
α-MDF: An Attention-based Multimodal
Differentiable Filter for Robot State Estimation

Xiao Liu1, Yifan Zhou1, Shuhei Ikemoto2, and Heni Ben Amor1

1Interactive Robotics Lab, Arizona State University
2Kyushu Institute of Technology

1{xliu330,yzhou298,hbenamor}@asu.edu 2ikemoto@brain.kyutech.ac.jp

Force/TorqueJointsDepthRGB

Rigid Body Dynamics

State t-1 State t

"Pick" "Push" "Put down"

Soft Robot Dynamics

t-1 t t+1

0 100 200 300

0

2

0 50 100 150

0

10

RGB Depth IMUs
0 100 200 300 400

100

0

State t-1 State t
-MDF -MDF -MDF -MDF -MDF -MDF

Figure 1: The attention-based Multimodal Differentiable Filter (α-MDF) framework enables robot state esti-
mation in multimodal settings, applicable to both rigid body robots and soft robots.

Abstract: Differentiable Filters are recursive Bayesian estimators that derive the
state transition and measurement models from data alone. Their data-driven na-
ture eschews the need for explicit analytical models, while remaining algorith-
mic components of the filtering process intact. As a result, the gain mecha-
nism – a critical component of the filtering process – remains non-differentiable
and cannot be adjusted to the specific nature of the task or context. In this pa-
per, we propose an attention-based Multimodal Differentiable Filter (α-MDF)
which utilizes modern attention mechanisms to learn multimodal latent repre-
sentations. Unlike previous differentiable filter frameworks, α-MDF substitutes
the traditional gain, e.g., the Kalman gain, with a neural attention mechanism.
The approach generates specialized, context-dependent gains that can effectively
combine multiple input modalities and observed variables. We validate α-MDF
on a diverse set of robot state estimation tasks in real world and simulation.
Our results show α-MDF achieves significant reductions in state estimation er-
rors, demonstrating nearly 4-fold improvements compared to state-of-the-art sen-
sor fusion strategies for rigid body robots. Additionally, the α-MDF consis-
tently outperforms differentiable filter baselines by up to 45% in soft robotics
tasks. The project is available at alpha-mdf.github.io and the codebase is at
github.com/ir-lab/alpha-MDF

Keywords: Differentiable Filters, Sensor Fusion, Multimodal Learning.

1 Introduction

Recursive Bayesian filters, in particular Kalman filters, are a core component of many robotic and
autonomous systems [1]. These filters offer a probabilistic framework that enables effective state es-
timation and allowing robots to perceive and respond to dynamic environmental conditions [2, 3, 4].

7th Conference on Robot Learning (CoRL 2023), Atlanta, USA.

alpha-mdf.github.io
github.com/ir-lab/alpha-MDF

Constructing the analytical models and characterizing their noise profiles can be an overwhelm-
ing undertaking and requires supplementary measures, e.g., system identification [5]. In addition,
scalability still poses a significant obstacle, particularly when dealing with non-linear and high-
dimensional systems. Advanced techniques such as the ensemble Kalman filter [6] have been de-
veloped to tackle this challenge. However, they may still require careful manual design of the data
pipeline and filtering process, especially in the presence of multimodal data sources. A potential
alternative methodology is to derive the underlying models for filtering from data alone. Recent ad-
vancements in Deep state-space models (DSSMs) [7] provide effective solutions for understanding
the state and measurement estimation from observed sequences as data-driven approaches [7, 8, 9].
Such approaches do not need to derive explicit system dynamics, which is essential and challenging
in traditional filtering techniques. A subclass of algorithms derived from DSSMs, called Differ-
entiable Filters (DFs), focus on learning state transition and measurement models from data while
retaining the fundamental principles of Bayesian recursive filtering. This combination of proper-
ties renders DFs particularly well-suited for systems with complex dynamics and diverse sensor
observations.

