
DORT: Modeling Dynamic Objects in Recurrent for
Multi-Camera 3D Object Detection and Tracking

Qing Lian1,2 Tai Wang1,3 Dahua Lin1,3 Jiangmiao Pang1�

1Shanghai AI Laboratory 2The Hong Kong University of Science and Technology
3The Chinese University of Hong Kong

qlianab@connect.ust.hk, {wt019,dhlin}@ie.cuhk.edu.hk, pangjiangmiao@gmail.com

Abstract: Recent multi-camera 3D object detectors usually leverage temporal
information to construct multi-view stereo that alleviates the ill-posed depth es-
timation. However, they typically assume all the objects are static and directly
aggregate features across frames. This work begins with a theoretical and em-
pirical analysis to reveal that ignoring the motion of moving objects can result in
serious localization bias. Therefore, we propose to model Dynamic Objects in
RecurrenT (DORT) to tackle this problem. In contrast to previous global Bird-
Eye-View (BEV) methods, DORT extracts object-wise local volumes for motion
estimation that also alleviates the heavy computational burden. By iteratively re-
fining the estimated object motion and location, the preceding features can be
precisely aggregated to the current frame to mitigate the aforementioned adverse
effects. The simple framework has two significant appealing properties. It is flexi-
ble and practical that can be plugged into most camera-based 3D object detectors.
As there are predictions of object motion in the loop, it can easily track objects
across frames according to their nearest center distances. Without bells and whis-
tles, DORT outperforms all the previous methods on the nuScenes detection and
tracking benchmarks with 62.8% NDS and 57.6% AMOTA, respectively. Codes
are available at https://github.com/OpenRobotLab/DORT.
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1 Introduction

Multi-camera 3D object detection is critical to robotic systems such as autonomous vehicles, hu-
manoid robots, and etc. As object depth estimation from a single image is naturally ill-posed, recent
works use large-scale depth pre-trained models [1] and leverage geometric relationships [2, 3, 4, 5]
to alleviate the problem. Because stereo correspondence exists in consecutive frames, some works
resort to temporal information for accurate depth predictions. For example, BEVDet4D [6] and
BEVFormer [7] warp preceding features to the current frame to enrich the single-frame BEV rep-
resentations. DfM [5] constructs temporal cost volumes that explicitly establish the stereo corre-
spondence. However, these cross-frame feature aggregations do not consider the motion of moving
objects and assume all the objects are static, which results in serious 3D localization bias.

In this paper, we first provide a theoretical and empirical analysis to reveal the negative effects of
inaccurate object motion to object depth (Fig 1). In particular, if the object is moving, the incorrect
temporal correspondence would derive a biased depth. In the driving scenarios, it is critical that a
misleading depth is estimated, which might reduce the reaction time of the decision system, leading
to catastrophic collision accidents. This motivates us to devise an explicit mechanism to involve
object motion estimation in the temporal-based 3D detection pipeline.
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Modeling dynamic objects in this context has several challenges: (1) We need a flexible object-wise
representation for potential object-wise operations based on motion modeling. (2) Jointly estimating
object location and motion is an inherent chicken and egg problem [8]: The temporal correspondence
can derive accurate object location only when accurate object motion is given and vice versa. (3)
Simultaneously predicting object location and motion from only two frames is also an ill-posed
problem theoretically, and thus it is desired to involve right-body assumption and more frames to
pose reasonable constraints.
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Figure 1: Visualization of object localization from
temporal correspondence. Previous works ignore the
motion of moving objects, leading to imprecise local-
ization. Our work progressively refines the object’s
location and motion so that the preceding features can
be precisely aggregated.

To address these problems, we model Dynamic
Objects in RecurrenT (DORT) that simultane-
ously estimates object motion and location, and
then progressively refines them for accurate 3D
object detection. It benefits from a local 3D vol-
ume representation that not only extracts object-
wise 3D features but also alleviates the heavy
computational costs of global BEV in previous
methods [5, 7, 9]. Based on the object-wise vol-
ume, temporal volumes are constructed by warp-
ing the volumes from the preceding frame to the
current frame according to the object motion.
Then the obtained cost volumes act as the features
for updating the candidate location and motion.
We model this estimation and update pipeline as a
recurrent process to alleviate the aforementioned
chicken and egg problem. In addition, our frame-
work can take into more than two frames and
pose constraints to the object motion. It inher-
ently provides a feasible solution to avoid the ill-
posed dilemma of estimating object location and
motion from only a single pair of correspondence. As there is object motion prediction in the loop,
the framework is naturally capable of joint object detection and tracking by utilizing object motion
to align the detection results into the same timestamp. It also can be plugged into most camera-based
3D object detectors for flexible and practical use.

We validate the effectiveness of our framework on the nuScenes detection and tracking benchmarks.
Benefiting from the dynamic objects modeling, DORT outperforms all the previous methods with
a large margin, leading to 62.8% nuScenes detection metric (NDS) and 57.6% and average multi-
object tracking accuracy (AMOTA), respectively.

2 Related work

Monocular 3D Object Detection Monocular-based 3D object detection was first approached from
the single-frame scenario and evolved into multi-frame to alleviate the ill-posed depth estimation.

