
TraCo: Learning Virtual Traffic Coordinator for
Cooperation with Multi-Agent Reinforcement

Learning

Weiwei Liu
Huzhou Institute of Zhejiang University

Zhejiang University China
lww623@zju.edu.cn

Wei Jing
Netease Fuxi Robotics China
21wjing@gmail.com

Lingping Gao
Autonomous Driving Lab

Alibaba DAMO Academy China
glp.dlut@gmail.com

Ke Guo
Alibaba DAMO Academy

University of Hong Kong China
kguo@cs.hku.hk

Gang Xu
College of Control Science and Engineering

Zhejiang University China
wuuya@zju.edu.cn

Yong Liu
College of Control Science and Engineering

Zhejiang University China
yongliu@iipc.zju.edu.cn

Abstract: Multi-agent reinforcement learning (MARL) has emerged as a popular
technique in diverse domains due to its ability to automate system controller de-
sign and facilitate continuous intelligence learning. For instance, traffic flow is of-
ten trained with MARL to enable intelligent simulations for autonomous driving.
However, The existing MARL algorithm only characterizes the relative degree of
each agent’s contribution to the team, and cannot express the contribution that the
team needs from the agent. Especially in the field of autonomous driving, the team
changes over time, and the agent needs to act directly according to the needs of the
team. To address these limitations, we propose an innovative method inspired by
realistic traffic coordinators called the Traffic Coordinator Network (TraCo). Our
approach leverages a combination of cross-attention and counterfactual advantage
function, allowing us to extract distinctive characteristics of domain agents and
accurately quantify the contribution that a team needs from an agent. Through
experiments conducted on four traffic tasks, we demonstrate that our method out-
performs existing approaches, yielding superior performance. Furthermore, our
approach enables the emergence of rich and diverse social behaviors among vehi-
cles within the traffic flow.

Keywords: autonomous driving, multi-agent reinforcement learning, counterfac-
tual reasoning

1 Introduction

There are numerous Multi-Agent Systems (MAS) [1] present in nature and human society. Self-
Driven Particles (SDP) [2] have been proposed to describe these systems. In SDP, each agent
interacts with its surrounding agents, considers the interests of others while pursuing its own
goals, and ultimately exhibits complex collective behavior. For instance, traffic flow used in au-
tonomous driving is often considered a typical example of SDP [3]. While early SDP mod-
els were relatively simple, some have been based on philosophical ideas, such as the Belief-

7th Conference on Robot Learning (CoRL 2023), Atlanta, USA.

Desire-Intention (BDI) model [4, 5], which improves the reasoning and decision-making abil-
ities of agents. However, traditional control methods can struggle to describe actual group
behavior due to the complexity of reasoning required for artificially designed rules [6, 7].

Figure 1: Example of traffic flow managed by the traffic
coordinator: the vehicle operates based on its driving ca-
pabilities and follows the commands issued by the traffic
coordinator.

Multi-agent reinforcement learning
(MARL) [8, 9, 10] has emerged as a
promising algorithm for learning con-
trollers to simulate SDP behaviors. In
the SDP of autonomous driving traffic
flow, reward decomposition is partic-
ularly crucial. Each agent must strike
a delicate balance between its own
interests and the team’s, which serves
as the foundation of appropriate social
behavior. However, achieving this
balance is a challenging problem [11],
especially in complex scenarios such
as navigating busy intersections. Even
experienced drivers may require the
assistance of a traffic coordinator to
safely navigate such environments, as
vehicle interaction is constantly changing, making it difficult to measure each vehicle’s contribution
from its perspective. Thus, agents must take practical actions that prioritize the team’s interests.
Though previous approaches [12, 13] have attempted to evaluate an agent’s contribution to the
team, they often fail to address the reward balancing problem and perform poorly in traffic flow
simulation applications.

We propose a novel benefit trade-off scheme inspired by the task of traffic coordination. Unlike
existing schemes, we start from the needs of the team’s interests and make the agent act directly
according to the team’s interests. As shown in Figure 1, the cars at the intersection need to follow the
traffic coordinator’s orders and their driving capabilities. To implement this scheme, we introduce
the Traffic Coordinator (TraCo) network. TraCo learns the local interactions within a dynamic
number of surrounding agents, through the Cross-Attention mechanism [14]. Therefore, TraCo
is able to issue traffic order embedding based on the importance of surrounding agents relative
to the feature correlation of ego agents, without altering the network structure. The agents then
act according to the received orders and their states. In addition, We design the Counterfactual
Advantage Function (CAF) to measure the impact of the team’s orders on the team’s interests, and
the agent’s advantage function to measure its ability to act.