In this paper, we introduce a novel class of differentiable filters built upon neural attention mecha-
nisms. The key innovation lies in the substitution of the traditional Kalman gain with an attention
mechanism for filtering with multimodal observations. This approach allows for the learning of a
highly specialized and task-specific gain mechanism. The utilization of multimodal observations,
also known as multimodal learning [10], has shown substantial advantages in various robotics appli-
cations [11, 12, 13]. By harnessing information from diverse modalities such as vision [14, 15, 16],
language [17, 18, 19, 20], and tactile sensing [21, 22], robots can learn to better interpret their sur-
roundings, produce more accurate estimates of their own internal state, and consequently improve
the overall decision-making process. We propose the attention-based Multimodal Differentiable Fil-
ters (α-MDF) framework, as shown in Fig. 2, each module is learnable and operates in latent space.
The primary contributions are: (1) Attention Gain: Our approach is an attention-based strategy that
replaces the conventional Kalman gain in the measurement update step, as depicted by the colored
blocks in Fig. 2. The gain mechanism is learned to update the current state based on multimodal
observations. (2) Latent Space Filtering: our proposed differentiable framework operates in a la-
tent space, learning high-dimensional representations of system dynamics and capturing intricate
nonlinear relationships. This approach proves particularly advantageous for highly nonlinear sys-
tems. (3) Empirical evaluations: α-MDF achieves significant reductions in state estimation errors,
demonstrating nearly 4-fold improvements compared to state-of-the-art sensor fusion strategies in
multimodal manipulation tasks. Furthermore, α-MDF accurately models the non-linear dynamics
of soft robots, consistently surpassing differentiable filter baselines by up to 45%.

2 Related Work

Differentiable Filters (DFs) have garnered attention as learnable non-linear state-space mod-
els [23, 24, 25]. Previous works [26, 27] have integrated neural network components into robotic
algorithms, such as BackpropKF, which combines backpropagation with neural networks to train
Kalman Filters. Similarly, research in Differentiable Particle Filters (DPFs) [28, 29] has also lever-
aged learnable modules to address the challenges of filtering and state tracking. Algorithmic priors
have been utilized to improve the learning efficiency of DPFs, and adversarial methods have been
used for posterior estimation [30]. However, the gain mechanism in the traditional Kalman filter is
not differentiable and has not been incorporated into the learning procedure of the DFs mentioned
earlier. In a recent study [9], the effectiveness of DFs in training and modeling uncertainty with noise
profiles has been demonstrated. Typically, multi-layer perceptrons integrated with an RNN layer are
employed in the implementation of DFs. Performance on real-world tasks has shown considerable
improvement in state tracking accuracy [9, 22, 24, 31, 32], and results indicate that the adoption of
end-to-end learning is crucial for accurately learning noise models. However, as noted in [8], the
use of RNN has been shown to be “a limiting factor for learning accurate models” and may “lead
to a non-Markovian state-space”. Furthermore, the traditional Kalman gain for DFs in [9, 22, 24]
remains non-learnable, despite the numerous advancements made thus far in differentiable filters

2

Transformer Process Model

State

Sensor Encoders

Auxiliary model

observation attentionstate attention

Attention Gain

RGB Depth Joints

Attention
map

 Keys Keys

values

Latent
 Decoder

State

latent observationlatent state latent observation latent observation

A
ux

ili
ar

y
qu

er
y

latent state
latent
state

Action

-MDF

Figure 2: The α-MDF framework consists of a transformer process model, sensor encoders, and an attention
gain update model. The transformer process model predicts the following latent state, while the sensor encoders
learn latent representations from observations. The attention gain model then corrects the predicted latent state
using the learned representations.