(a) Methods with A Single Frame The single-frame-based methods [10, 11, 3, 12, 13] first extend
2D object detectors and insert several 3D attribute regression heads to predict 3D bounding boxes.
To alleviate the ill-posed depth recovery, several methods improve the model from the perspectives
of loss function [11], network architecture [14, 15], regression objective [3, 4], etc. Besides directly
regressing depth, later approaches [2, 16, 17] further design 2D-3D geometry constraints to better
extract visual cues for depth estimation. To align detection features with the output space, another
line of methods [18] designs several transformation modules to lift 2D inputs into 3D space. Pseudo-
lidar-based methods [19, 20, 21, 21] first predict the per-pixel depth and convert the raw pixel into
point cloud for 3D detection. BEV-based methods [18, 22, 9, 23] propose orthographic feature
transformation (OFT) to transform the 2D features into 3D voxels and then adopt a LiDAR-based
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head to localize objects. Later works improve the OFT by explicit depth distribution modeling [22,
9, 23], incorporating deformable attention module [7] or designing 3D position encoding [24, 25].

(b) Methods with Multiple Frames Although many techniques are designed in single-frame-based
methods, they still suffer from ill-posed depth recovery, leading to unsatisfactory performance for
deployment. To augment the single-view observation, recent works [26, 14, 5, 6, 7, 27] leverage
previous frames as additional observations for features augmentation. Kinematic3D [14] leverages
3D Kalman Filter to associate objects across frames and refines 3D boxes. Later studies [5, 6, 7]
construct cross-frame cost volumes as another visual cue for 3D detection. The cost volumes are
based on the multi-view stereo, which assumes objects are static across frames. However, this
assumption does not align with the driving scenario, where the objects can move.

Monocular 3D Object Tracking 3D object tracking associates objects across frames and gener-
ates a set of trajectories for motion prediction. Traditional methods adopt a tracking-by-detection
paradigm that first detects objects in each frame and then associates them by appearance features [26]
or objects’ displacement with Kalman filter [28, 29, 30, 31, 32, 33]. Besides the above paradigm,
several methods [34, 35] design a two-stage paradigm that first associates objects and then utilizes
the temporal motion to improve the detection performance. In this work, we utilize temporal cost
volumes to bridge the spatial location and temporal motion and derive a recurrent paradigm that
iteratively updates them to obtain tightly coupled results for joint 3D detection and tracking.

3 Object Motion in Temporal Modeling

In this section, we first conduct analysis to demystify the adverse effects of neglecting object motion
in temporal modeling, then discuss the challenges of modeling 3D motion in the monocular setting.

Localization Bias from the Static Assumption In previous methods [5, 6, 7], the object motion
is ignored by assuming objects are static and the features are directly aggregated after converting
the past frames to the current frame. We first show that the static assumption would derive a biased
depth. Without loss of generality, we consider the two-view case, and it can be naturally extended
to more than two views. We denote the camera intrinsic as K with focal length and center offset
(f, cu, cv), and the ego motion and object motion from frame t0 to frame t1 as T ego

t0→t1 and T obj
i→j :

K =

[
f 0 cu
0 f cv
0 0 1

]
, T ego

t0→t1 =

[
1 0 0 xego

0 1 0 0
0 0 1 zego

]
, T obj

i→j =

 1 0 0 xobj

0 1 0 0
0 0 1 zobj

 . (1)

(b) Histogram of object velocities(a) Average depth error vs object velocity

51% are moving objects

Figure 2: Empirical analysis of the depth bias on
the nuScenes dataset if objects are assumed static.

For simplicity, we assume the ego and object mo-
tion only contain the translation (x, 0, z) on the
horizontal plane. The analysis can be easily ex-
tended to the case that the motion contains rotation.
Given the temporal images, we can utilize photo-
metric or featuremetric similarity to find the corre-
spondence of pixel pt0 = (ut0 , vt0) in the frame t0
and pixel pt1 = (ut1 , vt1) in the frame t1. Then,
the depth zt1 can be recovered by:

T ego
t0→t1 · π(pt0 ,K) = π(pt1 ,K), zt1 =

zego(ut0 − cu)− fxego

ut0 − ut1

, (2)

where π denotes the 2D to 3D projection. This derivation assumes that the object is static. However,
objects can move with a corresponding motion T obj

t0→t1 . Then, the object depth is revised as follows:

T obj
t0→t1T

ego
t0→t1 · π(pt0 ,K) = π(pt1 ,K), ẑt1 =

(zego + zobj)(ut0 − cu)− f(xego + xobj)

ut0 − ut1

. (3)

Based on Eq (2) and (3), we can obtain the depth gap:

∆z =
zobj(ut0 − cu)− fxobj

ut0 − ut1

. (4)
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Figure 3: Pipeline overview. Given a video sequence, we first extract the 2D features and generate the candidate
boxes and motion by a single-frame detector. Then the boxes and motion are progressively refined from the
concurrently updated 3D volume features. A fusion process in the recurrent module combines the estimation
from each pair of frames. Based on the tightly coupled modeling of object location and motion, the framework
can achieve joint 3D detection and tracking during inference.

