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Abstract: We propose SCALE, an approach for discovering and learning a di-
verse set of interpretable robot skills from a limited dataset. Rather than learning
a single skill which may fail to capture all the modes in the data, we first iden-
tify the different modes via causal reasoning and learn a separate skill for each of
them. Our main insight is to associate each mode with a unique set of causally
relevant context variables that are discovered by performing causal interventions
in simulation. This enables data partitioning based on the causal processes that
generated the data, and then compressed skills that ignore the irrelevant variables
can be trained. We model each robot skill as a Regional Compressed Option,
which extends the options framework by associating a causal process and its rele-
vant variables with the option. Modeled as the skill Data Generating Region, each
causal process is local in nature and hence valid over only a subset of the context
space. We demonstrate our approach for two representative manipulation tasks:
block stacking and peg-in-hole insertion under uncertainty. Our experiments show
that our approach yields diverse skills that are compact, robust to domain shifts,
and suitable for sim-to-real transfer.
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1 Introduction

We want robots to help and work alongside humans in their homes, kitchens, and restaurants. How-
ever, outside of structured environments, robots currently struggle at reliably performing even some
of the basic manipulation tasks that humans can do with ease. Why are humans so much better
despite the vast diversity of objects and their complex interactions that they potentially need to rea-
son about? First, humans usually know multiple ways to solve a task to be robust to failures and
variations in the environment. For example, if a tight jar doesn’t open with our bare hands, we may
use a piece of cloth to improve our grip. Second, humans excel at selectively attending [1] to only
a small part of the environment that is relevant to the task. Selective attention significantly reduces
the computational complexity of reasoning and allows us to handle complicated situations.

Prior works in manipulation skill learning have leveraged these two observations separately. Most
methods [2, 3, 4, 5, 6] learn skills by associating each skill with a sub-goal, where, the sub-goals are
hand-designed or learned from demonstrations. Once the sub-goals have been assigned, feature se-
lection [7, 8] and abstraction selection [9, 10] can be used to reduce the complexity of skill learning.
However, such approaches are quite sensitive to the sub-goals and struggle to distinguish between
different strategies to achieve the same goal. Our main insight is to associate a skill with not just a
sub-goal, but also with the variables that are causally relevant to it. For example, opening a jar with
our bare hands is a skill distinct from opening it with the help of a piece of cloth. Only hand and
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jar are relevant to the former, while the latter also relies on the properties of cloth. Hence, these two
strategies should be represented as two distinct skills even though they achieve the same goal.

Based on this principle, a manipulation task involving n variables can have up to 2n skills, based on
variable subsets being causally relevant. This is a very large space to search for skills and not all sub-
sets may correspond to a useful skill. Hence, we propose SCALE (Skills from CAusal LEarning), an
efficient approach for robot skill learning through causal feature selection in simulation.1 Instead of
naı̈vely generating data, in our approach, the robot interacts with the simulator by conducting causal
interventions. This elicits the causal features for completing a task under different settings, yielding
a diverse and compact library of skills. Our approach learns skills that are described by physically
meaningful properties without spurious variables that would be related to irrelevant objects.

Our contributions of this work are two-fold. First, we introduce SCALE, an algorithm for learning a
robot skill library from causal interventions in simulation. Second, we conduct a variety of experi-
ments that demonstrate that SCALE outperforms baseline approaches for two manipulation domains
of block stacking and sensorless peg insertion. As a part of these experiments, we also demonstrate
sim-to-real transfer of the skills learned by SCALE for block stacking.

2 Related Work

Robot skill learning. Building robots that can solve a wide variety of complex tasks is one of the
fundamental problems in robotics. A popular approach is to learn skills parameterized by the task
parameters as these can generalize over related tasks. Prior works [11, 12] show such parameter-
ized skills lie on a low dimensional piecewise-smooth manifold in the context space and identify
this structure using ISOMAP [13]. For higher-dimensional problems, it becomes infeasible to learn
directly in the full context space. One approach is to learn a library of simple parameterized skills
which can be composed to solve more complex tasks [14, 15, 16, 17]. Recent works [18, 19] pro-
pose a differentiable attention mechanism to learn context-specific attention, but these have been
evaluated only in relatively small domains. Popular methods for unsupervised skill discovery in-
clude graph-based methods [20, 21] that seek to build a graph of skills to cover the task space and
information-theoretic methods [22, 23, 6] that seek to maximize the diversity of skills.

Causality in robotics and reinforcement learning. Causality is the science of cause and ef-
fect [24, 25, 26]. Although the advantages of causal inference and discovery within the biomedical
sciences, economics, and genomics have been well-established [27, 28], the integration of causality
within machine learning is nascent [29, 30]. In robotics, causality-based approaches are partic-
ularly under-explored despite the potential advantages of greater reasoning and learning capabil-
ities [31], particularly through structure and transfer learning [32]. Most similar to our work is
that of CREST [33], an algorithm for identifying features for a robot policy through causal inter-
ventions. Our algorithm SCALE leverages the work of Lee et al. on CREST for determining the
causally relevant variables for each robot skill. Causality has also empowered learning the structure
of physical systems from videos [34] and explanations for robot failures [35]. Within reinforcement
learning more broadly, causality plays a central role for improving performance through greater
structure [36], learning latent factors in dynamics via causal curiosity [37], learning invariant poli-
cies [38], and learning a dynamics model that can yield state abstractions [39].

Intuitive physics. Please see App. B for a discussion of how SCALE relates to intuitive physics.

3 Preliminaries

The robot learns a set of skills K = {K1, . . . ,KK}, where each skill solves a distribution of manip-
ulation tasks. Each task is modeled as a manipulation MDP [40], M := (S,A,R, T, γ, τ), where
s ∈ S is the state space, a ∈ A is the action space, R is the reward function, T is the transition
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function, γ is the discount factor, and τ is additional task information. Tasks are solved if the final
reward Rf > RS , where RS is a solved threshold.

Options. Each skill K is a parameterized option [41, 10]. An optionO := (π, I, β) is defined using
three components: (1) the option control policy π(a|s); (2) an initiation set I = {Rf > RS |s} that
specifies where the final reward Rf solves the task when taking option O in state s using option
policy π; and (3) termination condition β(s) that specifies when the option concludes. For the
termination condition of this work, our skills execute open-loop with fixed duration.

Context. We define the context c ∈ C as a set of variables C that fully specify the manipulation
task. The context space C := S × τ generalizes the state space to include geometric and other
time-invariant task properties defined by τ . Each skill requires only a subset of the full context,
determined via causal feature selection (c.f., Sec. 5.1).

Contextual policies. We use a hierarchical approach [42] to decompose the option control policy
into an upper-level policy πu(θ|c) and a lower-level policy πl(a|s, θ). Given a context c ∈ C,
πu : c 7→ θ specifies the parameters θ for the lower-level policy πl. For example, πl could be a
Cartesian-space impedance controller, where θ specifies the sequence of waypoints to be followed
by the robot end-effector. For our work, we assume the lower-level controller πl is given, and we
learn the upper-level policy πuk. The lower-level controller is shared across the different skills.

Compressed Context and Feature Selection. SCALE learns compressed skills that only use
causally relevant context variables, as many will be unimportant. For our work, we disregard di-
mensions of the context space that are not chosen by causal feature selection (c.f., Sec. 5.1), leading
to a compressed context space ĉ that is obtained by selecting dimensions of the full context space
that correspond to the relevant variables of interest.

Causal Reasoning in Simulation. SCALE leverages a simulator with the key capability of inter-
acting with scenes through context interventions, which enables the causal learning in SCALE. For
this reason, we formalize the simulator as a causal reasoning engine W := (CS , T ), where CS is
the scene structural causal model (SCM) and T is the transition model. App. C provides greater
discussion of this formalization. This formalism addresses SCALE’s assumption that the simulator
is capable of answering questions to scene interventions, i.e., constructing new scenes with a change
to one variable to assess if there is a change (c.f., Sec. 5.1). These variables are required to be in-
tervenable within the simulator, but not all variables need to be intervenable. For instance, gravity
is a simulation variable, but for this work, it is not considered as a candidate for causal reasoning;
therefore, it does not need to be intervenable.

4 Skill Formulation

4.1 Regional Compressed Option

In our work, we formalize each robot skill K as a Regional Compressed Option (RCO), where
K := (πk,Pre, β,D) and πk is the option control policy, Pre is the precondition, β is the termination
condition, and D is the data generating region (DGR). In this model, the policy πk(a|ĉAk

) uses
compressed context ĉAk

, which is obtained by selecting dimensions of the context space according
to the relevant variable set Ak ⊆ C (c.f., Sec. 5.1). The learned, upper-level policy is πuk(θ|ĉAk

).
The precondition Pre(c) = P (Rf > RS |c) is a probabilistic initiation set [43].

