectories using group actions of H for the cup’s
position to be the origin, and the bottle to be initially in the x̂s-direction from the bottle, and x̂b to
be aligned with x̂s. The resulting task parameters are in the form of ((0, 0), (r, 0, h, R, 0)),mw).

Assuming the bottle to be initially on the table upright, h = 0.145 is constant, and R = I . We gather
5 trajectories for 7 different r and 5 different mw in a total of 175 trajectories. As shown in Figure 16
Left, we choose r at every 8cm, from 30cm to 78cm, i.e., r ∈ {0.3, 0.38, 0.46, 0.54, 0.62, 0.7, 0.78},
and as shown in Figure 16 Right we choose mw ∈ {0.2, 0.27, 0.305, 0.34, 0.41}. The dimensions of
the cup and the bottle, and the position of the bottle frame are as illustrated in Figure 16 right. The
five demonstrations of each task parameter are intended to pour water gradually from the left side of
the cup and the right side of the cup.

We use 125 trajectories of r ∈ 0.3, 0.38, 0.54, 0.62, 0.78 as the training dataset, and we randomly
split the other 50 trajectories into half for validation and test dataset. We randomly augment the
dataset 100 and 1,000 times for validation and test dataset respectively, resulting in 2,500 validation
trajectories and 25,000 test trajectories.

Network Architectures and Training Details: The space of the task parameters is
R2 × SE(3) × [0.2, 0.41], where a task parameter can be represented in the form of
((q1c , q

2
c), (q

1
b , q

2
b , q

3
b , Rb)),mw). Assuming that the bottle is initially on the table upright, since

q3b is a constant variable and Rb can be represented as Rotẑ, θb, in practical implementation, we use
(q1c , q

2
c , q

1
b , q

2
b ,mw, cos θb, sin θb) ∈ R7 for input of the decoder.

The output of the model is an element in SE(3)480 which is not a vector space. A naive parame-
terization or SE(3) element (e.g. as a 12-dimensional vector) does not enforce the model outputs to
satisfy SE(3) constraints. To constraint the model output space to be SE(3)480, we first set all model
output sizes to be 480×6 = 2880, and add an additional layer Vec2SE3 at the end of every decoder.
Given a vector v = (v1, . . . , v6) ∈ R6, Vec2SE3 is defined as:

Vec2SE3 : v 7→

exp(
[

0 −v3 v2
v3 0 −v1
−v2 v1 0

]
)

v4

v5

v6

0 1

 ∈ SE(3).

We finally vectorize the first three rows of the SE(3) matrix, since the last row is constant at
(0, 0, 0, 1).

We use two-layer fully connected neural networks of 168 nodes for the EMMP with elu as its activa-
tion function. TC-VAE’s encoder includes a fully connected network and a temporal convolutional
network, and the decoder includes two fully connected networks for z and τ , a temporal convolu-
tional network, and a fully connected network. All four fully connected networks used in TC-VAE
are of two layers with size 512. The output sizes of fully connected networks for z and τ in the
decoder are 40 and 80 respectively. The two temporal convolutional layers in TC-VAE are both with
channel sizes (36, 72, 144) and kernel size 3. More details on the structure of TC-VAE are in [37].

21

Figure 17: Graphes of bottle angle vs. time. The pouring angle ωb is the angle between the bottle
axis ẑb and the xy-plane. The orange lines are pouring angles for the mw = 0.41 case, and the blue
lines are pouring angles for the mw = 0.20 case. It can be observed that the pouring angle decreases
as the mass of water increases.

All models in the experiments have a similar number of parameters, where EMMP contains (1.51×
106) parameters and TC-VAE contains (1.56× 106) parameters.

Task Parameters for Success Rate Measure: We sample five feasible trajectories for four task
parameters. Throughout the four task parameters, the cup’s position (q1c , q

2
c) = (−0.2, 0), the

bottle is initially in the y-direction from the cup, i.e., q1b = −0.2, the bottle is initially aligned
with the base frame, i.e., Rb = I . The rest parts, (q2b ,mw) for the four task parameters are
(0.35, 0.25), (0.45, 0.275), (0.40, 0.35), (0.55, 0.400). These task parameters are picked within the
robot’s workspace.