From Eq (4), we can observe that the depth bias is linearly correlated with the object motion. In
Fig 2, we also display the empirical statistics of object motion and the corresponding depth bias
from the nuScenes dataset. We can observe that the empirical depth error is also correlated with
the object velocity and increases as the time interval enlarges. Besides, the right part in Fig. 2
also shows that almost 51% of objects are moving across frames, demonstrating the necessity of
modeling object motion in the temporal-based framework.

Ill-Posed Problem in Motion Modeling Except for demonstrating the necessity of modeling
object motion, we also want to mention that simultaneously estimating object location and motion is
nontrivial, especially in the two-frame case. As shown in Fig 1, the correspondence of two points can
come from infinite combinations of object location and motion. This illustrates that joint location
and motion estimation from only one correspondence is ill-posed. To alleviate this issue, we first
simplify the object motion as a right-body movement so that multiple correspondences from the
points in the object can be used to solve a shared motion. Furthermore, we leverage more than two
frames to constrain the flexibility of object motion. More details can be referred to Sec 4.3.

4 Methodology

This section describes the details of DORT. DORT is a general joint detection and motion prediction
module that can estimate coupled object location and motion results across frames. Based on the
tightly coupled location and motion results, DORT is also capable of simultaneously 3D object
detection and tracking. Basically, it can be based on most temporal 3D detectors [6, 36, 7]. In this
work, we select the popular temporal detector BEVDepth [23] as the base detector and extend it
to handle both static and moving objects in temporal modeling. We first present an overview of
temporal-based frameworks in Sec 4.1 and then introduce our modifications: the local volume for
object-wise representation in Sec 4.2, the key recurrent dynamic objects modeling in Sec. 4.3, and
the object association for monocular 4D object detection in Sec 4.4.

4.1 Overview of Temporal-Based Frameworks

Current temporal-based methods contain three stages: (1) The 2D features extraction stage extracts
the features from the 2D images. (2) The view transformation and stereo matching process that first
lift the 2D features to a 3D volume and then warp the features in each frame to an aligned canonical
space for matching. Depending on the model design, the order of view transformation and stereo
matching may reverse. (3) The detection stage takes the 3D features to estimate 3D bounding boxes.

In this work, we follow previous methods [5, 9, 23] and adopt the widely-used 2D backbone (e.g.
ResNet [37]) to do the features extraction. For the view transformation stage, we design an object-
wise local volume that leverages the candidate 3D boxes to obtain the potential foreground regions
and only models them with local object-wise 3D volumes. For the stereo matching and detection
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stages, we propose a recurrent dynamic objects modeling module to progressively refine the de-
tection and motion results for accurate 3D temporal features.

4.2 Object-wise Local Volume

Past 3D Volumes

View Transformation

View Transformation
Pred Boxes

Warp by Ego-Motion

Current 3D Volumes

Object Motion

Local Volumes

Figure 4: The process of extracting local vol-
umes in the current and past frames according
to predicted bounding boxes and object motion.

In previous works, the 2D-3D transformation con-
siders each candidate 3D grid point and constructs a
global volume for detection. However, there are sev-
eral limitations: (1) the global volume contains lots of
background regions, which is not vital for detection
but increases the computation burden. (2) Modeling
a global volume needs to pre-define a detection range
during training, making the detectors fail to detect ob-
jects with arbitrary depth. (3) It is inconvenient to ma-
nipulate a global volume with object-wise operations.

Hence, we replace the global volume with an object-wise local volume. Specifically, we leverage
the candidate boxes to determine the 3D region of interest (RoI) and set the local volume center as
the bounding box center. To keep the object ratio and achieve cross-view warping, we assign each
3D RoI volume V ∈ RW×H×L×C with the same 3D dimension (W,H,L) and channel size C.
Different from 2D detection, the objects’ dimension in 3D space has less variance and empirically
relies less on the RoI-Align [38] operation. We display the construction of object-wise local volumes
in Fig 4. For the 2D to 3D transformation, we first follow LiftSplat [22] and lift the images to a 2.5D
frustum by weighting with depth probability. Then we utilize the grid sample operation to warp the
features from the 2.5D frustum to each 3D local volume. Benefiting from the accurate 2D detection
performance, the local volume features sampled from the 2.5D frustum would have a large overlap
with the foreground objects. Hence, if the proposal 3D location is inaccurate, the later refinement
module still can use the features for refinement.

4.3 Recurrent Dynamic Objects Modeling

The pipeline of the recurrent framework is illustrated in Fig. 3. Given the candidate 3D bounding
boxes and motion as input, each iteration first constructs the temporal cost volumes thereon, and
aggregates these cues to refine the proposal boxes and motion. In particular, we adopt a perspective-
view based 3D detector (i.e. PGD) to generate the initialized candidate 3D boxes and motion and
only predict their residuals for refinement in the subsequent recurrent updates.

Cross-Frame Cost Volumes Construction Given the initial predictions of 3D boxes and their
motion, we first obtain object-wise volume features following Sec. 4.2. Then we can construct the
temporal cost volumes by warping features from past frames to the current frame coordinates based
on ego-motion. In contrast to previous works [5, 6] assuming objects are static, we further involve
the object motion into the warping procedure. Specifically, for each point p ∈ R3 in the object-wise
local volume V , we query the corresponding features in previous frame t−∆t with the consideration
of ego-motion T ego and the object motion T obj and construct the cost as

[
V (p), Vt−∆t(T

objT egop)
]
.