4.2 Data Generating Region

Our goal is to learn an upper-level policy πu : c → θ, i.e., a mapping that generates the correct
parameters θ for solving the task from any initial context c. We refer to this unknown mapping as
a data generating process or causal process. Instead of trying to learn this data generating process
directly, which may be difficult when many variables are involved, our main insight is to model it as
a mixture of multiple causal processes. Each such process is likely to have a smaller set of relevant
variables and thus would be easier to learn. For example, consider the task of opening jars, where

3



Figure 1: The figure shows an overview of the proposed framework applied to a block stacking task. The robot
is given a context space, control policy, task simulator, and task reward. The robot samples a set of contexts
to create task instances, which it subsequently solves for that instance. The robot then applies interventions
on the contexts to identify skill-relevant parameters. Contexts with the same set of policy-relevant parameters
come from the same causal model and are hence combined to form data generation regions. Here, we have
two causal models: C1 with relevant variables from the yellow, blue, and red blocks and DGR D1; and C2 with
relevant variables from the yellow and blue blocks and DGR D2. Each region is then used to learn a separate
skill policy with the corresponding set of policy-relevant parameters. For each skill, we finally learn a set of
preconditions within the context space to determine where the skill can ultimately be applied. The pairs of
policies and preconditions are then combined to create a skill library for completing the given task.

the jar could be tight or not tight. We can model the data generating process for this task as a
combination of two simpler causal processes: C1 which uses only your hand, and C2 which uses a
piece of cloth along with your hand. However, these causal processes don’t hold for all jar opening
tasks. C1 holds when the jar is not tight, while C2 holds when the jar is tight. Thus, every causal
process is valid only in a subset of the context space. We refer to this subspace D ⊆ C as the data
generating region (DGR) of the causal process. Here, D1 := {not tight} and D2 := {tight}. The
robot learns a separate skill for every such causal process. Furthermore, each skill should be trained
by only using data from inside its DGR; data lying outside the DGR are generated by a different
causal process and is hence out-of-distribution. The DGR uses compressed context ĉDk

obtained
from relevant variable set Dk ⊆ C (c.f., Sec. 5.1).

5 Skill Discovery through Causal Reasoning in Simulation

The SCALE algorithm (Fig. 1) comprises two steps: 1) skill dataset generation and 2) skill training.
These steps are described in Sec. 5.1 and 5.2, respectively. Algorithm descriptions are in App. E.

5.1 Batch Data Generation

First, the robot interacts with the simulatorW to collect skill training data. This is done by collecting
a batch datasetDB . The robot samples n random scenes represented by ci and attempts to determine
the lower-level controller parameters θi that solve the specific task. In practice, we use Relative
Entropy Policy Search (REPS) [44], but any suitable planner, trajectory optimizer, or reinforcement
learning algorithm would suffice. Unsolved tasks are disregarded and not collected in DB .

Causal feature selection. For successfully solved scenes, the relevant variables for the policy Ai

and DGR Di are selected using the CREST algorithm [33]. CREST conducts feature selection
through causal interventions. Intuitively, a variable is causal if, for all other variables held equal,
interventions upon this variable induce a change in the final obtained rewardRf . A spurious variable
has no effect on the reward and thus can safely be ignored. To summarize CREST, the process begins
by solving a scene, which we refer to as the non-intervened scene. For each context variable, a new
value is randomly sampled from a distribution (in the CREST work, this distribution is the context
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variable’s possible values). A scene is constructed with that intervened value, with all other context
variables holding the same, non-intervened value. Then, the robot executes the solution to the non-
intervened scene in this intervened scene to obtain an intervened reward. This process repeats a given
number of times, and a statistical test is assessed to determine how often the intervened rewards
differ from the non-intervened reward. If the intervened rewards are frequently no different than the
non-intervened reward, the context variable is considered spurious (and causally relevant otherwise).

In this work, CREST performs interventions I over a local (e.g., 10%) fraction of context space
C to yield Ai. Similarly, Di is obtained through interventions over the entire space C. Finally,
the batch dataset is appended by the dataset point (ci, θi,Ai,Di). Note that CREST is not a strict
requirement of SCALE. In principle, SCALE requires only a determination of which variables are
causally relevant, which CREST provides. Other approaches, such as using causal discovery, are
also possible. An important consideration of choice of approach is whether the context space is
disentangled. In our work, we assume a disentangled context space, and so the variable-by-variable
intervention process of CREST (which also assumes disentangled variables) will suffice. If the
context space is entangled, then causal disentanglement approaches could first be used.

Splitting batch data into skill data. After dataset collection, batch datasetDB is split into different
skill datasets according to the relevent variable sets. In this work, we assign highly occurring batch
data that contain the same relevant variables A into the same skill dataset Dk, while also taking the
union over all associated D. This assumption may not always hold, but is sufficient for the tasks we
examine in this work. More sophisticated ways of splitting the batch dataset is left for future work.

5.2 Skill Training

The second phase of SCALE trains each skill Kk using Dk. Each skill has relevant variable sets Ak

and Dk with task solution datapoints (c, θ).

DGR. The DGR D is first trained on ĉDk
using Dk. For this work, we use a one-class SVM to model

the DGR, but in principle, any one-class classification algorithm would suffice.

Policy. The policy is trained next. The skill dataset contexts are filtered through the DGR D to
obtain inliers c+ for policy training data. This ensures policy training data are consistent with the
underlying causal process. Then, the policy πuk(θ|ĉAk

) is trained using ĉ+Ak
(using Ak) and the

corresponding parameters θ+. For our work, policies are learned using regression, but reinforcement
learning could also be used [33]. With πuk learned, the final skill policy πk(a|ĉAk

) is determined.

Preconditions. The preconditions Pre are learned last through policy evaluation. Using the simula-
torW , contexts c are re-sampled and evaluated with policy πk to obtain rewardsRf . This evaluation
data (c,Rf ) is used to train a precondition classifier to obtain Pre. For our work, we use a nonlinear
SVM classifier that has probability estimates.

6 Experimental Results

We conduct skill learning experiments with SCALE for block stacking and peg-in-hole insertion
tasks with the Franka Emika Panda robot (Fig. 2). Both tasks are emblematic of high-precision con-
trol that is desirable in many industrial applications [45]. We conduct our experiments in NVIDIA
IsaacGym [46, 47], a high-fidelity physics simulator that also serves as our causal reasoning engine
W . We use a custom library that implements the scene SCM CS to facilitate scene creation and
interventions. The forward simulation of physics provides the transition model T .

Baselines. We compare SCALE to baseline approaches with monolithic policies (without any skills)
for either the full-dimensional context space (“monopolicy”) or a reduced context space obtained by
using the most commonly occurring CREST result (“crest-monopolicy”). The CREST monopolicy
represents naı̈vely using CREST, ignoring that CREST provides locally different results within the
underlying data (a property that SCALE leverages).
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(a) (b) (c) (d) (e)

Figure 2: SCALE discovers skills for the Franka Emika Panda robot using causal learning in simulation for two
manipulation tasks: (a) block stacking and (b) peg-in-hole insertion. In addition to skill learning experiments,
we also show how SCALE can yield skills (c) for sim-to-real transfer (App. I); (d) for generalization in down-
stream tasks, such as stacking a block tower (App. J); and (e) for robustness to task domain shifts (App. L).

Table 1: Skills Kblocks that were discovered for the block stacking task. A and D are the variables used for
the skill’s policy and DGR, respectively. Data is the quantity of data used for each skill (from a batch dataset
of 585 samples, 340 samples were used to train skills). Tsk. Sv. %, shown for both scale-lin and scale-nonlin,
is the rate of task solves over the entire context space using only that skill.

Skill Data Tsk. Sv. %, Lin Tsk. Sv. %, Nonlin.

K1
A: {xw1 , yw1 , xw2 , yw2 }
D: {xw1 , yw1 , xw2 , yw2 , h2} 53 (9.06%) 65.36% (200) 18.36% (56)

K2
A: {xw1 , yw1 , xw2 , yw2 , h2}
D: {xw1 , yw1 , h1, x

w
2 , y

w
2 , h2} 272 (46.50%) 78.76% (241) 55.88% (171)

K3
A: {xw1 , yw1 , ψ1, x

w
2 , y

w
2 , h2}

D: {xw1 , yw1 , ψ1, x
w
2 , y

w
2 , h2} 15 (2.56%) 34.31% (105) 1.31% (4)

6.1 Block Stacking

Task representation. In the block stacking task, the robot starts with a source block (B1) grasped,
and it learns to place it on top of a target block (B2). To do this, the robot uses a controller πl that
defines the trajectory for the robot end-effector to traverse via impedance control. This trajectory is
parameterized by θb = [ θ∆x, θ∆y, θ∆zu θ∆zd ]

T ∈ R4, which specify waypoints the robot follows
sequentially. Specifically, these parameters characterize a trajectory where the robot lifts the source
block vertically, moves horizontally, descends vertically, and releases the block.

For this task, the context variables CB are {CB1
, . . . ,CBNB

, hπ}, which is the union of context
variables for each of NB = 5 blocks plus the table height hπ upon which the blocks are placed.
The context variables for each block b are {xwb , ywb , ψb, hb, Rb, Gb, Bb}, yielding a 36-dimensional
context space for this problem. Here, xwb and ywb are the world x- and y-positions of the block, and
the block’s orientation is represented by a rotation angle ψb around the block’s vertical axis (z). The
z-dimension (height) of the block is hi. Additional experimental details are available in App. H.

Skill learning results: variable selection. From a batch dataset of 585 samples, SCALE found the
skill library Kblocks = {K1,K2,K3} that is shown in Tab. 1 that were learned using 340 samples
of the dataset. These 340 samples were selected for being the most commonly occurring within the
dataset, based on a heuristic threshold. Even though there are five blocks and 36 possible variables,
the skills generally consisted of a much smaller subset of variables, relating to the geometry of the
source and target blocks. Note that K2’s relevant variables for the policy, AK2

, are consistent with
earlier work by Lee et al. [33] for this domain. This is generally considered to be the “ground truth”
variable result for unobstructed block motion in this case. Skill K1 could be seen as a version of K2

when h2 is not needed. Rarely, the source block’s rotation ψ1 become important (e.g., the source
block’s final pose was not fully stable when stacked on the target block), and thus a skill emerges
with this variable (K3). Variables for neither block color nor table height are observed as expected.
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Table 2: Task evaluation results for using the skill library Kblocks for the block stacking task. Ctrl. is the
approach control (skills or one monolithic policy). Fn. Cl. is the approach’s function class. Linear approaches
use Bayesian ridge regression, whereas nonlinear methods consist of a multilayer perceptron with a 16x16x16
architecture using ReLU activations. Task Solve % is the rate of task solves over the entire context space using
the approach. Methods within ±2% (the stochasticity of the simulator) of the best approach are bold. |A| is
the quantity of input variables used for the approach’s policy. Data is the amount of training data used for the
approach. A ground truth policy is also shown, using all context variables and additional domain knowledge.