and particle filters. While DFs have demonstrated considerable promise as differentiable sequen-
tial models, their application in multimodal settings has thus far received limited attention. One
notable exception is the recent work in [22], which proposes sensor fusion strategies associated
with DFs. Employing multimodal environments often necessitates the adoption of representation
learning methodologies [33], which require learning a latent representation for capturing intricate
static and dynamic features [8, 12, 34]. Studies such as [11] have highlighted the effectiveness of
blending networks in learning a shared representation based on Conditional Neural Processes [35].
Other studies, including [21, 12], have adopted a self-supervised approach involving variational
autoencoders (VAE) [36] to discover latent representations for stable manipulation policies. The
majority of multimodal latent representations are obtained through policy learning. However, in
certain situations, a gating technique [37] that focuses on specific modalities can be employed to en-
hance policy robustness. In light of this, we propose an alternative approach which utilizes modern
attention mechanisms to learn multimodal latent representations at both the level of modalities and
observations. The novel approach fuses multiple types of modalities and variables in a dynamic,
context-dependent fashion, thereby enabling synergies between their respective qualities, structures,
relevance, and degrees of redundancy.

3 Multimodal Differentiable Filters

We introduce a novel approach called attention-based Multimodal Differentiable Filters (α-MDF),
which combines differentiable filters with insights from transformer models. This approach per-
forms state estimation and fusion of multiple sensor modalities in a unified and differentiable man-
ner. We first discuss Recursive Bayesian filtering as the general technique used to estimate the state
xt of a discrete-time dynamical system. Thereafter, we provide the details of our specific algorithm.
Given a sequence of actions a1:t and noisy observations y1:t, the posterior distribution of the state
can be represented by the following equation:

p(xt|a1:t,y1:t,x1:t−1) ∝ p(yt|at,xt) p(xt|a1:t−1,y1:t−1,x1:t−1). (1)
We can denote the belief of the state as bel(xt) = p(xt|a1:t,y1:t,x1:t−1). Assuming the Markov
property, where the next state is dependent only on the current state, we get the following expression:

bel(xt) = η p(yt|xt)︸ ︷︷ ︸
observation model

t∏
t=1

state transition model︷ ︸︸ ︷
p(xt|at,xt−1) bel(xt−1), (2)

where η is a normalization factor, p(yt|xt) is the observation model and p(xt|at,xt−1) is the tran-
sition model. The transition model describes the laws that govern the evolution of the system state,
while the observation model identifies the relationship between the hidden, internal state of the sys-
tem and observed, noisy measurements.

3

3.1 α-MDF

We utilize an ensemble method for Bayesian filtering wherein each ensemble member represents
a compact robot state. Figure 2 shows the procedural steps of how this compact representation,
known as the latent state, is obtained and get updated. The filtering process includes two essential
steps, namely prediction and update, both of which are also implemented through neural networks.
Most importantly, we replace the Kalman gain step with an attention mechanism, which is trained to
weigh observations against predictions based on the current context. Additionally, we demonstrate
that attention can be used to balance and weigh different modalities, e.g., video, depth, inertial
measurements, against each other. We will see that both steps can be naturally integrated into a
single attention gain (AG) module.

Let X0:N denote the latent states with dimension dx of N steps in t with number of E ensemble
members, X0:N = [x1

0:N , . . . ,x
E
0:N], where E ∈ Z+.

Prediction step: In this step, the state transition model takes the previous states with the current ac-
tion, and predicts the next state. To this end, we leverage the capabilities of transformer-style neural
networks [38]. In addition, we generate a probability distribution over the posterior by implement-
ing the state transition model as a stochastic neural network. Therefore, we can use the following
prediction step to update each ensemble member, given a sequence of latent states Xt−N :t−1:

xit|t−N :t−1 ∼ fθθθ(x
i
t|t−N :t−1|at,x

i
t−N :t−1), ∀i ∈ E. (3)

Where fθθθ is a transformer-style neural network with multiple attention layers. In our framework,
the latent state and the action at t are processed by positional and type embedding layers [38] prior
to being fed into fθθθ. Matrix Xt|t−N :t−1 ∈ Rdx×E holds the updated ensemble members which
are propagated one step forward in latent space. For simplicity, we represent Xt|t−N :t−1 as Xt

to denote the predicted state. Further elaboration on positional embeddings, type embeddings, and
filter initialization can be found in Appendix A.1 for more comprehensive details.

Auxiliary
query

0

1

Causality-enforced Attention Map

 Keys
Ensemble

Latent state Latent observation Latent observation

Figure 3: Attention gain (AG) module uses a learned
causality-enforced attention map to replace Kalman gain.