Note that we simplify the point motion as the object motion with a rigid-body assumption, which
can approximate most of the cases in driving scenarios, especially for vehicles [26, 39].

3D Boxes and Motion Residual Estimation Given the object-wise temporal features built from
input 3D boxes and motion, we leverage a refinement network to estimate the residual between the
input 3D boxes and motion with the ground truth. The refinement network contains several 2D/3D
residual-based convolutional layers to extract the 3D volumes and 2D BEV features. The detailed
architecture is presented in Supplementary. Formally, the refinement is formulated as the regres-
sion of 3D attribute residuals B, including the object’s 3D center x, y, z, 3D size w, h, l, rotation
θ and velocity vx, vy . Since we use the object velocity in the current frame to represent the object
motion and assume constant velocity across frame, the supervision for some frames may contain
noise(e.g. inaccurate labels, violation of rigid-body assumption, etc). Hence, we model the residual
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Table 1: Experimental results of monocular 3D object detection and tracking on the nuScenes test set. The
input resolution is 1600× 900 with using ConvNeXt-Base [40] as the backbone.

(a) 3D detection results.
Method mAP↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓ NDS↑
Ego3RT [41] 42.5 0.55 0.26 0.43 1.01 0.14 47.3
UVTR [42] 47.2 0.57 0.25 0.39 0.51 0.12 55.1
BEVFormer [7] 48.1 0.58 0.25 0.37 0.37 0.12 56.9
PETRv2 [43] 51.2 0.55 0.25 0.36 0.40 0.13 58.6
BEVDepth [23] 52.0 0.45 0.24 0.35 0.35 0.13 60.9
BEVStereo [27] 52.5 0.43 0.24 0.36 0.35 0.14 61.0
SOLOFusion [36] 54.0 0.45 0.26 0.37 0.27 0.14 61.9
DORT (Ours) 55.3 0.43 0.26 0.42 0.24 0.14 62.8

(b) 3D tracking results.
Method AMOTA↑ AMOTP↓ MOTAR ↑
QD-3DT [34] 21.7 1.550 56.3
Time3D [35] 21.4 1.360 -
PolarDETR [30] 27.3 1.185 60.7
MUTR3D [44] 27.0 1.494 64.3
SRCN3D [31] 39.8 1.317 70.2
QTTrack [32] 48.0 1.100 74.7
UVTR [42] 51.9 1.125 76.4
DORT(Ours) 57.6 0.951 77.1

as a Laplacian distribution and design the loss function as:

Lrefine =
∑
b∈B

(

√
2

σb
∥∆b̂−∆b∥+ log σb). (5)

Here, ∆b, ∆b̂, and σb are all the network outputs, and represent the ground truth residual, the esti-
mated residual, and the estimated standard deviation of residual for each 3D attribute, respectively.

Multiple Estimation Fusion Given n frame as inputs, we can obtain n 3D volumes (1 for the
local volumes from the current view and n − 1 for the paired cross-view cost volumes) and obtain
n estimated residuals from the residual estimation module. Then we weigh the importance of each
residual by the estimated deviation and fuse them to obtain an ensemble result:

b̂fused =

n∑
i=1

eσbi bi∑n
i=1 e

σbi
, (6)

where i denotes the volume index. For simplicity, here we only estimate the velocity measurement
for the referenced frame, i.e., the fluctuation of object velocity across different frames would not
be considered explicitly. The mechanism for multi-frame fusion is expected to handle this problem
adaptively. At the same time, this constraint also provides additional cues when simultaneously
estimating object location and motion from more than two frames.

Recurrent Location and Motion Update After each iteration, we can obtain the refined bounding
boxes with their motion and thus can derive the updated bounding boxes in different frames. With
these updated locations and RoIs, we can further update the volume features and proceed to the
next-round refinement. Note that any complex or learnable motion modeling can be integrated into
this procedure. Here, to be consistent with the multiple estimation fusion designs, we still keep the
constant velocity prediction for simplicity to derive the bounding boxes of previous frames.

In the training stage, we follow the recurrent methods [45, 39] in other tasks and set the loss weight
for each iteration as the same. The overall loss is represented as:

L = Lpv +

k∑
i=1

Li
refine, (7)

where Lpv is the loss in the perspective-view detector [4], Li
refine is the refinement loss in each iter-

ation and k = 3 is the number of the iterations. In the inference stage, we first take the perspective-
view detector (i.e. PGD [4]) to generate the initial 3D boxes and their motion and then progressively
refine them. In each iteration, we first construct the volume features as discussed in Sec 4.3 and
feed them into the refinement module to estimate the 3D boxes and motion residuals for each paired
frame input. Then we utilize the multiple estimation fusion module in Sec 4.3 to fuse the estimated
results and obtain the refined 3D boxes and motion as the next stage input.