Approach Ctrl. Fn. Cl. Task Solve % |A| Data
scale-lin (ours) 3 skills Linear 90.49% (276) 4/5/6 340
monopolicy-lin-all 1 policy Linear 85.95% (263) 36 585
crest-monopolicy-lin-all 1 policy Linear 89.87% (275) 5 585
scale-nonlin (ours) 3 skills Nonlinear 63.40% (194) 4/5/6 340
monopolicy-nonlin-all 1 policy Nonlinear 10.13% (31) 36 585
crest-monopolicy-nonlin-all 1 policy Nonlinear 60.78% (186) 5 585
ground-truth-policy 1 policy Nonlinear 95.75% (293) * –

Skill learning results: task evaluation. We evaluate the skill library Kblocks over the entire task
distribution and show the results in Tab. 2. That is, for each context sample, the robot evaluates
each skill’s precondition and selects the skill with the highest probability of success. The suffix
“-all” denotes that the entire batch dataset is used for the approach. For both function classes,
SCALE yields an approach that outperforms full-dimensional policies and is generally comparable
to CREST-reduced policies. However, the CREST-reduced policies only learn one approach to
solving the task, whereas SCALE learns three. The overall best performing approach was scale-
lin (90.49%) with similar performance to the CREST baseline. Performance across all nonlinear
approaches was generally lower. App. H details the SCALE skill selection and further ablations.

Sim-to-real experiment. We transfer the skills learned by SCALE and our baselines to a real Franka
Panda robot without any fine-tuning. As discussed in App. I, SCALE outperforms the baselines.

6.2 Sensorless Peg-in-Hole Insertion

Our second domain is peg-in-hole insertion under sensing uncertainty. It requires the robot to insert
a cuboidal peg of cross-section 1 cm × 1 cm into a cuboidal hole of cross-section 1.3 cm × 1.3
cm. The robot gets a noisy initial position of the hole with the noise sampled from a Gaussian
distribution N (0, 0.32 cm2). No further sensory observations are available. Due to this uncertainty,
a naı̈ve strategy of directly trying to push the peg down at the observed location of the hole achieves a
success rate of only 34%. To address this, the robot should take uncertainty reducing [48] actions by
initiating contact with the environment (e.g., a fixture next to the hole). Our goal in this experiment
is to learn such skills autonomously.

Task representation. Each assembly task has 4 axis-aligned cuboidal fixtures (i.e., walls) of fixed
dimensions around the hole. The 8-dimensional context variables CP are {x1, y1, . . . , x4, y4}, con-
taining the (x, y) coordinates of these fixtures with respect to the hole. The positions are different in
every task, but it is always possible for the robot to localize against any of the walls to complete the
task. We use a 6-parameter policy space: three (∆x,∆y,∆z) actions executed in sequence in the
robot’s end-effector frame. In every policy, ∆z’s are designed to move the peg down while ∆x and
∆y are parameters that are learnt using RL. Additional experimental details are available in App. K.

Skill learning results: variable selection. Table 3 enumerates the skills Kpeg = {K1, . . . ,K5}
discovered by SCALE. Skills K2−5 localize against one of the 4 walls. For each such skill, only
the wall being used for localization is relevant to the skill and the other walls can be ignored. Con-
sequently, the set of relevant variables for these skills contains only the distance to the wall that it
localizes against. For the linear case, all of these skills except forK3 have high success rate, whereas
success rates are slightly lower for the nonlinear approach. Interestingly, SCALE also discovers a
skill K1 that has an empty set of relevant variables. For more discussion of this skill, see App. K.
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Table 3: Skills Kpeg that were discovered for the peg-in-hole insertion task. Columns are the same as in Tab. 1,
except Data represents which 168 samples were used to train skills (from a batch dataset of 210 samples).

Skill A D Data Task Solve %, Lin Task Solve %, Nonlin.
K1 {} {x1, y2, y3, x4} 56 (26.67%) 64.84% (166) 61.72% (158)
K2 {x4} {x4} 25 (11.90%) 97.66% (250) 84.38% (216)
K3 {x1} {x1} 27 (12.86%) 44.53% (114) 84.77% (217)
K4 {y3} {y3} 28 (13.33%) 94.14% (241) 82.81% (212)
K5 {y2} {y2} 32 (15.24%) 98.44% (252) 79.69% (204)

Table 4: Task evaluation results for using the skill library Kpeg for peg insertion (columns in Tab. 2).
Approach Ctrl. Fn. Cl. Task Solve % |A| Data
scale-lin (ours) 5 skills Linear 96.48% (247) 0/1/1/1/1 168
monopolicy-lin-all 1 policy Linear 62.50% (160) 8 210
crest-monopolicy-lin-all 1 policy Linear 62.89% (161) 1 210
scale-nonlin (ours) 5 skills Nonlinear 88.67% (227) 0/1/1/1/1 168
monopolicy-nonlin-all 1 policy Nonlinear 12.89% (33) 8 210
crest-monopolicy-nonlin-all 1 policy Nonlinear 55.47% (142) 1 210

Skill learning results: task evaluation. Table 4 presents the task evaluation of the skill library
Kpeg for 256 randomly sampled tasks. For both linear and nonlinear cases, SCALE outperforms
both baselines. The low success of monopolicy-nonlin-all is likely due to insufficient data owing to
a larger network. The most common CREST result was variable x4 (21.90%), so this was used for
the CREST baselines. However, it only localizes against one wall. The improvement of SCALE over
the CREST baselines implies SCALE skills benefit from the DGRs through greater quality training
data, whereas the CREST approaches use the entire dataset despite most samples having a differing
CREST result than x4. For details of SCALE skill selection and further ablations, see App. K.

Domain shift experiment. To evaluate the out-of-distribution generalization capabilities of SCALE,
we evaluate the skills on a test distribution that is significantly harder than the training distribution.
All approaches see a degradation in performance, but ours is more robust. See App. L for details.

7 Conclusion

We present SCALE, an approach for discovery of compact, diverse robot manipulation skills from
causal interventions in simulation. These skills arise from the skill DGR: a region that captures
the underlying data generating process. We demonstrate the advantages of skill libraries discovered
with SCALE for two simulation domains as well as on a real robot system.

Limitations and future work. SCALE assumes the robot has access to a causal reasoning engine.
We provide this via simulation and scene structural causal models, but these models could be learned
via causal discovery. SCALE primarily learns from batch dataset collection; active learning of skills
would reveal useful behaviors that are statistically uncommon in the batch setting. Lastly, SCALE
assumes that the context variables are defined, intervenable, and disentangled. For tasks and domains
where these assumptions do not currently hold, future work in adjacent fields may ultimately provide
a path forward. Specifically, causal representation learning [29] — learning high-level intervenable
variables from low-level observations — could construct a state representation that SCALE can use,
and, if a representation is available but entangled, causal disentanglement could be used.
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of Robot Skills for Task and Motion Planning. The International Journal of Robotics Research,
40(6-7):866–894, 2021.
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[17] R. Pahič, Z. Lončarević, A. Gams, and A. Ude. Robot Skill Learning in Latent Space of a
Deep Autoencoder Neural Network. Robotics and Autonomous Systems, 135:103690, 2021.

9



[18] K. Khetarpal, M. Klissarov, M. Chevalier-Boisvert, P.-L. Bacon, and D. Precup. Options of
Interest: Temporal Abstraction with Interest Functions. Proceedings of the AAAI Conference
on Artificial Intelligence, 34(4):4444–4451, 2020.

[19] M. Abdulhai, D.-K. Kim, M. Riemer, M. Liu, G. Tesauro, and J. P. How. Context-Specific Rep-
resentation Abstraction for Deep Option Learning. arXiv preprint arXiv:2109.09876, 2021.

[20] A. Bagaria and G. Konidaris. Option Discovery using Deep Skill Chaining. International
Conference on Learning Representations (ICLR), 2020.

[21] A. Bagaria, J. K. Senthil, and G. Konidaris. Skill Discovery for Exploration and Planning using
Deep Skill Graphs. International Conference on Machine Learning (ICML), 2021.

[22] B. Eysenbach, A. Gupta, J. Ibarz, and S. Levine. Diversity is All You Need: Learning Skills
without a Reward Function. International Conference on Learning Representations (ICLR),
2018.

[23] A. Sharma, S. S. Gu, S. Levine, V. Kumar, and K. Hausman. Dynamics-Aware Unsupervised
Discovery of Skills. International Conference on Learning Representations (ICLR), 2020.

[24] P. Spirtes, C. N. Glymour, R. Scheines, and D. Heckerman. Causation, Prediction, and Search.
MIT Press, 2000.

[25] J. Pearl. Causality: Models, Reasoning, and Inference. Cambridge University Press, 2nd
edition, 2009.

[26] J. Peters, D. Janzing, and B. Schölkopf. Elements of Causal Inference: Foundations and
Learning Algorithms. MIT Press, 2017.

[27] G. W. Imbens and D. B. Rubin. Causal Inference in Statistics, Social, and Biomedical Sciences.
Cambridge University Press, 2015.

[28] C. Glymour, K. Zhang, and P. Spirtes. Review of Causal Discovery Methods based on Graph-
ical Models. Frontiers in Genetics, 10:524, 2019.