Update step: A crucial step of the filter-
ing process is the update step, which in-
volves calculating the gain value. Tradi-
tional KF uses the Kalman gain to correct
the state by comparing the uncertainty or
covariance obtained from state space and
observation space, it requires an explicit
function to map the state to the measure-
ment. As a result, some sensor measure-
ments like images or deep-learned features
are unable to be used in the formulation di-
rectly. The proposed attention gain (AG)
module, on the other hand, eliminates the
need for an explicit observation model and can directly utilize high-dimensional features. By lever-
aging this approach, our framework enables a more flexible and efficient integration of measure-
ments without the explicit requirement of a mapping function from the state to the measurement do-
main. Instead of using one sensor encoder, we use multiple sensor encoders [s1(·), s2(·), · · · , sM (·)]
to learn latent observations from each modality:

ỹ
(i,m)
t ∼ sm(ỹ

(i,m)
t |ymt), ∀ i ∈ E, m ∈M. (4)

M is the number of modalities in the system, M ∈ Z+. The encoders generate a series of latent
observations, Ỹt = [Ỹ1

t , · · · , ỸM
t] ∈ RMdx×E , where Ỹm

t = [ỹ
(1,m)
t , · · · , ỹ(E,m)

t] ∈ Rdx×E .
The latent observations are then concatenated with predicted state Xt as input to the AG model:

X̂t = softmax

(
QQQ(X′

t ⊕ Ỹ′
t)
T

√
E

◦ M̃̃M̃M

)
(Xt ⊕ Ỹt), (5)

4

where “⊕” denotes the concatenation and “◦” is the Hadamard product, and X̂t is the final output.
In general, an attention module typically receives three sequences of tokens: queriesQQQ, keysKKK and
values VVV . In our case, we define (X′

t ⊕ Ỹ′
t) as the KKK tokens, where X′

t and Ỹ′
t are obtained by

zero-centering, and the actual values of (Xt ⊕ Ỹt) are regarded as the VVV tokens. As illustrated in
Fig. 3, the length of theKKK tokens is denoted as dk = (M +1)dx, where each token has a dimension
of E, representing the distribution along this particular token index.

In a traditional attention mechanism, the proximity ofQQQ andKKK is measured, andVVV that is associated
withKKK is utilized to generate outputs. However, we posit that within each latent vector, every index
is probabilistically independent, and index i of a latent state should only consider index i of each
latent observation. To accomplish this, we utilize matrix M̃̃M̃M to retain only the diagonal elements
of each (dx × dx) attention map, which enforces causality and allows the attention weights to be
determined according to the corresponding indices. As depicted in Fig. 3, the red line represents the
mapping for a single latent state token index. Auxiliary query tokensQQQ ∈ Rdx×E are introduced as
trainable parameters in the neural network to facilitate learning. It is important to note that both the
QQQ andKKK tokens undergo positional embedding before being fed into the AG module.

Placing Conditions on the Latent Space: Within the framework of Kalman filters, the update
step plays a crucial role in aligning the predicted observation with the observations obtained from
sensors. Within the framework of α-MDF, we ensure consistency in the latent space by introduc-
ing a decoder model D. This decoder model, implemented using multilayer perceptrons, projects
the latent space onto the actual state space. By doing so, we resolve the alignment challenges in
multimodal learning [39], and gain meaningful comparisons when conducting sensor fusion and
measurement update. Let xxxt be the ground truth state at t, the loss functions are defined as:

Lfθθθ = ∥D(fθθθ(Xt))− xxxt∥22, Le2e = ∥D(X̂t)− xxxt∥22, Ls = ∥D(sm(ymt))− xxxt∥22. (6)

The final loss function is L = Lfθθθ + Le2e + Ls, where Le2e is the end-to-end loss. Lfθθθ is used to
supervise the state transition model. The latent observation conditioning is provided with Ls during
the training process, note that the conditioning operation is applied when the modalities collectively
provide information about the complete state. The modular architecture of α-MDF provides a key
advantage in facilitating training and testing with masked modalities. The attention matrix M̃̃M̃M can be
disabled (set the attention values to zero) based on different input sensor modalities, thus improving
the model’s resilience to missing modalities.