4.4 Monocular 4D Object Detection

So far, we have introduced our recurrent framework for 3D detection from monocular videos. Based
on progressive refinement, our model can estimate tightly coupled object location and motion results
and thus can easily associate the object detection results across frames, leading to joint 3D detection
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Table 2: Experimental results on the nuScenes validation set. The input resolution is 704× 256 using ResNet-
50 as the backbone. * denotes the re-implementation based on the provided code.

Methods # frame mAP↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓ NDS↑
PGD* [4]

1

28.8 0.75 0.27 0.52 1.13 0.18 37.0
BEVDet [9] 29.8 0.73 0.28 0.59 0.86 0.24 37.9
PETR [25] 31.3 0.77 0.28 0.56 0.92 0.23 38.1
DETR3D [24] 34.9 0.72 0.27 0.38 0.84 0.20 43.4
BEVDet4D [6]

2
32.2 0.70 0.28 0.50 0.35 0.21 45.7

BEVDepth [23] 35.1 0.64 0.27 0.48 0.43 0.20 47.5
DORT (Ours) 37.9 0.62 0.27 0.45 0.31 0.20 50.4
BEVDepth* [6] 8 39.8 0.57 0.27 0.49 0.27 0.18 52.3
DORT (Ours) 41.8 0.57 0.26 0.43 0.25 0.19 53.4
SOLOFusion [36] 16 42.7 0.57 0.27 0.41 0.25 0.18 53.4
DORT (Ours) 43.6 0.56 0.26 0.41 0.24 0.18 54.0

and tracking. Specifically, we follow [28, 46, 29, 47] and associate the detection results by warping
current detection to the past frames with object motion. Based on the ego-motion, we first convert
the predicted object location to the past frame coordinate and then warp with the estimated object
velocity. Then we follow the popular distance-based tracker [28, 29] and associate the objects by
the closest distance matching. We provide more details of the tracking pipeline in the Appendix.

5 Experiments

5.1 Experimental Setup

In this section, we describe the used dataset, the evaluation metrics, and the implementation details.

Dataset NuScenes [48] is a large-scale driving dataset, which contains 1,000 video sequences.
The official protocol splits the video sequences into 700 for training, 150 for validation, and 150 for
testing. Each sequence is annotated with the objects’ 3D bounding box, velocity, and tracking id.

Network Details As discussed in Sec 4.3, the recurrent module requires a proposal detector to
generate candidate foreground regions as the 1st stage input. We adopt the popular monocular
3D detector PGD [4] due to its high 2D object detection recall. Following [9, 6, 23], we adopt
the ResNet-50 [37] with FPN as the 2D feature extractor and mainly conduct experiments on this
setting. The 2D feature extractors in PGD and the recurrent module are shared to save computation
time. The grid size of the 3D volume is set as 0.8m with the range of [−5m, 5m] in the X and Z
(depth) axis and [−4m, 2m] in the Y (height) axis. During 2D to 3D features transformation, we
follow [23] and adopt the depth distribution guided 2D to 3D features lifting. Regarding the test
set submission, we follow [23, 27] and adopt the ConvNeXt-Base [40] as the image backbone. The
image backbone is initialized with ImageNet pre-trained weights, and no other external data is used.
We provide more details about the network architecture of the recurrent module and the training
configuration in the supplementary materials.

Training Configurations The model is optimized by AdamW optimizer with weight decay 10−2.
We first follow [4] to train the proposal detector and refine the recurrent module with 24 epochs,
where the initial learning rate is set as 2× 10−4 and decreases to 2× 10−5 and 2× 10−6 at the 18th

and 22th epochs. Following [9, 23], we use the class balance sampling strategy (CBGS) to alleviate
the class imbalance problem. We adopt the commonly used 2D data augmentation that randomly
flips the image, resizes the image with the range of [0.36, 0.55], and crops the image to the resolution
of 704 × 256. Regarding the input video sequences, we follow [6, 23] and sample the preceding
keyframes to obtain the past video sequences. Regarding the test set submission, we enlarge the
input resolution to 1600× 640 and reduce the volume size to 0.4m.

5.2 Main Results

In Table 1, we first provide the comparison of our framework with existing state-of-the-art methods
on the nuScenes test benchmarks. We draw the following observations: (i) Benefiting from dynamic
objects modeling, our method displays a significant improvement in both object detection (mAP)
and motion estimation (mAVE), and 1.3% and relatively 11.1% better than the previous best method.
These localization and motion estimation improvements also contribute to state-of-the-art results in
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Figure 5: Left and Middle: mAP and mAVE in each recurrent iteration step (1 past frame is used). Right:
Experimental results of different motion modeling strategies.
terms of the nuScenes detection metric (NDS). (ii) With strong localization and motion estimation
results, our tracking module can better associate the detected objects in different timestamps, re-
sulting in superior performance over all the other trackers with different metrics. Specifically, we
improve the second best tracker [42], another distance-based tracker with % and 7.5% relative im-
provements on the AMOTA and AMOTP metrics. Compared with the joint detection and tracking
methods QDTrack3D [34] and Time3D [35], the performance gain of our method demonstrates the
effectiveness of our dynamic objects modeling framework in jointly modeling object motion and
location. (iii) In Table 2, we also report our method on the nuScenes validation set with different
settings. For the detection performance, we can draw the same observation as in the test set that our
method can outperform previous temporal-based methods [6, 23, 36] in terms of mAP and mAVE.
Note that our method is also compatible with the components designed in the current BEV-based
frameworks, such as the training techniques in BEVDepth [23] and the depth estimation module
in SOLOFusion [36]. Furthermore, the local 3D volume is more friendly to practical applications,
which can handle objects with arbitrary depth in the image.