The main contributions are summarized as follows:

• We propose the TraCo network to capture the interactions better and evaluate the reward
decomposition of agents from the perspective of team benefits. TraCo uses a virtual traffic
coordinator with a cross-attention mechanism to capture features and interactions, and issue
TraCo commands within the traffic scene, thereby assisting agents in generating strategies
to act according to the interests of the team.

• We incorporate CAF in TraCo to measure the impact of TraCo’s commands to the agent
on the team’s interests. This allows agents to act directly in line with the team’s interests,
while also promoting TraCo’s ability to move beyond the limitations of a feature extraction
network, and thus significantly improve the performance of the simulated traffic flow.

• We conduct extensive experiments. The results show that TraCo performs superior in mul-
tiple metrics, and the agents exhibit diverse social behaviors.

2

2 Related Work

2.1 MARL and Value Decomposition

In a multi-agent system, the agents share the same reward function. As a result, the rewards they
obtain may not accurately reflect their behaviors, leading to inaccurate policy updates. This is known
as the credit assignment problem [11] in MARL.

In discrete action spaces, value decomposition is a solution. VDN [15] uses a simple summation
to calculate the joint action-value function for decomposing the team’s reward signal to each agent.
Compared with IQL[16], this centralized training method can guarantee the optimality of the joint
action value function to a certain extent. Nevertheless, the simple summation significantly limits
the fitting ability of the joint action-value function. QMIX [13] improves the fitting process of
simple summation in VDN to non-linear fitting subject to monotonic constraints. QTRAN [17]
introduces an intermediate action-value function that approximates the real action-value function
and then decomposes the intermediate action-value function, which avoids the monotonic constraint
of QMIX. In addition, given the limitation of the QMIX action-value function fitting ability with
monotonic constraints, the agent cannot explore the entire joint action space. MAVEN [18] shares
a hidden variable in the value function of each agent, and uses the mutual information obtained by
maximizing the trajectory information of the agent and the hidden variable information to increase
the divergence of the policy and make the actions more diverse.

For continuous action state spaces, existing work often learns the joint state-value function directly.
One such algorithm that does this is MADDPG [19], which extends the DDPG [20] algorithm to
the multi-agent system. MADDPG adopts a scheme of centralized training and decentralized ex-
ecution, where the joint value function is computed and then used to evaluate the policy of each
agent. Another algorithm that follows a similar path is MAPPO [21], which extends PPO [22] to
the multi-agent domain. Interestingly, MAPPO requires only a minimal hyperparameter search to
achieve comparable performance to state-of-the-art algorithms. Both MADDPG and MAPPO im-
plicitly solve the multi-agent credit assignment problem. In contrast, COMA [23] tackles the credit
assignment problem head-on by using a counterfactual baseline to evaluate the contribution of each
agent to the team. In addition, simple independent learning[24] that solely pursues self-interest may
make traffic vehicles aggressive and display irrationally selfish behavior. Unlike existing algorithms
that measure their contribution to the team starting from the agent, distributing the team’s needs
directly to the agents could be an interesting solution.

2.2 Autonomous Traffic Flow

Collecting data solely from the real world for autonomous driving is impractical and expensive.
Therefore, traffic flow simulations have emerged as a popular alternative for modeling vehicle inter-
actions. Traditional approaches [25] employed predetermined rules to control traffic flow. Recent
research has introduced RL as a way to control vehicles in traffic flow. For example, CityFlow [26]
employs RL algorithms to study traffic flow on a city-wide scale. RL has also been used to train
individual vehicles [27] in controlled environments and examine vehicle-to-vehicle social interac-
tions [28]. Additionally, SMARTS [29] studies the interaction capabilities between agents in differ-
ent environments. Nevertheless, the study of interactions between agents in diverse environments
remains an area of interest. In this context, our research investigates four common autonomous driv-
ing scenarios, with a focus on applying the traffic coordinator network in continuous action spaces.
Our approach starts with teams, which directly ask agents to act in favor of the team, explicitly ad-
dressing the trade-off between team and self-interest, which allows us to model the traffic flow more
efficiently than previous work.

3

Traffic
Coordinator

FC
Cross-
Atten

TraCo

Iteration

Actor

Actor Actor

minus

Native Render

FC

MSE Loss

Figure 2: The architecture of the Traffic Coordinator network. The left image showcases the
simulated environment, with the third-person perspective visible in the bottom left corner. The ob-
servations of agents around agent i are denoted as {ok, · · · , op}, while oi represents the observation
of agent i. We incorporate two evaluation networks (Critics and Critictot) to fit individual and
joint state value functions, respectively. Equations (10) and (11) illustrate how the joint action-value
function can be computed via the joint state-value function, followed by using MSE loss to train the
action-value network.