[29] B. Schölkopf, F. Locatello, S. Bauer, N. R. Ke, N. Kalchbrenner, A. Goyal, and Y. Bengio.
Towards Causal Representation Learning. Proceedings of the IEEE, 109(5):612–634, 2021.

[30] J. Kaddour, A. Lynch, Q. Liu, M. J. Kusner, and R. Silva. Causal Machine Learning: A Survey
and Open Problems. arXiv preprint arXiv:2206.15475, 2022.

[31] K. C. Stocking, A. Gopnik, and C. Tomlin. From Robot Learning to Robot Understanding:
Leveraging Causal Graphical Models for Robotics. Conference on Robot Learning (CoRL),
2022.
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A SCALE and Appendices Overview

Fundamentally, SCALE is a causal learning algorithm for discovering compact, diverse skills
through interventions in simulation. Figure 3 provides an overview of the approach.

Structure of appendices. These appendices are structured as follows. Appendix B describes how
SCALE connects to related work in intuitive physics. Appendix C provides greater details into the
formalization of the simulator and its role as a causal reasoning engine. Appendix E formalizes the
SCALE algorithm using nomenclature introduced in App. D. A discussion of higher-dimensional
context spaces and SCALE is then provided in App. F. Next, App. G provides a toy experiment that
is designed to convey greater intuition and visualization of the mechanisms that underlie SCALE.
Appendix H presents additional experimental details of the block stacking experiment presented in
Sec. 6.1. Following this, Apps. I and J provides two additional experiments in the block stacking do-
main: a sim-to-real transfer experiment and a downstream task evaluation experiment, respectively.
The next two appendices concern the peg-in-hole insertion domain. Appendix K details additional
experimental details first presented in Sec. 6.2, and App. L presents an additional experiment that
shows the robustness of SCALE under a task domain shift. Lastly, Appendix M contains a primer
on causality for readers who are new to this area of research.

Figure 3: In SCALE, the robot discovers skills in simulation using causal learning. (a) The simula-
tion is used to solve task instances and conduct interventions to determine causally relevant context
variables. (b) Simulation data are used to train a library of skills, (c) which are suitable for sim-to-
real transfer learning. (d) Each skill that is learned is parameterized by the relevant variables selected
in simulation. Here, red context variables are unnecessary for the skill policy and can be safely ig-
nored. The boundary encircling the policy represents the skill DGR and precondition, which are
also learned.

B Related Work for Intuitive Physics

This appendix describes the connections between SCALE and the intuitive physics literature. Intu-
itive physics is the ability to approximately predict and model the physical world without explicit
understanding of the underlying dynamics [49]. Literature in cognitive psychology has suggested
that humans develop mental intuitive physics models to support fast prediction and understanding of
complex physical scenes which enables physical reasoning [50]. Computational learning of intuitive
physics have been successful, enabling reinforcement learning and planning applications owing to
the models ability for forward prediction [51, 52, 53]. In our work, our causal reasoning engine can
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be viewed as an internal model that uses interventions to elicit the physical mechanisms by which
the data arise.

C Simulation as a Causal Reasoning Engine

(a) (b)

Figure 4: Illustrations of the scene structural causal model used in the simulator W . (a) From
context space C and robot interventions I, the scene SCM CS generates a context vector c that
represents a particular scene that defines objects and their properties. (b) In this block example, CS is
defined using scene variables Ψ := C∪zb and context variables C := {xb, hb, hπ}, where xb is block
x-position, hb is block height, hπ is table height upon which the block rests, and zb := 1

2hb + hπ is
block z-position. Normally, values of C are sampled from context space C, but the robot performs
an intervention I = {do(hb = 0.6)} to force the value of hb to be 0.6. As a result, the dependent
variable zb is determined as 0.7 using this intervened value. Lastly, the scene is constructed and
represented as context vector c = [0.1, 0.6, 0.4]T.

This appendix provides greater discussion of the simulator formalization used by SCALE. The sim-
ulator model,W := (CS , T ), is formalized as follows:

1. a scene structural causal model CS (Fig. 4) that, given context space C and interventions I,
instantiates a scene that can be represented as a context vector, c ∈ C;

2. the transition model T that captures the domain forward dynamics as the robot interacts
with the world through θ starting from the scene initialized from CS .

A structural causal model (SCM) [25, 26] can be represented as a directed acyclic graph that is driven
by exogenous variables (functional inputs of the graph) that produces the solution for all variables
within the graph. These two components of the simulator capture the spatial structure inherent to
the scene itself (CS), and the spatiotemporal structure of the robot interacting with the world (T ).
The simulator modelW , including the scene SCM and transition function, is provided for the robot
to use. In principle, the scene SCM could be learned via causal representation learning [29], e.g., a
world models approach that admits causal interventions.

The scene SCM CS is defined by structural equations with scene variables Ψ, where C ⊆ Ψ. In the
graph induced by CS , the scene variables are the nodes, and context variables C are the root nodes
and exogenous variables (functional inputs) of the SCM. The value of the context variables is given
by interventions I = {do(Ci = ci)} if specified, or otherwise sampled from the context space C.
The robot only conducts interventions with respect to C that would yield a steady-state solution and
are physically realizable, excluding physically invalid scenes (e.g., object penetration).

The transition model T is the same as typical simulators. The forward dynamics are simulated
through the initial state s0, obtained from the scene created by CS , and θ, the inputs to the low-level
controller πl. With these inputs, the system temporally evolves as usual until the end of the episode,
where reward Rf is obtained and compared to a threshold RS to determine if the task was solved.

D Nomenclature

Table 5 summarizes the nomenclature used in this paper and, in particular, the SCALE algorithm
(c.f., App. E). Note the use of italics and bold type to disambiguate certain symbols. For example,
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Table 5: Table of nomenclature.
Symbol Meaning
X set of d random variables,

i.e., X := {X1, . . . , Xd}
X space of X,

i.e., X := [X1, . . . ,Xd]
T

x vector instantiation of X
i.e., x := [x1 ∈ X1 ⊆ X1, . . . , xd ∈ Xd ⊆ Xd]

T

K set of k robot skills,
i.e., K := {K1, . . . ,Kk}

D dataset containing AX ∈ Rm×n samples from set A with size n and BY ∈
Rm×p labels from set B with size p

X is a set of random variables, but X refers to a dataset matrix. The notation for a variable and its
instantiation as a scalar may also be overloaded depending on the context.

E SCALE Algorithm

As explained in Sec. 5, the SCALE algorithm (Alg. 1) describes how the skills are learned through
batch dataset collection and skill training. The procedure for batch dataset collection used by
SCALE (SKILLTRAINDATA) is described in Alg. 2.

Note that the number of skills is not a hyperparameter of the SCALE algorithm. Rather, the skill
quantity emerges from SPLITINTOSKILLDATASETS from groups of highly-occurring CREST re-
sults, where each group becomes the dataset for a particular skill.

F SCALE and Higher-Dimensional Context Spaces

The SCALE algorithm scales linearly with the dimensionality of the context space, i.e., O(|C|), due
to the necessity of performing interventions on each context variable. In the experiments examined
in this work, the dimensionality of the context space was 36 and 8 for the block stacking and peg
insertion domains, respectively. For other applications where the context space is very large, heuris-
tics can be incorporated to first downselect the context space into a smaller candidate space that can
be provided to SCALE. Example heuristics could include a distance metric (objects closer to the
goal may be more likely to be relevant than those further away) or using other approaches such as
meta-level priors [54].

G Block Stacking Intuitive Example

To provide greater intuition for SCALE and the causal skill learning problem, we present the Height-
Height experiment (Fig. 5): a simple example in the block stacking domain that can be easily visu-
alized.

Task and policy description. The Height-Height experiment contains 3 blocks: 1) a source block;
2) a target block; and 3) an obstructing block between the source and target block. As in Sec. 6.1,
the task is to place the source block on top of the target block. The same controller is used as in
Sec. 6.1, which is parameterized by θ ∈ R4. Specifically, each parameter of the controller is defined
as follows:

1. θ∆x: the distance the source block is moved along the world coordinate frame’s +x-axis
once it is picked up.

2. θ∆y: the distance the source block is moved along the world coordinate frame’s +y-axis
once it is picked up.
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Algorithm 1: SCALE: SKILLS FROM CAUSAL LEARNING

Input: causal reasoning engineW , context space C, controller πl, reward solved threshold RS ,
number of samples n, skill policy function fπ , number of evaluations m, skill timestep
Tf

Initialize: skills K← ∅
// Collect training data
(D1, . . . ,Dk)← SKILLTRAINDATA(W, C, πl, n)
// Train skills
for j = 1 to k do

(CX, θY,A,D)← Dj

// Train DGR
DX← REDUCEDIMS(CX,D)
D ← TRAINDGR(DX)
// Train Policy
AX← REDUCEDIMS(CX,A)

(AX+, θY+)← DGRINLIERS(D ,AX,DX, θY)
πu ← TRAINPOLICY(fπ,

AX+, θY+)
π ← πlπu
// Train Preconditions

(CXe,
RY e)← EVALUATEPOLICY(W, C, π,m)

Pre← TRAINPRECONDITION(CXe,
RY e, RS)

// Set Termination Conditions
β ← Tf
// Construct Skill

K +← (π,Pre, β,D)
end

Result: learned skills K

3. θ∆zu : the distance the source block is lifted (moved along the world coordinate frame’s
+z-axis) during the pick-up motion.

4. θ∆zd : the distance the source block descends (moved along the world coordinate frame’s
−z-axis) during the set-down motion.