4 Experiments
We conduct a series of experiments to evaluate the efficacy of the α-MDF framework. Specifically,
we aim to answer the following questions: (a) Can the α-MDF framework generalize across various
tasks? (b) To what extent does the new filtering mechanism improve state tracking performance
when compared to the current state-of-the-art? (c) How does the use of multiple modalities compare
to a subset of modalities for state estimation with differentiable filters? Therefore, we evaluate
the effectiveness of α-MDF across multiple robotics tasks, each with distinct setups: (1) Visual
odometry for autonomous driving, (2) Robot manipulation employing multi-modalities in both
real-world and simulation, and (3) Soft robot modeling task. Our study examines two categories of
baselines: (a) DF baselines such as those proposed in [9, 28, 26], including dEKF [9], DPF [28], and
dPF-M-lrn [9]; and (b) sensor fusion baselines proposed in [22]. Additional details on the baselines
can be found in Appendix A.3.

4.1 Visual Odometry Task

In this experiment, we evaluate the performance of α-MDF on the popular KITTI Visual Odometry
dataset [40]. Since the visual odometry task uses a single modality, we only consider RGB images
as the input modality in order to make a fair comparison with the baselines [9, 28, 26]. The actual
state is defined as a 5-dimensional vector xxx = [x, y, θ, v, θ̇]T , including the position and orientation
of the vehicle, and the linear and angular velocity. We use the latent state x ∈ R256 for α-MDF.
In comparison to dEKF, DPF, and dPF-M-lrn, we observe a reduction in the translational error of

5

0

1

attention map

t = 4 sect = 0 sec t = 12 sec

Action: the robot puts down the Pepsi canAction: the robot picks up the milk carton

0

1

attention map

t = 4 sec t = 12 sec t = 20 sec

State RGB Depth Joint State RGB Joint

Figure 4: Learned attention gain. Left: manipulation in a simulated environment with modalities [y1,y2,y3],
and right: real robot manipulation with modalities [y1,y3]. The attention maps indicate the attention weights
assigned to each modality during model inference. In the visualization, regions in red correspond to low
attention values, while those in blue indicate high attention values.

approximately 88%, 83%, and 79% for Test 100/200/400/800. The results also reflect a considerable
reduction in rotational error of approximately 64%, 54%, and 46% as compared to each of the
baselines. We report a detailed experimental setup and thorough results in Appendix B.1.

4.2 Multimodal Manipulation Task

This experiment aims to evaluate the effectiveness of the α-MDF framework in a robot manipulation
scenario. Specifically, we use α-MDF for monitoring the state of a UR5 robot during tabletop ar-
rangement tasks. Similar to behavioral cloning from observation tasks [41], actions are not available
as inputs for this study. Instead, we train α-MDF to learn how to propagate the state of the robot
over time. The evaluation involves three manipulation tasks, namely: (1) estimating the state of the
robot in a simulated environment, (2) estimating the state of the real-world robot, and (3) estimating
the joint state of the robot and the object being manipulated.

Task Setup and Data: For α-MDF, we define the latent state x ∈ R256 for all the sub-tasks. The
actual state of the UR5 robot is defined by xxxR, which consists of the joint angles (J1-J7) and the
Cartesian coordinates (x, y, z) of the robot’s end-effector (EE). xxxO denotes the state of the object,
which only includes the location (x, y, z) of the object. The complete set of modalities comprises
[y1,y2,y3,y4], where y1 ∈ R224×224×3 represents RGB images, y2 ∈ R224×224 represents depth
maps, y3 ∈ R7 represents proprioceptive inputs (joint angles), and y4 ∈ R6 represents Force/torque
(F/T) sensor readings. However, the input modalities for each of the three tasks may differ; for task
(1), it involves [y1,y2,y3], for task (2), it comprises [y1,y3], while task (3) has [y1,y2,y3,y4]. A
more detailed description of the task setup and data collection is supplied in Appendix B.2.