3 Methods

Autonomous vehicles must be vigilant to avoid collisions while reaching their destination. In real-
ity, drivers drive carefully under the guidance of the traffic coordinator, which provides clear driving
directions based on the surrounding situation, reducing the driving difficulty. This section provides
a detailed overview of the TraCo network, which enhances the social behavior of traffic flow. To en-
sure that compliance with TraCo’s orders improves the team’s interest, we utilize the counterfactual
advantage function. The TraCo network differs from traditional centralized algorithms by reduc-
ing the information processing difficulties on each agent and providing clear centralized vehicle
guidance.

3.1 Traffic Coordinator

As shown in Figure 2, We introduce a virtual agent, the traffic coordinator, to model the traffic flow.
The traffic coordinator has in-domain observations and distributes order vectors zi ∈ Rdz (zi is
the order issued by the traffic coordinator to agent i, and dz is the order dimension) to each agent.
The orders issued by the traffic coordinator network can be represented by z = zi | i ∈ N , where
N is the number of agents. The function f generates the order z and is parameterized by φ, with
zi ∼ fφ (oi, si), where oi is the observation of agent i, and si is obtained by aggregating agent
information in the domain, as illustrated in Figure 2. Upon receiving the traffic coordinator order
zi, each agent i takes actions according to its observation oi. In an episode, the traffic coordinator
observes the state in the domain, calculates, and distributes orders zt to the agent. At each moment,
any agent i will act based on its individual observation and order zi, pi = π(oi, zi), ai ∼ pi. The
objective function is formulated using PPO as follows:

L(θ) = Σn
i min(

πθ(ai | oi, zi)
πθ′ (ai | oi, zi)

Ai, cilp(
πθ(ai | oi, zi)
πθ′ (ai | oi, zi)

, 1− ε, 1 + ε)Ai), (1)

Since the information closer to the vehicle may be more important, as shown in Figure 2, In order
to capture the interactions between agents, we utilize a Cross-Attention network [14] in the traffic
coordinator network to extract relevant information.

4

3.2 Counterfactual Advantage Function

Updating the policy solely based on Equation (1) results in the traffic coordinator network issuing
orders only to extract in-domain features, with the agent action network making more comprehensive
decisions based on these features. The advantage function remains unchanged as follows:

A(oi, zi, ai) = Q (oi, zi, ai)− V (oi, zi)

=Est+1∽p(st+1|st,at)[r(s t) + γV π (s t+1)− V π (s t)]
(2)

However, this approach fails to address the critical interests balance problem. Since traditional TD
errors only consider agent rewards, the contribution of each agent to the team is still not measured.
Therefore, inspired by the difference rewards[30], we design counterfactual rewards to measure the
impact of whether each agent acts according to the team’s order on the team’s interests.

rDi = rtot(oi, ai(zi),oi− ,ai−)− rtot(oi, ai(z
−
i),oi− ,ai−), (3)

Here oi− and ai− represent the joint observations and joint actions of agents other than agent i,
ai(z

−
i) represents the action of the agent only based on its own observation when there is no traffic

coordinator order. rtot represents the team reward in the domain, rtot = rsk + · · · + rsp, {k · · · p ∈
domaini}. At this point, the reward for agent i is:

ri = rsi + rDi , (4)

At this point, agent i’s reward comes from its reward, and the team’s reward. According to Equation
(3), obtaining rDi needs to perform actions with or without traffic coordinator orders so that the
environment gives different reward signals, which requires modeling the environment. Obviously,
this process is overly complicated. Researchers [31] suggest using function approximations instead
of simulators to estimate differential rewards.

Similar to COMA [23], we design a centralized critic, which is used to estimate the joint actions
value function Qtot of all agents in the domain. Then, for each agent i, with this value function
Qtot, we can compute a Counterfactual Advantage Function (CAF), keeping the actions ai− of
other agents fixed in the process:

AD
i (s,a) = Qtot(si,a(zi))−Qtot(si,a(z

−
i)) (5)

In Equation (5), a centralized critic is employed to reason about counterfactuals. Specifically, the
critic considers the scenario where only the actions of agent i change and computes the counter-
factual advantage function AD

i (si,ai), which reflects the contribution of agent i to the team. This
approach enables learning directly from the agent’s experience without relying on an additional
environment model.