Obstacle Avoidance Algorithm: Given a task parameter τ and an obstacle, the obstacle avoidance
task is performed as follows: (i) we sample z from p(z), (ii) generate the bottle’s trajectories via
f(z, τ), (iii) check the collision between the bottle and the obstacle and pick collision-free trajecto-
ries, and (iv) solve the inverse kinematics problem of the robot and choose one that is feasible and
also collision-free.

We check collisions between the bottle and the obstacle and between the robot and the obstacle by
converting the meshes of the bottle and robot to point clouds, and parameterizing the obstacle as a
superquadric, which represents objects as a sign distance function [57]. As a sign distance function,
superquadrics have benefits in checking if a point is inside or outside them. We consider a trajectory
of a point cloud and a superquadric to be collision-free if none of the points in the point cloud gets
inside the superquadric at every timestep, and consider they collide otherwise.

D.3.3 Additional results

Water-Pouring Performance Comparison: The motions of the bottle pouring water near the cup
are highly dependent on the amount of water in the bottle. A bottle of small water needs to be tilted
more than a bottle that is almost full to pour the same amount of water into the cup. The amount of
tilting of the bottle can be captured in the angle between its axis and the table, which we denote as
the bottle angle.

Figure 18: f(z, τ) (blue) and f(z, h · τ) (orange), and [h · (f(z, τ), τ)]x (apricot). [h · (f(z, τ), τ)]x
and f(z, h · τ) should be overlapped if the trajectories are generated equivariantly with the task
parameters.

22

Figure 17 illustrates bottle angle mean and standard deviation graphs of demonstration trajectories
of the training dataset (Left), generated trajectories of EMMP + indep (Middle) and generated tra-
jectories of TC-VAE (Right) with mw = 200g (blue) and mw = 410g (orange). We randomly
augment 50 task parameters of validation and test datasets 20 times, and pick 1,000 task parameters
for mw = 200g and 1,000 task parameters for mw = 410g. We generate 1,000 trajectories for both
cases using z sampled from p(z).

Figure 17 Left shows that as the mass of water increases, the pouring angle increases, which means
the bottle is tilted less. It can be seen that the minimum mean angles of EMMP for mw = 200g
and mw = 410g (-1.6 degrees and -9.5 degrees) are very much alike that of the demonstration
trajectories (-1.5 degrees and -8.5 degrees). On the other hand, the minimum mean angles of TC-
VAE (5.6 degrees and -3.1 degrees) are very much distant from the demonstration trajectories’.

Equivariance Comparison: For a motion manifold primitive framework to be equivariant, decoded
trajectories must equivariantly transform as task parameters undergo a symmetry transformation.
We qualitatively compare the equivariance performance of random data augmentation method and
equivariant learning method by comparing TC-VAE and EMMP + indep.

Figure 15 Left visualizes two trajectories generated from τ and h · τ , where h is the rotation of the
bottle around the cup and itself, without translation. If the model is equivariant, the orange-colored
bottle and the apricot-colored bottle in the left upper corner should overlap. However, the condition
is not satisfied for TC-VAE, whereas the orange trajectory of EMMP is equivariantly transformed
with τ .

23

	Introduction
	MMPs: Motion Manifold Primitives
	MMP described via Manifold and Density
	Autoencoder-based Manifold and Density Learning
	Homeomorphic Manifold Assumption

	EMMPs: Equivariant Motion Manifold Primitives
	Invariant Encoder and Equivariant Decoder
	Construction of Invariant and Equivariant Mappings

	Experiments
	Goal-Reaching Task of a Planar Mobile Robot
	Water-Pouring Task of a Franka Panda Robot

	Limitations
	Conclusion
	Proofs of Propositions
	Related Works
	Movement Primitives
	Autoencoder-Based Manifold Learning
	Autoencoder-Based Motion Manifold Primitives

	Equivariant Models in Robotics

	Geometric Preliminaries
	Manifold Hypothesis
	Homeomorphism
	Group and Group Action
	Equivariance and Invariance

	Experimental and Implementation Details
	Evaluation Metrics
	Planar Mobile Robot Experiment
	Formulas and Proofs
	Experimental Details
	Additional results

	Water-Pouring Experiment
	Formulas and Proofs
	Experimental Details
	Additional results