Table 1: Result evaluations on UR5 manipulation task

Method Real-world (MAE) Simulation (MAE)
Joint (deg) EE (cm) Joint (deg) EE (cm)

dEKF [9] 16.08±0.1 5.67±0.1 4.93±0.2 1.91±0.1
DPF [28] 15.93±0.1 5.08±0.3 4.46±0.2 1.51±0.2

dPF-M-lrn [9] 12.83±0.1 3.95±0.4 3.82±0.2 1.26±0.1
α-MDF 7.49±0.1 3.81±0.2 2.84±0.1 1.06±0.1

Means±standard errors.

Results: Using the same comparison
protocol as in [9, 28, 26], Table 1 com-
pares the proposed framework’s perfor-
mance with other DF baselines. Note
that all baselines perform tracking in
actual space, therefore, we use a pre-
trained sensor encoder to process RGB
modality for all DFs and supplied the la-
tent embedding to α-MDF, as DF base-
lines only take one modality. α-MDF outperforms dEKF and DPF, reducing errors by 33% and
25% in real-world and 45% and 30% in simulation, with an average MAE of 3.81cm and a de-
viation of 1.06cm from ground truth for end-effector positions. Additionally, α-MDF exhibits a
42% and 26% improvement in estimating joint angles compared to dPF-M-lrn. In the case of fil-
tering with multiple modalities, results presented in Table 2 show clear improvements achieved by
α-MDF in comparison to other sensor fusion techniques. The baselines are reproduced following
the procedure of [22] by providing the same pretrained sensor encoder to each modality. α-MDF
outperforms all other methods across all three manipulation tasks. In particular, it cuts the posi-
tional error of the end-effector (EE) in half when compared to the crossmodal fusion strategy [22]

6

(a) UR5 manipulation task in real-world

Steps0 50 100 150 200 250 300 350

1.0

0.5

0.0

Joint-1

Jo
in

t (
de

g)
Jo

in
t (

de
g)

0 50 100 150 200 250 300 350

0.00

0.25

0.50

Joint-2

0 50 100 150 200 250 300 350

2

1
Joint-3

Ensemble

GT

Pred

0 50 100 150 200 250 300 350

0.4

0.2

0.0

Joint-1

0 50 100 150 200 250 300 350

0.0

0.5

Joint-2

0 50 100 150 200 250 300

3

2

1

Joint-3

Ensemble

GT

Pred

(b) UR5 manipulation task in simulation

0 50 100 150 200 250 300 Steps

80

85

90

at
te

nt
io

n

State

RGB

Proprioception

Steps

0 50 100 150 200 250 300 Steps

0

50

100

150

200

at
te

nt
io

n

Missing modality

State

RGB

Depth

Proprioception

No RGB No Depth

No Proprioception

Figure 5: Predicted joint angle trajectories and the corresponding accumulated attention values for each modal-
ity. (a) represents the results attained from the actual robot, whereas (b) illustrates attention values for all
modalities both with and without masking certain modalities.

Table 2: Result evaluations on UR5 manipulation task with multimodal sensor fusion baselines.

Method Simulation (MAE) Real-world (MAE) Simulation with F/T (MAE)
Joint (deg) EE (cm) Joint (deg) EE (cm) Joint (deg) EE (cm) Obj (cm)

Feature Fusion [22] 7.58±0.12 3.15±0.16 11.25±1.17 5.65±0.01 3.62±0.09 2.72±0.02 8.36±0.06
Unimodal [22] 7.46±0.32 3.18±0.03 11.02±0.08 9.52±0.07 3.97±0.08 3.63±0.05 10.23±0.10

Crossmodal [22] 3.64±0.34 1.91±0.04 5.98±0.08 7.35±0.05 3.12±0.02 3.25±0.02 5.54±0.02
α-MDF 2.19±0.09 0.75±0.01 5.24±0.04 3.04±0.01 1.41±0.04 0.90±0.01 1.65±0.01

Means±standard errors.

on the real-robot (7.35cm → 3.04cm). In simulation tasks, it achieves an even better reduction in
tracking error (3.25cm→ 0.90cm in simulation with F/T sensing). We present a visualization of the
learned attention gain in the filtering process (Fig. 4) and state tracking results with and without cer-
tain modalities (Fig. 5). Despite the attention values changing when certain modalities are missing,
α-MDF still achieves stable results. Further results and explanations can be found in AppendixB.2.