Based on this, the advantage function of agent i at this time is:

Ai = As
i + α ∗AD

i (6)

As
i = Qi (oi, ai)− Vi (oi)

= E[rsi + γV π
i − V π

i]
(7)

where α represents the coefficient of the counterfactual advantage function. As
i is the advantage

function obtained by agent i based on its reward function. Please see the appendix for additional
methods and pseudocode.

4 Experiments

4.1 Baseline Algorithms and Experiment Setup

Experimental baseline algorithms include IPPO [24], MFPO [32], and CoPO [3]. IPPO uses PPO
as an independent learner; MFPO encodes the state of surrounding agents as a mean state, which

5

Bottleneck Tollgate

Parking Lot Intersection

CoPO
IPPO

MFPO
TraCo

CoPO
IPPO

MFPO
TraCo

CoPO
IPPO

MFPO
TraCo

CoPO
IPPO

MFPO
TraCo

Figure 3: Performance comparison of TraCo and other baseline algorithms in four task scenarios.
Note that the time interval step of the features extracted by the traffic coordinator network is 1.

is used as an auxiliary input to the value function. CoPO 1 is to split the source of the agent into
its reward and the average reward of the surrounding agents, and the global reward controls the
proportion of the two.

We ran experiments using RLlib [33] with the aforementioned environments and algorithms on 4
Nvidia GeForce RTX 2080Ti GPUs. Each trial was trained on over 1 million environment steps,
equivalent to approximately 55 hours in a real-time traffic system or over 2,000 hours of individual
driving experience, assuming an average of 40 vehicles running at the same time. For the introduc-
tion of the experimental scenarios and tasks, please refer to the appendix.

4.2 Results

In Figure 3, we compare the success rates of our TraCo algorithm to those of the baseline algorithms
across all tasks. As a result of the virtual traffic coordinator’s order, our TraCo algorithm outper-
forms the baseline in three tasks and performs comparably to the baseline only in the Intersection
task. Notably, in the Tollgate task, which involves the most agents, TraCo outperforms the strong
baseline CoPO by a significant margin. As shown in Figure 5, this task requires agents to exhibit
active cooperation behaviors, such as queuing and giving way, and strong interaction abilities among
agents. Populations generated by other algorithms fail to exhibit such behavior, leading to conges-
tion. Interestingly, IPPO performs comparably to MFPO and even outperforms CoPO in the Parking
Lot task, despite MFPO and CoPO having more intra-domain information. This is because the value
estimated by IPPO’s critic network includes noise perturbations that improve the algorithm’s explo-
ration performance. Additionally, the Parking Lot task is continually changing due to community
factors. Simply averaging or concatenating neighbors’ states as an additional input to the value
function makes training unstable, a phenomenon also observed in MARL from StarCraft [24, 34].

1https://github.com/metadriverse/metadrive-benchmark/tree/main/MARL; As described in the repo link,
CoPO measures performance using the maximum value of each set of experimental data with different ran-
dom seed. However, for more comprehensive comparison, we use the average performance across 8 random
seeds in this study.

6

CoPO
IPPO

MFPO
TraCo

CoPO
IPPO

MFPO
TraCo

CoPO
IPPO

MFPO
TraCo

CoPO
IPPO

MFPO
TraCo

Intersection

TollgateBottleneck

Parking Lot

Figure 4: Performance comparison among TraCo and baseline algorithms with three metrics.

Give way

QueueingWaiting

Rushing

Reversing

Slow moving

Entering

Queueing

Queueing

Cutting in

Waiting

Cutting in

Bypassing

Figure 5: Visualization of the social behavior of the population with TraCo. The social behavior of
each agent is denoted with black dots, while the subsequent trajectory of each vehicle is indicated
by a decreasing intensity of color, with brighter colors representing more recent steps.

Figure 4 depicts the lidar chart with three metrics after normalization. Despite the comparable
success rate, TraCo outperforms baseline algorithms on safety and efficiency metrics. To render
the vehicle running track, MateDrive employs PyGame. Figure 5 illustrates that TraCo generates
populations that exhibit social behaviors, such as reversing, cutting in line, queuing, waiting, and
following, in all four tasks to complete their goals. This demonstrates that the vehicle selects differ-
ent driving styles based on the situation and simulates a range of interactive behaviors in the traffic
system.