5.3 Ablation Study

Ablation Study of Object Motion We further validate the influence of different dynamic object
modeling strategies on the detection performance The first experiment compares the assumed static
case with that of using the ground truth object motion. As shown in Figure 5, the model with ground
truth object motion outperforms the assumed static with 4.3% mAP, demonstrating the necessity of
object motion for obtaining accurate temporal correspondence features. When we replace the ground
truth object motion with an estimated one, it still can bring 2.9% mAP improvements, illustrating
the usefulness of our dynamic objects modeling module.

Experiments with Different Iterations In Figure 5, we provide the comparison of modeling object
motion and assumed static with different recurrent iterations. Benefiting from the BEV features
modeling, the two configurations display almost 2% mAP improvements in the first iterations. In
the later iterations, the improvement in assumed static stops was mainly due to the lack of accurate
temporal features. With more and more accurate temporal features, the model with modeling object
motion can progressively improve the detection and motion estimation results.

6 Conclusion and Limitations

This work proposes a novel framework to better leverage temporal information for camera-only 3D
detection by modeling dynamic objects. We first design an object-wise local volume to save com-
putation time and maintain an object-wise representation for motion and detection modeling. Then
we propose a recurrent module to tackle the challenging motion and location modeling problem.
Specifically, we progressively update the motion and location results from the concurrently updated
3D volume features. As the object motion and location results are tightly coupled in the recurrent
stage, we also demonstrate the framework can naturally achieve 3D tracking.

Although DORT can better handle dynamic objects, we follow previous methods and simplify the
motion with a constant velocity assumption. To handle various kinds of scenarios, this assumption
could be relaxed with modeling acceleration or explicit trajectory prediction. Additionally, similar
to current object-wise methods [24, 25, 49] (i.e. DETR-based, Two-stage-based), the computation
is linearly correlated with the number of instances. To overcome this limitation, point-wise motion
modeling and feature extraction with object-wise grouping will be considered in future work.
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Supplementary Material for DORT: Modeling
Dynamic Objects in Recurrent for Multi-Camera 3D

Object Detection and Tracking

A Evaluation Metrics

Detection Metrics We adopt the official evaluation protocol provided by nuScenes benchmark [48].
The official protocol evaluates 3D detection performance by the metrics of average translation error
(ATE), average scale error (ASE), average orientation error (AOE), average velocity error (AVE),
and average attribute error (AAE). Besides, it also measures the mean average precision (mAP) with
considering different recall thresholds. Instead of using 3D Intersection over Union (IoU) as the
criterion, nuScenes defines the match by 2D center distance d on the ground plane with thresholds
{0.5, 1, 2, 4}m. The above metrics are finally combined into a nuScenes Detection Score (NDS).

Tracking Metrics Regarding the tracking metrics, the nuScenes benchmark mainly measures
the average multi-object tracking accuracy (AMOTA), average multi-object tracking precision
(AMOTP), and tracking recall. In particular, AMOTA and AMOTP are the averages of multi-
object tracking accuracy (MOTA) and multi-object tracking precision (MOTP) under different recall
thresholds.

B Implementation Details

In the main paper, we have introduced our overall multi-camera 3D object detection and tracking
framework and the details of the proposed components. In this supplemental section, we present the
details of the other basic modules.

B.1 Network Architecture

Our framework is built based on BEVDet and BEVDepth, and we follow them to design the basic
modules.

2D Feature Extraction Given N multi-view images I ∈ RN×W×H×3in each frame, we use a
shared 2D backbone to extract the corresponding features. We adopt the standard ResNet-50 [37] as
the backbone and initialize it with ImageNet pre-trained weights. Then we adopt a modified Feature
Pyramid Network (FPN) [50] to extract the multiple-level features and the output 2D features are
downsampled with the ratio of 1

16 with channel size 256: Fpv ∈ RW
16×

H
16×256.

View Transformation Our work is the same as BEVDet and BEVDepth which contains a 2D to
3D view transformation module. Specifically, we first leverage a depth prediction head to predict the
depth probability for each pixel. Then we lift the 2D features to a 2.5D frustum space via out-product
it with the depth probability. The depth probability range is set as [0m, 60m] with grid size 0.5m.
With the 2.5D frustum features, the 3D features for each local volume are obtained via utilizing the
camera intrinsic to project the 3D grid back to the frustum and bi-linear sample the corresponding
features. As mentioned in the main paper, we aggregate the 3D volume features along the height
dimension and obtain the corresponding object-wise BEV features F obj

bev ∈ RN×W obj×Hobj×256,
where W obj and Hobj are the object features dimension and set as 28 in the main setting.