4.3 Soft robot Modeling

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

IMU5

IMU1

MoCap

Inter-layer Actuator

Strut

Intra-layer Actuator

Cable

Figure 6: The tenseg-
rity robot structure.

Tensegrity structures [42] have become popular in recent years since they
bridge the gap between an inherently flexible system and the ability to use
rigid components [43, 44, 45]. However, modeling such a complex system
continues to pose considerable challenges due to the high nonlinearity. This
experiment involves implementing the α-MDF to model the dynamics of a
soft robot system, especially Tensegrity robot [45].

Task Setup and Data: The robot structure is shown in Fig. 6 with 5 layers
of tensegrity. The actual state of a soft robot at time t is represented by a
7-dimensional vector xxxt = [x, y, z,qx,qy,qz,qw]

T , which denotes the posi-
tion and orientation of the robot’s hand tip. The quaternion vector q represents
the posture of the robot w.r.t the base (layer 1’s bottom). In this task, we de-
fine x ∈ R256 as the latent state. The complete set of modalities comprises
[y1,y2,y3], where y1 ∈ R224×224×3 represents RGB images, y2 ∈ R224×224 is depth maps, and
y3 ∈ R30 is proprioceptive inputs (IMUs). The action at of the system is the pressure vector of
the 40 pneumatic cylinder actuators, where at ∈ R40. In this experiment, synthetic depth maps are
generated offline using the DPT model [46]. Figure. 7 shows the recordings of RGB and the depth
modalities, further details regarding the task setup and data collection is in Appendix B.3.

7

Pick up the red can Put down the Pepsi Push the red can to the left

(a) Task 1 (b) Task 2 (c) Task 3

1

0

1

1

0

1

0 250 500 750 1000 1250 1500 1750
0.5

1.0
Ensemble

GT

Pred

t=0.0s t=0.99s t=1.32s Timestep

x
(m

)
y

(m
)

z
(m

)

Figure 7: Estimated end-effector (EE) positions for tensegrity robot. Left: the RGB and depth modalities
[y1,y2], and right: state estimation results with ensemble distribution.

Results: The soft robot modeling task is evaluated using 10-fold cross-validation and the mean
absolute error (MAE) metric, and the results are presented in Table 3. Our results demon-
strate that α-MDF outperforms the state-of-the-art methods in terms of DFs, achieving a MAE
of 8.99cm. Specifically, our approach yields an MAE on the end-effector (EE) position estimation
that is 45%, 34%, and 29% lower than that obtained by dEKF, DPF, and dPF-M-lrn, respectively.

Table 3: Result evaluation on soft robot modeling task.

RGB Depth IMUs EE (cm) q (101)

dEKF [9] ✓ 16.38±0.10 1.01±0.03
DPF [28] ✓ 13.68±0.02 0.96±0.03

dPF-M-lrn [9] ✓ 12.66±0.09 1.10±0.03
α-MDF ✓ 8.99±0.02 0.79±0.03

Feature Fusion [22] ✓ ✓ ✓ 8.35±0.22 0.60±0.03
Unimodal [22] ✓ ✓ ✓ 2.78±0.05 0.25±0.02

Crossmodal [22] ✓ ✓ ✓ 2.14±0.05 0.15±0.02
α-MDF ✓ ✓ ✓ 1.67±0.09 0.12±0.01

Means±standard errors.