4.3 Generalization

To evaluate the generalization ability, we vary the initial number of agents in the test phase to deter-
mine their converged policies. Figure 6 illustrates that as the number of agents increases, the popu-
lation success rate decreases due to road congestion and a higher likelihood of collisions. However,
we observe that having too few agents did not improve the algorithm’s performance in the Intersec-
tion task. We suspect that in the multi-agent algorithm, each agent’s policy may overfit the behavior

7

Bottleneck Tollgate

Parking Lot Intersection

CoPO

IPPO
MFPO

TraCo

CoPO

IPPO
MFPO

TraCo

CoPO

IPPO
MFPO

TraCo

CoPO

IPPO
MFPO

TraCo

Figure 6: Success rate for different initial numbers of vehicles at test time. The gray vertical line
represents the initial number of vehicles during training, from which the algorithm policy is trained.

of other agents, resulting in failure. This overfitting may occur because a reduced number of agents
leads to fewer encountered situations, which can limit the model’s ability to generalize. Additionally,
we find that inputting the reward distribution coefficient, which is learned during CoPO training, as
prior knowledge into the agent observation may interfere with the generalization ability of the algo-
rithm once the number of agents changes during the test phase. Notably, TraCo outperforms baseline
algorithms, even when the number of agents in the population changes. This is because TraCo uses
a cross-attention network to process the dynamic number of agent information in the domain, allow-
ing its model to adapt to the community environment of the dynamic number of agents. Finally, we
have designed ablation experiments, which are detailed in the Appendix.

5 Limitation

TraCo has demonstrated its ability in traffic flow simulation by facilitating team instructions, while
agents exhibit complex social behaviors. However, there are still gaps in its ability to replicate
real-world vehicle behaviors, which can be attributed to the random exploration of reinforcement
learning. To address this shortcoming, we plan to integrate real data into our approach in the future,
in order to constrain vehicle behavior and improve overall performance. In addition, TraCo still
lacks the ability to handle traffic lights, which may limit its application to certain urban driving
scenarios.

6 Conclusions

We present a novel approach to model traffic flow using the Traffic Coordinator Network (TraCo)
with the Counterfactual Advantage Function (CAF) and an attention mechanism. TraCo models
real traffic coordination to enhance vehicle decision-making unlike traditional feature extraction
networks. Our experiments demonstrate that TraCo-trained vehicles exhibit lower collision rates and
higher success rates than baseline models while demonstrating a diverse range of social behaviors.

7 Acknowledgment

This work is supported by NSFC 62088101 Autonomous Intelligent Unmanned Systems.

8

References
[1] A. Dorri, S. S. Kanhere, and R. Jurdak. Multi-agent systems: A survey. Ieee Access, 6:

28573–28593, 2018.

[2] T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, and O. Shochet. Novel type of phase transition
in a system of self-driven particles. Physical review letters, 75(6):1226, 1995.

[3] Z. Peng, Q. Li, K. M. Hui, C. Liu, and B. Zhou. Learning to simulate self-driven particles
system with coordinated policy optimization. Advances in Neural Information Processing
Systems, 34:10784–10797, 2021.

[4] M. Georgeff, B. Pell, M. Pollack, M. Tambe, and M. Wooldridge. The belief-desire-intention
model of agency. In Intelligent Agents V: Agents Theories, Architectures, and Languages: 5th
International Workshop, ATAL’98 Paris, France, July 4–7, 1998 Proceedings 5, pages 1–10.
Springer, 1999.

[5] G. I. Simari and S. D. Parsons. Markov Decision Processes and the Belief-Desire-Intention
Model: Bridging the Gap for Autonomous Agents. Springer Science & Business Media, 2011.

[6] A. Czirók and T. Vicsek. Collective behavior of interacting self-propelled particles. Physica
A: Statistical Mechanics and its Applications, 281(1-4):17–29, 2000.

[7] E. Bertin, M. Droz, and G. Grégoire. Hydrodynamic equations for self-propelled particles:
microscopic derivation and stability analysis. Journal of Physics A: Mathematical and Theo-
retical, 42(44):445001, 2009.

[8] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung, D. H. Choi,
R. Powell, T. Ewalds, P. Georgiev, et al. Grandmaster level in starcraft ii using multi-agent
reinforcement learning. Nature, 575(7782):350–354, 2019.

[9] S. Bhalla, S. Ganapathi Subramanian, and M. Crowley. Deep multi agent reinforcement learn-
ing for autonomous driving. In Canadian Conference on Artificial Intelligence, pages 67–78.
Springer, 2020.

[10] A. Malus, D. Kozjek, et al. Real-time order dispatching for a fleet of autonomous mobile
robots using multi-agent reinforcement learning. CIRP annals, 69(1):397–400, 2020.