The controller behaves as follows:

1. Move robot end-effector to source block and grasp it.

2. Lift up the source block according to θ∆zu .

3. Move the source block in the x-y plane according policy parameters θ∆x and θ∆y .

4. Set down the source block according to θ∆zd .

5. Ungrasp the source block.

The context space of this experiment is just 2 variables, ht and ho, facilitating 2-dimensional visual-
izations. For greater clarity, we refer to block properties by whether they belong to the target block
(t) or the obstructing block (o), instead of their index (as in Sec. 6.1). For this experiment, only
linear approaches are considered.

Skill learning results. The SCALE results for the Height-Height experiment are shown in Tab. 6
and Fig. 6. The dataset size for skill learning was 569 samples, from an original size of 581. The
remaining 12 samples consisted of CREST results that occurred rarely (2.07%), and thus they were
not used for skill learning. Additionally, Fig. 7 visualizes the policy parameters of the dataset.
Two primary behaviors were learned: free motion (Kfree), and obstructed motion (Kobstr). These
behaviors emerge because of the causal relationships between context variables.
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Algorithm 2: SKILLTRAINDATA

Input: causal reasoning engineW , context space C, controller πl, reward solved threshold RS ,
number of samples n, local region fraction f , minimum dataset size d

Initialize: batch dataset DB ← ∅
// Collect training data
for i = 1 to n do

c← SAMPLEVALIDSCENE(W, C)
(θ,Rf )← TRYTOSOLVETASK(W, c, πl)
TaskSolved← Rf > RS

if TaskSolved then
A← CREST(W, c, πl, θ, Rf , fC)
D← CREST(W, c, πl, θ, Rf , C)
DB

+← (c, θ,A,D)
end

end
// Separate into k skill datasets
(D1, . . . ,Dk)← SPLITINTOSKILLDATASETS(DB , d)

Result: skill training data (D1, . . . ,Dk)

Figure 5: The Height-Height experiment is an intuitive example for SCALE in the block stacking
domain. In this experiment, only two context variables can vary: the height (z-dimension) of the
obstructing block (ho) and the height of the target block (ht). All others variables (e.g., features of
the source block) do not change throughout this experiment.

When the obstructing block is shorter than the target block (i.e., ht > ho), then the obstructing block
height can safely be ignored in the robot action (thus, ho ⊈ A for Kfree). This is reflected by the
values of θ∆zu and θ∆zd in Fig. 7. In the region corresponding to Kfree, θ∆zu varies linearly with
respect to the target block height, but not with the obstructing block height. Thus, θ∆zd is generally
0. The result is that the robot tends to lift the block to a value that depends on the target block height,
and no set-down motion (θ∆zd ) is needed.

However, when the obstructing block is taller than the target block (i.e., ht < ho), the obstructing
block’s geometry interferes with the robot’s motion, and the robot must take this into account when
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taking action. Specifically, the robot must first lift the source block over the obstructing block. After
it moves laterally, the robot must descend to set the source block down; dropping the block would
typically lead to inadequate reward to solve the task. Because both the heights of these blocks are
needed to perform this action, {ht, ho} ⊆ A for Kobstr. In Fig. 7, the effect of ho appears in
the θ∆zu parameter values, where the variation in the Kobstr region arises because of needing to lift
above the obstructing block height, ho (and thus, this parameter no longer depends on ht). However,
for θ∆zd , both ht and ho are needed, as the distances the robot descends through θ∆zd arises from
the difference between ht and ho. Thus, the gradient here shows components for both ht and ho.

These two skills encode the two distinct data generating processes within this context space. These
processes — the reason why the data are generated a certain way — fundamentally depend on
whether the obstructing block is shorter or taller than the target block. Whether a condition holds
for a given context requires the value of both of the blocks heights, so both block heights are needed
to define each skill’s data generating region (i.e., {ht, ho} ⊆ D).

Note that neither skill can robustly solve the entire task space (55.63% for Kfree and 57.50% for
Kobstr). However, when using the entire library KHH = {Kfree,Kobstr} (Tab. 7), the success rate
becomes 100.00%, with each skill being selected at approximately 50% chance (49.38% for Kfree,
and 50.62% for Kobstr). This is expected because the relationship ht > ho holds for half of the
context space and Kfree should be used, whereas ht < ho (Kobstr) holds for the other half.

Table 6: Skills KHH that were discovered for the Height-Height experiment. A and D are the
variables used for the skill’s policy and DGR, respectively. Data is the quantity of data used for each
skill (from a batch dataset of 581 samples, 569 samples were used to train skills). These samples
are used to train a linear policy (Bayesian ridge regression) using the features from variables in A.
Task Solve % is the rate of task solves over the entire context space using only that skill.

Skill A D Data Task Solve %
Kfree {ht} {ht, ho} 253 (43.55%) 55.63% (178)
Kobstr {ht, ho} {ht, ho} 316 (54.39%) 57.50% (184)

Baseline comparisons. In addition to scale-lin, Tab. 7 shows comparisons against several baselines.
The “monopolicy” baselines are monolithic policies (without skills). The “-sk” and “-all” suffixes
denote whether the monolithic policy uses the same data as the SCALE library (“-sk”, 569 samples)
or the entire batch dataset (“-all”, 581 samples). Given the similar amount of data, it is unsurprising
that monopolicy-lin-sk and monopolicy-lin-all are essentially the same up to the stochasticity of the
simulator (±2%). Note that, unlike in Sec. 6.1 and Sec. 6.2, CREST monopolicy baselines are not
examined in this experiment; they are functionally equivalent to the monopolicy approaches because
the most common CREST result is {ht, ho}, which is the same as the entire context space used for
the monopolicy baselines.

As shown in Tab. 7, the skill library obtained by SCALE vastly outperforms the baselines, provid-
ing task evaluation performance similar to that of a ground truth policy. This outcome is possible
because SCALE learns underlying regions of similar causal structure within the data, whereas mono-
lithic policies ignore such structure. As shown in Fig. 7c–7d, this domain is nonlinear, but can be
represented by two smaller linear regions (ht > ho and ht < ho). Learning to regress to both re-
gions with a monolithic linear policy is not possible, but SCALE can solve this domain with separate
linear skills, one per region.

Summary. Our approach for SCALE — learning skills that encode distinct causal processes —
empowers the robot with a diversity of specialized behaviors to use, depending on the context.
Generalization of the context space can be achieved then through the composition of these behaviors,
rather than attempting to learn a monolithic skill or policy that can capture the entire variation. In this
example, two skills each with a linear policy is sufficient for generalization with SCALE, whereas a
monolithic approach would require a nonlinear policy.
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(a) (b)

(c) (d)

Figure 6: SCALE results for the Height-Height experiment. Two skills were found: Kfree (free
block motion), stylized in blue with rectangular markers, and Kobstr (obstructed block motion),
stylized in orange with diamond markers. (a) Learned data generating regions. Each datapoint is a
result from CREST. Datapoints that are crossed out are considered outliers and not used for training
the policy for that skill. (b–c) Preconditions for Kfree and Kobstr, respectively. The black line is
the decision boundary for the prediction of whether the task would or would not be solved with that
skill. Note that each skill’s DGR generally falls within the positive precondition boundary. Train-
ing and test data for learning the preconditions are indicated by circle and thin diamond markers,
respectively. Datapoints that result in a different prediction than observed are crossed out. (d) Task
evaluation when using the skill library {Kfree,Kobstr} to solve the task. The marker and color
of each datapoint indicate which skill was selected for completing the task based on the skill pre-
conditions (i.e., the skill with the highest probability of success). Note that the separation between
selecting Kfree and Kobstr is consistent with each skills’ underlying precondition and DGR. Data-
points that were not solved by the chosen skill are crossed out.

H Additional Details for Block Stacking Experiment

This appendix provides greater information for the block stacking experiment first presented in
Sec. 6.1.

Context. Note that the block vertical position zwb ∈ Ψ is not part of the context, as we only consider
cases where the scene can be initialized into a steady state condition. Thus, zwb := 1

2hb + hπ .

Reward function. The reward function for the task isR = RB−αLL−αee−αdd, whereRB = 10
is a bonus term obtained when the block is successfully stacked, L is the total end-effector path of
the robot (αL = 1), e is the L2 norm error between the source block at the time of release and the
goal (αe = 1), and d is the distance the source block travels between the point it was ungrasped
to its final position (αd = 1). The task is considered solved if the final reward Rf exceeds solved
threshold RS = 5.
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(a) (b)

(c) (d)

Figure 7: Policy parameters for the Height-Height experiment (shown as interpolated across the
569 dataset samples to better visualize the gradients). The units of the parameters are in meters. The
parameters θ∆x (a) and θ∆y (b) are generally constant as they are unaffected by the variation in con-
text variables. The notable variations occur in θ∆zu (c) and θ∆zd (d). Specifically, the relationship
changes whether the obstructing block is taller or shorter than the target block (above or below the
ht − ho = 0 line, respectively).

Table 7: Task evaluation results for using the skill library KHH for the block stacking task. Ctrl. is
the approach control (skills or one monolithic policy). Fn. Cl. is the approach’s function class.
Linear approaches use Bayesian ridge regression. Task Solve % is the rate of task solves over the
entire context space using the approach. Methods within ±2% (the stochasticity of the simulator)
of the best approach are bold. |A| is the quantity of input variables used for the approach’s policy.
Data is the amount of training data used for the approach. A ground truth policy is also shown, using
all context variables and additional domain knowledge.