RefineNet Given the object-wise features extracted based on the proposal 3D box and motion,
RefineNet takes several convolutional neural networks to extract the object-wise features and esti-
mate the bounding box and motion residual. Specifically, we first adopt an average pooling layer to
aggregate the 3D features along the height dimension and obtain the BEV features. Then we filter
each object-wise BEV features with 6 basic 2D residual blocks, where each residual block consists
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of two 2D convolution layers and a skip connection module as in ResNet. The channel size of the
residual blocks in the first three layers is 256 and decreases to 64 in the last three layers. Then
we aggregate the features along the spatial dimension via average pooling and take 4 layers MLP
network to estimate the bounding box and motion residuals.

B.2 The Tracking Module

In this section, we provide the details of the tracking module that omit in the paper. Since DORT
can estimate tightly coupled object location and motion, object tracking can be easily achieved via
nearest center distances association [28, 29, 47]. Hence, our tracking module is mainly adapted from
the previous distance-based object tracker [28, 29, 47]. Specifically, the tracking module contains
four parts: Pre-processing, Association, Status Update and Life-cycle Management.

Pre-processing Given the detection results, the pre-processing stages mainly focus on filtering false
negative objects. In our work, we first adopt Non-maximum Suppression to remove the duplicated
bounding boxes with the threshold of 0.1 in terms of 3D IoU. Then we filter out the bounding boxes
that the confidence threshold is lower than 0.25.

Association The association stage associates the tracked objects in frame t-1 and the detection
results in frame t. We don’t use the Kalman filter to predict the location of the trackers from frame
t-1. Instead, we utilize the predicted velocity to propagate the detection results in frame t back
to t-1. Then, we utilize the L2 distances of object centers to compute the similarity between the
detected objects and the tracklets. Finally, the linear greedy matching strategy is adopted to achieve
multi-object matching. Status Update After associating the detection results in frame t, we update
the tracklets from frame t-1 into frame t. For the tracklets in frame t-1 that match with bounding
boxes in frame t, we replace their object center location with the corresponding detection results
to frame t. For the unmatched objects, we utilize the estimated object velocity to update its object
center location to frame t. Life-cycle Management The life-cycle management module controls
the “birth” and “depth” of the tracklets (i.e. birth, depth). Specifically, for the unmatched bounding
boxes, they will be initialized as new tracklets. For the unmatched tracklets, we remove them when
they are consecutive unmatched more than 2 times.

Details of depth error calculation in Fig 2. The depth error in Fig2 is calculated as follows. The
depth error is the l1 distance between the ground truth depth and the depth obtained by assuming
objects are static across frames. Specifically, the object depth that assumes objects are static is
calculated as follows. We first utilize the ego-motion (camera extrinsic) and the ground-truth 2D
location of 3D box centers in the past and current frames to obtain the cross-frame correspondence.
Then, we utilize Eq2 to obtain the corresponding object depth.

C More results on the Waymo dataset

In this section, we further provide the experimental results on the Waymo dataset for reference. We
adopt ResNet-101 as the image backbone and train the model with 1/3 training data. Regarding
initialization methods other than ImageNet pre-trained weights, we present additional results using
the commonly used FCOS3D++ pre-trained weights on the Waymo dataset.

D Ablation Studies

In this section, we provide the additional ablation studies that are omitted in the main paper. DORT
with Different Proposal Detector We first show that DORT is agnostic with different proposal
detectors (e.g. PGD [4], BEVDepth [23]). In Table 4, we display the experimental results of DORT
with using PGD and BEVDepth as the proposal detectors. We can observe that the DORT is insen-
sitive to the proposal detector and can consistently improve BEVDepth. We Benefiting from the low
computation overhead of BEVDepth in the perspective part and the designed local volume, DORT
also can achieve a more lightweight pipeline for dynamic object modeling.
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Table 3: Experimental results on the Waymo validation set. ImageNet pre-trained denotes the supervised
classification pre-training for the network backbone. FCOS3D++ on Waymo denotes the further pre-training
of the model backbone via FCOS3D++ on the Waymo training dataset.

Method Pre-trained mAPL mAP
FCOS3D++ [15]

ImageNet

20.4 28.6
DETR3D [24] 26.1 39.0

BEVDepth [23] 28.2 39.9
MV-FCOS3D++ [51] 28.7 39.9

Ours 30.1 42.3
MV-FCOS3D++ [51] FCOS3D++

on Waymo
33.8 46.7

Ours 35.0 48.9

Table 4: Experimental results on the nuScenes validation set. 1 past frame is adopted in the temporal modeling.
∗ denotes the BEV FLOPS from the proposal detector.

Method mAP NDS Flops
PV BEV

BEVDepth 35.1 47.5 120.4 94.5
DORT with PGD 37.9 52.1 238.2 40.2

DORT with BEVDepth 38.1 52.1 120.4 74.4∗+40.2

Tracking with Semantic Embedding or Geometry Distance In this work, DORT achieves 3D
object tracking via the nearest centerness association. To have a more comprehensive comparison
of the tracking pipeline designed, we further provide the comparison of DORT by using semantic
embedding to associate objects. Specifically, we follow previous methods [34] and adopt the widely-
used quasi-dense similarity learning [52] to learn the tracking embedding. We extract two kinds
of embedding features, one is from the perspective-view (PV) and another is from the bird-eye-
view (BEV). In Table 5 and 6, we display the tracking results on the nuScenes tracking set. We
can observe that DORT with geometry distance association can outperform the embedding-based
methods by a large margin. Furthermore, it is also much simpler and more efficient and does not
need to maintain an extra object embedding. Besides, the PV embedding is worse than the BEV-
based embedding, which may be due to the view change in different cameras.