[11] M. Zhou, Z. Liu, P. Sui, Y. Li, and Y. Y. Chung. Learning implicit credit assignment for
cooperative multi-agent reinforcement learning. Advances in neural information processing
systems, 33:11853–11864, 2020.

[12] T. Rashid, G. Farquhar, B. Peng, and S. Whiteson. Weighted qmix: Expanding monotonic
value function factorisation for deep multi-agent reinforcement learning. Advances in neural
information processing systems, 33:10199–10210, 2020.

[13] T. Rashid, M. Samvelyan, C. S. De Witt, G. Farquhar, J. Foerster, and S. Whiteson. Mono-
tonic value function factorisation for deep multi-agent reinforcement learning. The Journal of
Machine Learning Research, 21(1):7234–7284, 2020.

[14] Z. Huang, X. Wang, L. Huang, C. Huang, Y. Wei, and W. Liu. Ccnet: Criss-cross attention for
semantic segmentation. In Proceedings of the IEEE/CVF international conference on computer
vision, pages 603–612, 2019.

[15] P. Sunehag, G. Lever, A. Gruslys, W. M. Czarnecki, V. Zambaldi, M. Jaderberg, M. Lanctot,
N. Sonnerat, J. Z. Leibo, K. Tuyls, et al. Value-decomposition networks for cooperative multi-
agent learning. arXiv preprint arXiv:1706.05296, 2017.

[16] A. Tampuu, T. Matiisen, D. Kodelja, I. Kuzovkin, K. Korjus, J. Aru, J. Aru, and R. Vicente.
Multiagent cooperation and competition with deep reinforcement learning. PloS one, 12(4):
e0172395, 2017.

9

[17] K. Son, D. Kim, W. J. Kang, D. E. Hostallero, and Y. Yi. Qtran: Learning to factorize with
transformation for cooperative multi-agent reinforcement learning. In International conference
on machine learning, pages 5887–5896. PMLR, 2019.

[18] A. Mahajan, T. Rashid, M. Samvelyan, and S. Whiteson. Maven: Multi-agent variational
exploration. Advances in Neural Information Processing Systems, 32, 2019.

[19] R. Lowe, Y. I. Wu, A. Tamar, J. Harb, O. Pieter Abbeel, and I. Mordatch. Multi-agent actor-
critic for mixed cooperative-competitive environments. Advances in neural information pro-
cessing systems, 30, 2017.

[20] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra.
Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

[21] C. Yu, A. Velu, E. Vinitsky, J. Gao, Y. Wang, A. Bayen, and Y. Wu. The surprising effectiveness
of ppo in cooperative multi-agent games. In Thirty-sixth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track.

[22] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

[23] J. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson. Counterfactual multi-agent
policy gradients. In Proceedings of the AAAI conference on artificial intelligence, volume 32,
2018.

[24] C. S. de Witt, T. Gupta, D. Makoviichuk, V. Makoviychuk, P. H. Torr, M. Sun, and S. Whiteson.
Is independent learning all you need in the starcraft multi-agent challenge? arXiv preprint
arXiv:2011.09533, 2020.

[25] S. E. Shladover. Review of the state of development of advanced vehicle control systems
(avcs). Vehicle System Dynamics, 24(6-7):551–595, 1995.

[26] H. Zhang, S. Feng, C. Liu, Y. Ding, Y. Zhu, Z. Zhou, W. Zhang, Y. Yu, H. Jin, and Z. Li.
Cityflow: A multi-agent reinforcement learning environment for large scale city traffic sce-
nario. In The world wide web conference, pages 3620–3624, 2019.

[27] A. Kendall, J. Hawke, D. Janz, P. Mazur, D. Reda, J.-M. Allen, V.-D. Lam, A. Bewley, and
A. Shah. Learning to drive in a day. In 2019 International Conference on Robotics and
Automation (ICRA), pages 8248–8254. IEEE, 2019.

[28] S. Shalev-Shwartz, S. Shammah, and A. Shashua. Safe, multi-agent, reinforcement learning
for autonomous driving. arXiv preprint arXiv:1610.03295, 2016.

[29] M. Zhou, J. Luo, J. Villella, Y. Yang, D. Rusu, J. Miao, W. Zhang, M. Alban, I. Fadakar,
Z. Chen, et al. Smarts: Scalable multi-agent reinforcement learning training school for au-
tonomous driving. arXiv preprint arXiv:2010.09776, 2020.

[30] D. H. Wolpert and K. Tumer. Optimal payoff functions for members of collectives. In Modeling
complexity in economic and social systems, pages 355–369. World Scientific, 2002.