Approach Ctrl. Fn. Cl. Task Solve % |A| Data
scale-lin (ours) 2 skills Linear 100.00% (320) 1/1 569
monopolicy-lin-sk 1 policy Linear 64.06% (205) 2 569
monopolicy-lin-all 1 policy Linear 62.19% (199) 2 581
ground-truth-policy 1 policy Nonlin. 100.00% (320) * –

SCALE skill selection. In all SCALE approaches, the skills were complementary; using the entire
skill library afforded greater coverage (greater task solve rate) than any single skill alone. For scale-
lin, the skill selection distribution was almost even between K1 (43.28%) and K2 (56.72%), with
K3 never being chosen. The skill K3 is dominated by the other two skills for this task, but K3

could nonetheless be useful for a different downstream task. Empirically, it was observed that K1

was chosen for shorter target block heights, whereas K2 was used elsewhere (see Fig. 8). In the
nonlinear case, only K2 was selected.
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Figure 8: Skill selection for the scale-lin approach for the block stacking task. Skill K1 is generally
selected when h2 is short, whereas taller h2 values perform better with K2 because h2 ⊆ A. Skill
K3 is dominated by the other two skills and is not selected. Datapoints that were not solved are
crossed out.

Policy and training data ablations. We provide additional experiments to investigate the effect
of different policy functions and training data usage. The results are shown in Tab. 8, which ex-
pands Tab. 2. For the linear function class, we conduct experiments with Bayesian ridge regression
(B. ridge reg.) and ordinary least squares linear regression (OLS lin. reg.). Both linear policy func-
tions used an intercept term and were trained using unnormalized data. For the nonlinear function
class, we conduct experiments with a multilayer perceptron (MLP, 16x16x16 architecture using
ReLU activations) and support vector regression with a radial basis function (RBF) kernel (SVR
(RBF)). The nonlinear policy functions were trained with normalized data. Additionally, we present
ablations in terms of training data usage. Methods ending in “-all” use the entire batch dataset. For
the full-dimensional monopolicy approaches, the “-sk” ablation uses same training data as used by
the SCALE skills (340 samples). For the CREST baselines, the “-subs” ablation randomly downse-
lects the batch dataset to the same number of samples used by SCALE (340 samples).

In general, we see that SCALE generally outperforms the full-dimensional monopolicy methods and
matches the performance of the CREST baselines in most (but not all) cases. We see that increasing
the amount of training data available for the baselines usually improves performance. For the linear
function class, both Bayesian ridge regression and ordinary least squares linear regression produced
capable approaches. For ordinary least squares linear regression, SCALE (scale-lin-ols) outper-
forms the full-dimensional monopolicy on a sample-adjusted basis. For the nonlinear function class,
the performance of approaches was lower overall. The similarity in performance of scale-nonlin
to the full-data CREST baseline is strictly due to sample size; on a sample-adjusted basis, scale-
nonlin is slightly more performant. However, for support vector regression with a RBF kernel,
although SCALE (scale-nonlin-svr-rbf) exceeds the performance of the full-dimensional monopol-
icy approaches, the CREST approaches perform more strongly (although modestly overall). Thus,
we see some sensitivity for the nonlinear function class to the selection of policy function used for
this task.
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Table 8: Task evaluation results for using the skill library Kblocks for the block stacking task for a
variety of policy functions and training data ablations. This table expands upon Tab. 2. Ctrl. is the
approach control (skills or one monolithic policy). Fn. Cl. is the approach’s function class. P. Fn. is
the policy function. Task Solve % is the rate of task solves over the entire context space using the
approach. Methods within ±2% (the stochasticity of the simulator) of the best approach are bold.
|A| is the quantity of input variables used for the approach’s policy. Data is the amount of training
data used for the approach. A ground truth policy is also shown, using all context variables and
additional domain knowledge. The abbreviation “mp” stands for monopolicy.

Approach Ctrl. Fn. Cl. P. Fn. Task Solve % |A| Data
scale-lin (ours) 3 skills Linear B. ridge reg. 90.49% (276) 4/5/6 340
monopolicy-lin-sk 1 policy Linear B. ridge reg. 80.72% (247) 36 340
monopolicy-lin-all 1 policy Linear B. ridge reg. 85.95% (263) 36 585
crest-monopolicy-lin-subs 1 policy Linear B. ridge reg. 89.87% (275) 5 340
crest-monopolicy-lin-all 1 policy Linear B. ridge reg. 89.87% (275) 5 585
scale-lin-ols (ours) 3 skills Linear OLS lin. reg. 90.85% (278) 4/5/6 340
monopolicy-lin-ols-sk 1 policy Linear OLS lin. reg. 83.33% (255) 36 340
monopolicy-lin-ols-all 1 policy Linear OLS lin. reg. 90.16% (275) 36 585
crest-monopolicy-lin-ols-subs 1 policy Linear OLS lin. reg. 90.52% (277) 5 340
crest-monopolicy-lin-ols-all 1 policy Linear OLS lin. reg. 90.20% (276) 5 585
scale-nonlin (ours) 3 skills Nonlin. MLP 63.40% (194) 4/5/6 340
monopolicy-nonlin-sk 1 policy Nonlin. MLP 1.31% (4) 36 340
monopolicy-nonlin-all 1 policy Nonlin. MLP 10.13% (31) 36 585
crest-monopolicy-nonlin-subs 1 policy Nonlin. MLP 58.17% (178) 5 340
crest-monopolicy-nonlin-all 1 policy Nonlin. MLP 60.78% (186) 5 585
scale-nonlin-svr-rbf (ours) 3 skills Nonlin. SVR (RBF) 19.61% (60) 4/5/6 340
monopolicy-nonlin-svr-rbf-sk 1 policy Nonlin. SVR (RBF) 1.63% (5) 36 340
monopolicy-nonlin-svr-rbf-all 1 policy Nonlin. SVR (RBF) 7.19% (22) 36 585
crest-mp-nonlin-svr-rbf-subs 1 policy Nonlin. SVR (RBF) 41.64% (127) 5 340
crest-mp-nonlin-svr-rbf-all 1 policy Nonlin. SVR (RBF) 56.86% (174) 5 585
ground-truth-policy 1 policy Nonlin. – 95.75% (293) * –

I Sim-to-Real Block Stacking Experiment

In this appendix, we demonstrate that the skills learned by SCALE are suitable for sim-to-real trans-
fer. As skills are constructed using only the relevant causal variables, this is a form of structural
sim-to-real transfer. For this experiment, we evaluate the skill library Kblocks for a real block stack-
ing domain with a Franka Emika Panda robot manipulator (Fig. 2c). This experiment is generally
similar to task evaluation in simulation, except with a smaller subset of the context space. We assess
the SCALE approaches, scale-lin and scale-nonlin, against their monopolicy counterparts. We only
consider the “-all” monopolicy approaches, as they were generally better performing.

I.1 Experimental Setup

For this experiment, a smaller subset of the context space is varied, as compared to the variation
across the entire context space as tested in Tab. 2. From a pool of 20 blocks, 5 were randomly
chosen to be used for each experimental trial. The 20 blocks consisted of variations of 10 different
colors and 2 different heights (5.7 cm or 7.6 cm). The length and width of the blocks were 4.2
cm. The 5 randomly chosen blocks were placed into the Panda robot workspace and randomly
shuffled, producing variation in block x-position, y-position, and orientation. The table height hπ
was determined from manual measurement and was not varied for this experiment.

Perception. An Intel RealSense camera mounted to the robot wrist provided RGB-D perception of
the x-position, y-position, and orientation of the blocks in the workspace. A depth observation was
collected by commanding the robot above the workspace. This point cloud was then processed to
yield five clusters via hidden point removal [55], RANSAC-based table plane fitting, and density-
based clustering using DBSCAN [56]. Averaging the colors within each cluster yielded the block
color. A least-squares optimization procedure fit a cuboid of known length and width to each cluster,
yielding the position and orientation of the blocks. Block height was provided by manual input
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because of inaccuracies with estimation from depth alone. The camera extrinsics were obtained
via computer-aided design models of the Panda robot and wrist mount, which were confirmed via
manual measurement. The camera intrinsics were used as directly reported by the camera.

Control. The FrankaPy library [57] is used to provide impedance-based control of the Panda robot.

I.2 Experimental Results

Table 9 presents the results. For each function class, the skill library learned by SCALE outperforms
the full-dimensional monopolicy baseline and is generally comparable to or slightly outcompetes the
CREST monopolicy baseline. The ground truth policy matched the linear SCALE approach and is
only slightly better than the nonlinear SCALE approach. Compared to the task solve rate in simula-
tion (Tab. 2), scale-lin performed consistently, and scale-nonlin had slightly better performance. All
baseline approaches generally matched their evaluation in simulation, except for monopolicy-lin-all,
which had a marked degradation. This may arise from domain differences between simulation and
reality. Full-dimensional approaches are more susceptible to domain shifts due to their reliance on
the entire context space (all 36 variables), whereas SCALE approaches are compressed, using only
a minimal subset. Error was only loosely correlated with task solve rate, and likely explains the poor
performance of monopolicy-nonlin-all. Even though their errors were similar, it was observed that
monopolicy-lin-all tended to underpredict the height needed to clear the target block as compared
to scale-lin. This caused the target block to be pushed away from where it should have been for the
goal position, leading to block stacking failures.

For both scale-lin and scale-nonlin, skill K2 was always chosen, as its precondition was on average
greater than that of the other skills. Specifically, for scale-lin, the average preconditions were 58.88%
for K1, 75.77% for K2, and 36.99% for K3. As the block heights used were only 5.7 cm and 7.6
cm, it is reasonable to expect that skill K1 would have been chosen more for shorter target block
heights (per Fig. 8). For scale-nonlin, the average preconditions were K1: 20.17%, K2: 51.84%,
K3: 1.21%.