Table 5: Experimental results on the nuScenes validation set. 1 past frame is adopted in the temporal modeling.
Method AMOTA↑ AMOTP↓ MOTAR↑

PV-Embedding 36.8 1.412 44.2
BEV-Embedding 40.1 1.356 46.7

DORT (Geometry Distance) 42.4 1.264 49.2

E Theoretical Analysis of Ignoring Object Motion

In the main paper, we have shown that when ignoring object motion, the temporal correspondence
would derive a biased depth. In this supplementary, we provide the full details of how ignoring
object motion introduces a biased depth. We denote the camera intrinsic as K and the ego-motion
from frame t0 to frame t1 as T ego

t0→t1 :

K =

[
f 0 cu
0 f cv
0 0 1

]
, T ego

t0→t1 =

[
1 0 0 xego

0 1 0 0
0 0 1 zego

]
. (8)

Here, f is the camera’s focal length, and (cu, cv) is the camera center coordinates in the image. For
simplicity, we assume the ego-motion only contains the translation (xego, 0, zego) on the horizontal
plane. The analysis also can be easily extended to a more complicated case that the motion con-
tains rotation. Given the multiple-view images, temporal-based methods can utilize photometric or
feature-metric similarity to find the correspondence of pixel pt0 = (ut0 , vt0) in the past frame t0
and the pixel pt1 = (ut1 , vt1) in the current frame t1.

15



Table 6: 3D object tracking results on the nuScenes validation set. We adopt ResNet-50 as the backbone and
set the input resolution as 704× 256.

Method AMOTA↑ AMOTP↓ Recall↑
QD-Track3D [34] 24.2 1.518 39.9

Time3D [35] 21.4 1.360 N/A
TripletTrack [53] 28.5 1.485 N/A
MUTR3D [44] 29.4 1.498 42.7

QTrack [32] 34.7 1.347 46.2
DORT 42.4 1.264 49.2

When we ignore the object motion, the depth zt1 of pixel pt1 can be recovered as:

T ego
t0→t1 · π(pt0 ,K) = π(pt1 ,K),

zt1
ut1 + cu

f
− xego =

ut0 + cu
f

(zt1 − zego),

zt1 =
zego(ut0 − cu)− fxego

ut0 − ut1

, (9)

where π denotes the projection from 2D image coordinate to 3D camera coordinate.

But as we showed in the main paper, the moving objects occupy large ratios in the driving scenarios.
For example, when the object contains the translation (xobj , 0, zobj) in the horizontal plane, the
object’s motion can be represented as

T obj
i→j =

 1 0 0 xobj

0 1 0 0
0 0 1 zobj

 . (10)

With the object motion, the depth zt1 of pixel pt1 is recovered as:

T obj
t0→t1T

ego
t0→t1 · π(pt0 ,K) = π(pt1 ,K),

zt1
ut1 + cu

f
− xego − xobj =

ut0 + cu
f

(zt1 − zego − zobj)

ẑt1 =
(zego + zobj)(ut0 − cu)− f(xego + xobj)

ut0 − ut1

. (11)

From Eq (9) and Eq (11), we can obtain the depth gap for the temporal correspondence with and
without considering object motion:

∆z =
zobj(ut0 − cu)− fxego

ut0 − ut1

. (12)

In Figure 6, we also provide a toy example to illustrate that one temporal correspondence can come
from multiple combinations of object depth and motion (i.e. inaccurate depth with zero motion and
accurate depth and GT motion). This means that if we inaccurately assume that objects are static
across frames, the temporal correspondence would derive a misleading depth.

E.1 Ill-posed Problem of Simultaneously Estimating 3D Location and Motion

Although object motion plays a critical role in temporal correspondence, however, it is non-trivial
to estimate it from the monocular images. As shown in Figure 6, the one correspondence can come
from infinite combinations of location and motion (the location can be the point in the ray

−−−−→
Ot0Pt0

and
−−−−→
Ot1Pt1 , and the motion can be the line that connects the points.) Hence, it is an ill-posed

problem that simultaneously estimates the 3D location and motion from the monocular images. To
alleviate this issue, we leverage the rigid-body assumption for the objects in the driving scenarios
and elaborate more temporal frames with constant velocity regularization to further constrain the
motion.
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Figure 6: Different object motions can make the same temporal correspondence derive different depth.

F More Related Work

Multi-View 3D Perception Leveraging multi-view images to recover 3D information is a fun-
damental topic, such as structure from motion [54], multi-view stereo [55], simultaneous lo-
calization and mapping [56], etc. One line of methods develop neural-network-based cost vol-
umes [55, 57, 58, 45, 39, 59] to construct cross-frame visual cues for 3D perception. Another line
of methods [60, 61, 62] constructs geometry constraints and leverages optimization techniques to
obtain a tight-coupled 3D structure. However, most of the work assumes the scene and objects are
static, making them fail to handle the moving objects in driving scenarios.
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