[31] M. K. Colby, W. J. Curran, and K. Tumer. Approximating difference evaluations with local
information. In AAMAS, pages 1659–1660, 2015.

[32] Y. Yang, R. Luo, M. Li, M. Zhou, W. Zhang, and J. Wang. Mean field multi-agent reinforce-
ment learning. In International conference on machine learning, pages 5571–5580. PMLR,
2018.

[33] E. Liang, R. Liaw, R. Nishihara, P. Moritz, R. Fox, K. Goldberg, J. Gonzalez, M. Jordan,
and I. Stoica. Rllib: Abstractions for distributed reinforcement learning. In International
Conference on Machine Learning, pages 3053–3062. PMLR, 2018.

10

[34] J. Hu, S. Hu, and S.-w. Liao. Policy regularization via noisy advantage values for cooperative
multi-agent actor-critic methods. arXiv preprint arXiv:2106.14334, 2021.

[35] R. Varma. Picking loss functions-a comparison between mse, cross entropy, and hinge loss,
2018.

[36] Q. Li, Z. Peng, L. Feng, Q. Zhang, Z. Xue, and B. Zhou. Metadrive: Composing diverse driving
scenarios for generalizable reinforcement learning. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2022.

8 Appendix

8.1 Method Supplement

In order to calculate the counterfactual advantage function AD
i , the joint action value function Qtot

must be estimated, although only the state value function Vtot is estimated with PPO. Thus, we have:

V π,γ
tot (st) := Est+1:∞;at:∞

[∞∑
l=0

γlrtott+1

]
, (8)

and:

Qπ,γ
tot (st, at) := Est+1:∞;at+1:∞

[∞∑
l=0

γlrtott+1

]
. (9)

From equations (8, 9), we get:

Qπ,γ
tot (st, at) := rtott + γEst+2:∞;at+1:∞

[∞∑
l=0

γlrtott+2

]
= rtott + γV π,γ

tot (st+1)

(10)

In this way, we can obtain the action-value function Qtot from the state-value function Vtot in the
PPO architecture. However, since state-value functions cannot evaluate agent actions, we design an
action-value function network that takes input approximating Equation (10). To train the network,
we utilize Mean Square Error (MSE) loss [35]:

MSE =
1

b

b∑
i=1

(yi − y′i)
2

=
1

b

b∑
i=1

(Qnet
tot − rtott − γV π,γ

tot (st+1))
2
.

(11)

where b denotes the batch size. Algorithm 1 shows the overall process of TraCO in the appendix.

At this time, the partial differential of the counterfactual advantage function for agent i to take an
action under instruction zi is:

∂

∂zi
AD

i =
∂

∂zi
Q(si,a(zi))−

∂

∂zi
Q(si,a(z

−
i))

=
∂

∂zi
Q(si,a(zi))

(12)

The above equation reveals that the agent i’s utility with counterfactual instructions aligns with the
global learning objective, and maximizing the counterfactual reward can enhance the joint action-
value function. Consequently, the agent’s advantage function can be decomposed into its individual
and team contributions, as shown in Equation (6), which completes the value decomposition opera-
tion.

11

Algorithm 1 TraCo for agent i
1: Input: Randomly initialize TraCo, actor and critic network f , π and V with weights φ, θπ and

θv
2: for episode=1, T do
3: Get agents’ observations {o1, · · · , on}
4: Get si = {ok, · · · , op} according to the distance
5: Compute zi = f(oi, si), ai = π(oi, zi)
6: Compute counterfactual advantage function AD

i according to equations (5, 10, 11)
7: Compute Ai according to equation (6)
8: Update with PPO rules
9: end for

8.2 Experiment Platform and Scenarios

We use MetaDrive [36] as a simulator, which is capable for generating infinite scenarios with var-
ious road maps and traffic settings to enable generalizable RL. In our setup, we use current state,
navigation info, and surrounding data encoded in a vector of 72 lidar-like measurements as agent
observations, while the policy output is the acceleration and steering of the vehicle. As the mutual
influence between vehicles decreases with distance, we define the in-domain state for the traffic
coordinator as the information splicing of different vehicles within a 40-meter radius of the ego-
vehicle.

As shown in Figure 5, we benchmark our method in four common autonomous driving tasks, which
are described in detail as follows:

Bottleneck: The Bottleneck is to set up a narrow bottleneck lane between the eight lanes, forcing
vehicles to give way and queue up to pass. The environment is initialized with 20 cars.