Table 9: Sim-to-real evaluation results for using the skill library Kblocks for a real block stacking
domain. Table columns are as described in Tab. 2. Task Solve % is the rate of successful block
stacks. Error is the mean error (±1 standard deviation) in meters between the block position when
the block is ungrasped and the goal position determined at the beginning of the trial.

Approach Ctrl. Fn. Cl. Task Solve % Error |A|
scale-lin (ours) 3 skills Linear 90.00% (9) 0.010 ± 0.003 4/5/6
monopolicy-lin-all 1 policy Linear 50.00% (5) 0.008 ± 0.003 36
crest-monopolicy-lin-all 1 policy Linear 90.00% (9) 0.004 ± 0.001 5
scale-nonlin (ours) 3 skills Nonlinear 80.00% (8) 0.007 ± 0.002 4/5/6
monopolicy-nonlin-all 1 policy Nonlinear 10.00% (1) 0.093 ± 0.040 36
crest-monopolicy-nonlin-all 1 policy Nonlinear 70.00% (7) 0.013 ± 0.012 5
ground-truth-policy 1 policy Nonlinear 90.00% (9) 0.002 ± 0.003 *

J Skill Library Use in a Downstream Task: Stacking a Block Tower

To demonstrate the utility of re-using skills learned by SCALE, a follow-up experiment is conducted
wherein the skill library Kblocks is used for a task in which it was not specifically trained: stacking a
block tower (Fig. 9). This long-horizon task can be decomposed into a number of sequential actions
that must be performed correctly, so an approach that can capture the essence of a large problem
and re-use smaller, modular components should perform best. Moreover, we do not perform any
additional training or fine-tuning; we intentionally use the skills off-training data to test their gener-
alization capability. This is a challenging task: in addition to the long-horizon precision involved,
the skills are being evaluated increasingly out-of-distribution at each step, as the effective block
heights increase beyond what is seen in training.
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(a) (b) (c) (d) (e)

Figure 9: The block tower task. As previously, five blocks are initially available to the robot.
However, after each stack attempt, the task does not reset. Instead, the block enumeration changes,
so that the previous source block becomes the new target block. This happens four times, after which
the task resets. The robot must complete each of the four individual steps successfully, as failure in
any step renders the entire block tower task a failure. (a) Initial task scene. (b – d) Successful block
stacks for intermediate attempts. (e) A successfully stacked block tower.

Experimental setup. For this experiment, we assume that the robot has access to a planner and ad-
ditional domain knowledge as a part of this downstream task. We assume that the robot understands
that at any step, the target block should be adjusted in the following manner. First, the target block’s
x- and y-position should be substituted with the bottom-most block’s x- and y-position. Then, the
target block’s height should be substituted with the sum of all heights of the previous blocks, plus a
small offset (1.5 cm). Effectively, this can be seen as treating each new step as stacking upon one,
increasingly taller block. We leave the development of such a planner that can provide this additional
information for future work, but it suffices for this experiment that this information is available.

Block tower results. Table 10 shows the results for stacking the block tower. For this experiment,
we use the same linear and nonlinear approaches and baselines from Sec. 6.1, including the training
data ablations. Included is a ground truth policy with access to oracle information.

Overall, we see that the scale-lin approach does best for stacking a tower with five blocks, although
a notable gap exists between the ground truth policy. However, a block tower success rate of 48.29%
is not unreasonable, given that even the ground truth policy fails almost 30% of the time. The linear
approaches are all comparable for the first stacking step, and for the second step with a NB = 3
tall tower, three baseline methods slightly outperform scale-lin. However, for the last two steps,
baseline approaches become markedly less performant, leading to scale-lin emerging as the best
overall approach despite modest performance in an absolute sense. Each step requires successively
greater extrapolation out of the training data, so an approach that can capture the smaller process
well should perform best, assuming that this process also holds outside the training data. For the
case of the block tower, this is generally true, so the skills learned by scale-lin are best suited for this
downstream task despite the challenge of generalization to yet-unseen data.

For the nonlinear function class, performance across all approaches suffers beyond the first stacking
step, where the CREST baselines outperform scale-nonlin. The challenge of extrapolation for non-
linear functions is evident here; the best linear approach for each step was better performing than
any nonlinear approach (and markedly so for taller towers). Thus, out-of-distribution generalization
is not observed for any nonlinear approach, whereas scale-lin exhibits modest performance in this
area.

For SCALE approaches, the skill selection rate is intriguing. The skillK1 does not contain the target
block height, which is likely why it was only selected during the first block stack attempts. However,
K2 continues to demonstrate its robustness, as it was used for all remaining block stack attempts in
the linear case and for all attempts in the nonlinear case. Its inclusion of target block height in AK2

is in fact the reason this skill can extrapolate to taller towers. Like K2, K3 also contains the block
height, but this skill was generally dominated, and thus it is not surprising it was not selected.
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In summary, in addition to the benefits of SCALE described previously for task learning, the capa-
bility for SCALE to learn smaller, modular skills is evident in this experiment. Although out-of-
distribution generalization was not observed in the nonlinear function class, we see that in principle
SCALE does offer these benefits under certain conditions, such as in the linear case. We suggest
that this aspect of causal learning is often overlooked for experiments that only concern single-
task learning. However, the benefits of modularity become advantageous for re-using behaviors for
downstream tasks at a later time in the robot’s operational lifetime.

Table 10: Results for re-using learned behaviors in a representative downstream task: stacking a
block tower. The task solve percentage is shown for stacking a tower of at least NB blocks tall. The
sequence is executed in one attempt, so a fully stacked tower (NB = 5) requires 4 successful block
stacking attempts. Methods within ±2% (the stochasticity of the simulator) of the best approach at
each step are bold. For SCALE approaches, the skill selection rate at each step (not cumulative) is
also shown. The abbreviation “mp” stands for monopolicy.

Approach NB = 2 NB = 3 NB = 4 NB = 5
scale-lin (ours) 92.20% (272) 80.73% (222) 65.23% (167) 48.29% (113)

K1

K2

K3

15.59% (46)
84.07% (248)
0.34% (1)

0.00% (0)
100.00% (275)
0.00% (0)

0.00% (0)
100.00% (256)
0.00% (0)

0.00% (0)
100.00% (234)
0.00% (0)

monopolicy-lin-sk 93.22% (275) 87.23% (239) 55.08% (141) 1.27% (3)
monopolicy-lin-all 93.56% (276) 76.36% (210) 2.33% (6) 0.00% (0)
crest-mp-lin-subs 93.20% (274) 85.40% (234) 5.84% (15) 0.00% (0)
crest-mp-lin-all 93.92% (278) 85.51% (236) 5.84% (15) 0.00% (0)
scale-nonlin (ours) 67.46% (199) 2.55% (7) 0.00% (0) 0.00% (0)

K1

K2

K3

0.00% (0)
100.00% (295)
0.00% (0)

0.00% (0)
100.00% (275)
0.00% (0)

0.00% (0)
100.00% (256)
0.00% (0)

0.00% (0)
100.00% (235)
0.00% (0)

monopolicy-nonlin-sk 2.72% (8) 0.00% (0) 0.00% (0) 0.00% (0)
monopolicy-nonlin-all 11.86% (35) 0.00% (0) 0.00% (0) 0.00% (0)
crest-mp-nonlin-subs 84.75% (250) 27.37% (75) 0.78% (2) 0.00% (0)
crest-mp-nonlin-all 75.59% (223) 11.31% (31) 0.00% (0) 0.00% (0)
ground-truth-policy 96.25% (282) 90.48% (247) 83.14% (212) 69.96% (163)

K Additional Details for Sensorless Peg-in-Hole Insertion Experiment

This appendix serves to provide greater detail for the peg insertion experiment that was described in
Sec. 6.2.

Reward function. Our reward function consists of two terms: 1) a penalty based on the Euclidean
distance of the peg from the hole, and 2) a bonus of 10 for successful insertion. We also add a
regularization term based on the norm of the policy parameters. The task is considered solved if the
final reward Rf exceeds solved threshold RS = 8.

SCALE skill K1. Unlike the other skills in Kpeg that were discovered by SCALE, skill K1 has
an empty set of relevant variables. This is surprising as it is difficult to solve this task reliably
without taking the help of one of the walls, in which case the wall should show up as a relevant
variable. However, we observed that K1 actually localizes against 2 walls instead of just 1. Hence,
when SCALE intervenes on any one of the two walls, the skill is still able to complete the assembly
by taking advantage of the other wall. In other words, our assumption that the context space is
disentangled does not hold in this case which leads to this erroneous relevant variable set. However,
the precondition would limit where this skill would be applied, as skills K2−5 are generally more
performant.

SCALE skill selection. For scale-lin, skills K2 (48.44%) and K5 (51.56%) were chosen nearly
equally. Conversely, the skill selection was more distributed for the nonlinear case: K2: 46.48%,
K3: 35.16%, K4: 3.91%, K5: 14.45%. For both approaches, K1 was not chosen as it was dominated
by the other skills.
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Table 11: Task evaluation results for using the skill library Kpeg for peg insertion for a variety of
policy functions and training data ablations. This table expands upon Tab. 4. Ctrl. is the approach
control (skills or one monolithic policy). Fn. Cl. is the approach’s function class. P. Fn. is the policy
function. Task Solve % is the rate of task solves over the entire context space using the approach.
Methods within ±2% (the stochasticity of the simulator) of the best approach are bold. |A| is the
quantity of input variables used for the approach’s policy. Data is the amount of training data used
for the approach. The abbreviation “mp” stands for monopolicy.