Tollgate: The Tollgate environment models the real-world behavior of vehicles passing through a
tollgate, where agents are required to wait for a permission signal for 3 seconds before continuing.
Failure to comply with this rule results in a failed episode. The environment is initialized with 40
cars.

Parking lot: The parking lot scenario in our simulation consists of 8 parking spaces. Spawn points
for vehicles are scattered both within and outside the parking lot, leading to simultaneous entry and
exit of vehicles and thereby increasing the level of difficulty. The environment is initialized with 10
cars.

Intersection: At an unprotected intersection scenario, vehicles are required to negotiate and judge
the potential intentions of other parties in order to complete the task. The environment is initialized
with 30 cars.

In this paper, we use three indicators to evaluate the performance of multi-agent algorithms. suc-
cess rate is the ratio of vehicles successfully reaching the destination, safety is the vehicle non-
collision rate, efficiency >= 0 indicates the difference between successes and failures in a unit of
time (Nsuccess −Nfailure)/T . Vehicles may travel at low speeds for the safety of driving, but this
is not conducive to the effective passage of vehicles.

8.3 Ablation Studies

In our previous experiments, we employed the traffic coordinator network solely as a feature ex-
traction network, without considering the counterfactual advantage function. Therefore, it is crucial
to verify the validity of this function. As illustrated in Figure 7, TraCo w/o CAF performs worse
than TraCo w/ CAF in all four autonomous driving tasks. This is because the traffic coordinator
network, when equipped with a counterfactual advantage function, not only extracts in-domain fea-
tures but also evaluates the agent’s behavior based on these features. This evaluation allows for the

12

Tollgate

Parking Lot Intersection

Bottleneck

TraCo w/ CAF
TraCo w/o CAF

TraCo w/ CAF
TraCo w/o CAF

TraCo w/ CAF
TraCo w/o CAF

TraCo w/ CAF
TraCo w/o CAF

Figure 7: Performance comparison of TraCo with and without counterfactual advantage functions.

Table 1: The traffic coordinator network re-issues the command z according to the current situation
at different time intervals, and the command z remains unchanged during this time interval.

Bottleneck Tollgate Parking lot Intersection

Success Rate Efficiency Safety Success Rate Efficiency Safety Success Rate Efficiency Safety Success Rate Efficiency Safety

TraCo/1 0.36 ±0.13 0.26 0.36 0.36 ± 0.19 0.22 0.38 0.27 ± 0.04 0.21 0.27 0.73 ± 0.05 0.51 0.73

TraCo/2 0.37 ± 0.09 0.27 0.37 0.32 ± 0.15 0.18 0.34 0.15 ± 0.07 0.11 0.16 0.72 ± 0.01 0.51 0.72

TraCo/4 0.38 ± 0.07 0.28 0.38 0.17 ± 0.16 0.09 0.2 0.14 ± 0.06 0.11 0.15 0.72 ± 0.03 0.51 0.72

TraCo/6 0.42 ± 0.09 0.3 0.42 0.25 ± 0.19 0.14 0.28 0.17 ± 0.04 0.13 0.17 0.73 ± 0.04 0.51 0.73

TraCo/8 0.34 ± 0.12 0.25 0.34 0.29 ± 0.18 0.16 0.31 0.21 ± 0.04 0.16 0.21 0.74 ± 0.02 0.53 0.74

measurement of the agent’s contribution to itself and the surrounding team, effectively addressing
the interests balance problem.

Taking inspiration from the behavior of real-life traffic coordinators, who issue commands based
on vehicle behavior and intersection information at time intervals rather than continuously directing
vehicles, we designed different time intervals for the Traffic Coordinator Network (TroCo) to extract
features. As shown in Table 1, our experiments reveal that in complex traffic environments such
as Tollgate and Parking lot, where obstacles are numerous, roads are congested, and the behavior
of domain agents is difficult to predict, frequent direction is necessary to ensure optimal vehicle
decision-making. However, in Bottleneck and Intersection tasks, where the purpose of the vehicle
is clear, and the behavior is more predictable, frequent direction may interfere with the agent’s
decision-making. In such cases, an appropriate time interval can enhance the consistency of the
agent’s behavior.

13

	Introduction
	Related Work
	MARL and Value Decomposition
	Autonomous Traffic Flow

	Methods
	Traffic Coordinator
	Counterfactual Advantage Function

	Experiments
	Baseline Algorithms and Experiment Setup
	Results
	Generalization

	Limitation
	Conclusions
	Acknowledgment
	Appendix
	Method Supplement
	Experiment Platform and Scenarios
	Ablation Studies