Approach Ctrl. Fn. Cl. P. Fn. Task Solve % |A| Data
scale-lin (ours) 5 skills Linear B. ridge reg. 96.48% (247) 0/1/1/1/1 168
monopolicy-lin-sk 1 policy Linear B. ridge reg. 67.19% (172) 8 168
monopolicy-lin-all 1 policy Linear B. ridge reg. 62.50% (160) 8 210
crest-monopolicy-lin-subs 1 policy Linear B. ridge reg. 66.80% (171) 1 168
crest-monopolicy-lin-all 1 policy Linear B. ridge reg. 62.89% (161) 1 210
scale-lin-ols (ours) 5 skills Linear OLS lin. reg. 96.88% (248) 0/1/1/1/1 168
monopolicy-lin-ols-sk 1 policy Linear OLS lin. reg. 50.78% (130) 8 168
monopolicy-lin-ols-all 1 policy Linear OLS lin. reg. 67.19% (172) 8 210
crest-monopolicy-lin-ols-subs 1 policy Linear OLS lin. reg. 63.67% (163) 1 168
crest-monopolicy-lin-ols-all 1 policy Linear OLS lin. reg. 60.55% (155) 1 210
scale-nonlin (ours) 5 skills Nonlin. MLP 88.67% (227) 0/1/1/1/1 168
monopolicy-nonlin-sk 1 policy Nonlin. MLP 18.36% (47) 8 168
monopolicy-nonlin-all 1 policy Nonlin. MLP 12.89% (33) 8 210
crest-monopolicy-nonlin-subs 1 policy Nonlin. MLP 56.64% (145) 1 168
crest-monopolicy-nonlin-all 1 policy Nonlin. MLP 55.47% (142) 1 210
scale-nonlin-svr-rbf (ours) 5 skills Nonlin. SVR (RBF) 94.53% (242) 0/1/1/1/1 168
monopolicy-nonlin-svr-rbf-sk 1 policy Nonlin. SVR (RBF) 53.52% (137) 8 168
monopolicy-nonlin-svr-rbf-all 1 policy Nonlin. SVR (RBF) 58.20% (149) 8 210
crest-mp-nonlin-svr-rbf-subs 1 policy Nonlin. SVR (RBF) 57.81% (148) 1 168
crest-mp-nonlin-svr-rbf-all 1 policy Nonlin. SVR (RBF) 60.94% (156) 1 210

Policy and training data ablations. As with the block stacking domain, we conducted experi-
ments with several policy functions and training data ablations. Table 11 details the experimental
results, which expand upon Tab. 4. In the linear function class, two policy functions were investi-
gated: Bayesian ridge regression (B. ridge reg.) and ordinary least squares linear regression (OLS
lin. reg.). An intercept term was used for both approaches, and the training data were unnormal-
ized. In the nonlinear function class, experiments were conducted with a multilayer perceptron
(MLP, 16x16x16 architecture using ReLU activations) and support vector regression with a radial
basis function (RBF) kernel (SVR (RBF)). For the nonlinear policy functions, the training data were
normalized. Methods with the “-all” suffix use the entire batch dataset. For the full-dimensional mo-
nopolicy approaches, the “-sk” suffix indicates that the same training data as SCALE was used (168
samples). The “-subs” suffix for the CREST baselines denotes that the batch dataset was randomly
downselected to the same number of samples used by SCALE (168 samples).

Overall, we observe that the SCALE skills are highly performant across function class and policy
function type. Moreover, SCALE significantly outperforms both the full-dimensional monopolicy
approaches and the CREST baselines. Indeed, SCALE exceeds the performance of the baselines by
around 30% for each policy function type. The success of SCALE is attributed to capturing the four
modes in the data — localizing against each of the four walls — found by exploiting the underlying
causal structure. The baselines, which are agnostic to such structure, do not leverage this property
and are therefore limited. Unlike in the block stacking domain, we see that the effect of training data
size does not necessarily yield an increase in performance for the baseline approaches.

L Sensorless Peg-in-Hole Insertion: Domain Shift Experiment

We evaluate the generalization capability of SCALE by evaluating it under a domain shift. All tasks
are generated by uniformly sampling the relative position of the center of each wall with respect to
the hole from a given range. The ranges used to generate the training and test tasks are specified in
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Tab. 12. We transfer all the policies zero-shot to the test distribution. However, we do re-learn the
preconditions of the scale-lin policies for the test distribution.

The evaluation results are summarized in Tab. 13. All approaches witness a sharp drop in perfor-
mance. This is expected as (a) the test tasks are not guaranteed to be feasible and (b) the ranges
used to generate the test task are more than double those used in training. However, our multi-skill
approach scale-lin performs much better than the baselines. This highlights a key benefit of learning
multiple skills. A skill may perform well on the training distribution, but it can be rendered invalid
due to an unforeseen domain shift. Having a repertoire of different skills allows the robot to still
complete the task by switching to a different skill. This makes our multi-skill approach more robust
than single-skill approaches.

Table 12: Training and test distributions of the domain shift experiment in the sensorless peg-in-
hole domain. The relative position of the center of each of the 4 walls is uniformly sampled from
the given (min,max) range. The ranges used to generate test tasks are more than double the ranges
used to generate training tasks in the domain shift experiment. All values are in meters.

Train Test
x-min x-max y-min y-max x-min x-max y-min y-max

Wall 1 0.01 0.05 -0.02 0.02 -0.04 0.10 -0.07 0.07
Wall 2 -0.02 0.02 -0.05 -0.01 -0.07 0.07 -0.10 0.07
Wall 3 -0.02 0.02 0.01 0.05 -0.07 0.07 -0.04 0.10
Wall 4 -0.05 -0.01 -0.02 0.02 -0.10 -0.04 -0.07 0.07

Table 13: Task evaluation results under domain shift for sensorless peg-in-hole insertion. We eval-
uate only linear policies as nonlinear policies perform worse in this domain. Table columns are as
described in Tab. 4.

Approach Ctrl. Fn. Cl. Task Solve % |A|
scale-lin (ours) 5 skills Linear 64.84% 0/1/1/1/1
monopolicy-lin-all 1 policy Linear 44.92% 8
crest-monopolicy-lin-all 1 policy Linear 39.83% 1

M A Primer on Causality

For readers who are unfamiliar with causality, this appendix serves as a gentle “on-ramp” for under-
standing SCALE.

What’s a data generating process? A data generating process (DGP) is a dynamical process that
generates data in a physical system. The process is usually described by variables that characterize
the system. Consider the following examples: turning a light switch on a lamp to illuminate the
lightbulb; inserting a car key into an ignition and turning the starter to start a vehicle; rain showers
causing rainfall. These examples can be considered data generating processes if system variables
were instrumented, such as instrumenting a rain gauge to measure rainfall.

What’s a Structural Causal Model? A Structural Causal Model (SCM) [25, 26] is a representation
of a data generating process. Usually, the SCM consists of variables of a system, a graph (which is
usually directed with no cycles) that describes how the variables depend on each other, and functions
that describe how each variable is characterized based on that variable’s causes. These functions are
also called structural equations or functional equations, and each function will have its own noise
variable. Noise variables (also referred to as exogenous variables) are generally jointly independent.

What’s an example of an SCM, and how can it be used? Consider the following example of SCM
C1:

• X := NX

• Y := 2X +NY
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Here, X and Y are variables of our SCM, and NX and NY are the noise terms. This SCM can
also be characterized by its underlying graph, where X → Y because X is a cause of Y . For this
example, consider thatNX andNY are (independently) sampled from the uniform distribution from
-10 to +10. Then, if NX = 2 and NY = −3, then by the mechanics of the SCM, X = 2 and
therefore Y = 1.

We now introduce the concept of an intervention, where we set the value of a variable to be a
particular value (usually regardless of its causes or noise variables), holding all other variables equal.
We can formalize this using the do operator [25]. Thus, an intervention do(Y = 5) means that no
matter what value NX , X , or NY take, Y = 5. In the previous example, under this intervention, if
NX = 2, then X = 2, but Y = 5 (and not 1). This type of intervention is called “hard” since it
induces a structural change; other intervention types are possible, such as “soft” interventions where
the functional equation of a variable changes (but not its parents).

What’s the difference between a DGP and an SCM? In the case where the SCM captures the DGP
exactly, there is no difference. However, often times we wish to learn the data generating process,
and the SCM encodes the knowledge of the DGP that is currently known. In these cases, the SCM
is an approximation of the underlying DGP in the physical world.

In SCALE, what’s the Data Generating Region and how does it differ from a DGP? The Data Gen-
erating Region (DGR) introduced by SCALE provides locality to the data generating process. Con-
sider a physical system where SCM C1 co-exists with the following new SCM, C2:

• X := 3NX

• Z := −X +NZ

However, it is also noticed that according to a fourth variable A, when A < 0, C1 applies, whereas
when A > 0, C2 applies. The condition where these causal models apply is equivalent to how the
DGR specifies where particular skills are defined in the context space. Note thatX , Y , and Z are not
needed to define where the models apply (only A). A learning algorithm could use all four variables
to specify where the models apply, but a minimal, compressed representation only requires one (A).

Moreover, Z and A are not needed to specify the mechanics of C1 (similarly, Y and A for C2).
This is similar to how SCALE learns which variables of the context space to use for modeling the
skill policy. Even though a learner could potentially use all four variables it knows about, irrelevant
variables are not needed in a minimal representation.

I’m interested in learning more about causality. Where should I start? There are many important and
useful textbooks in this area. We use Pearlian causality and SCMs as the basis of our formalism, so
we recommend the reader reviewing Causality (Pearl 2009, 2nd edition) [25], in particular, chapters
1–3. Then, we recommend the reader reviewing Elements of Causal Inference (Peters, Janzing, and
Schölkopf, 2017) [26], in particular, chapters 1, 3, and 6.
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