Of the sensor fusion baselines, cross-
modal fusion [22] exhibits marginally
better outcomes than others, although
it do not show any advantages over
α-MDF in predicting EE positions
(2.14cm→1.67cm). Notably, α-MDF
surpasses the feature fusion strategy by
a significant margin of 4-fold. Addition-
ally, appendix B.3 delves into an explo-
ration of the potential benefits of modal-
ity selection for state estimation, where
optimal combinations can be selected to achieve even higher accuracy. The results presented in Fig. 7
demonstrate the efficacy of α-MDF in accurately estimating the state of soft robots in a multimodal
setting, the ensemble distribution is indicated by gray shade representing the model uncertainty.
With stable performance achieved over an extended duration of inference, α-MDF has shown the
potential in modeling dynamics for various complex non-linear systems.

5 Conclusion
This paper illustrates how utilizing attention as a gain mechanism in differentiable Bayesian filtering
and multimodal learning can significantly enhance the accuracy of robot state estimation in numer-
ous tasks. Proposed α-MDF is a unique differentiable filter that conducts filtering on a compressed
multimodal latent representation, while preserving the integrity of the Kalman filter algorithm com-
ponent. Our experiments demonstrate that α-MDF is appropriate for learning both rigid body and
soft robot dynamics, exceeding baseline performance by up to 4-fold. Moving forward, we plan to
investigate the value of incorporating additional modalities, such as sound, temperature, and prox-
imity sensing, into α-MDF.

Limitation: An obvious difference of α-MDF when compared to traditional filters is the required
learning process – this typically takes multiple hours of training on current machines. In a similar
vain, an inherent assumption is that the training and test distributions do not differ substantially,
i.e., the problem of concept drift. To date, we have successfully tested the algorithm with latent
states consisting of several hundred variables. We use 256 dimensions in the experiments for con-
sistency. However, more research is required to understand α-MDF’s performance when filtering
over thousands of variables. As with any deep learning approaches, hyper-parameter tuning may be
required to produce high-performing models. Another practical observation is that utilizing more
modalities does not always translate to improved performance, which is consistent with findings
in [47]. Including redundant modalities can impose longer training times and pose greater difficulty
for the model in extracting valuable information from the input modalities. A pre-processing step
for feature selection may be advisable.

8

Acknowledgments

This work has received partial support from the National Science Foundation under grants CNS-
1932068, IIS-1749783. Additionally, partial support has been provided by JSPS KAKENHI Grant
Numbers 22H03671 and 22K19815. We would like to sincerely acknowledge the valuable com-
ments and feedback provided by the reviewers. Our gratitude also goes to Yuhei Yoshimitsu for
assisting in the data collection with the tensegrity robot. Furthermore, we would like to express our
appreciation for the insightful discussions and constructive feedback received from Fabian Weigend
and Shubham Sonawani during the review process.

References
[1] S. Thrun, W. Burgard, and D. Fox. Probabilistic robotics. MIT Press, Cambridge, Mass., 2005.

ISBN 0262201623 9780262201629.

[2] L. Wang, G. Wang, S. Jia, A. Turner, and S. Ratchev. Imitation learning for coordinated
human–robot collaboration based on hidden state-space models. Robotics and Computer-
Integrated Manufacturing, 76:102310, 2022. ISSN 0736-5845. doi:https://doi.org/10.1016/
j.rcim.2021.102310.

[3] S. Chen. Kalman filter for robot vision: a survey. IEEE Transactions on industrial electronics,
59(11):4409–4420, 2011.

[4] J. Reher, W.-L. Ma, and A. D. Ames. Dynamic walking with compliance on a cassie bipedal
robot. In 2019 18th European Control Conference (ECC), pages 2589–2595. IEEE, 2019.

[5] L. Ljung. System identification. Springer, 1998.

[6] G. Evensen. The ensemble kalman filter: Theoretical formulation and practical implementa-
tion. Ocean dynamics, 53(4):343–367, 2003.

[7] S. S. Rangapuram, M. W. Seeger, J. Gasthaus, L. Stella, Y. Wang, and T. Januschowski. Deep
state space models for time series forecasting. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Pro-
cessing Systems, volume 31. Curran Associates, Inc., 2018.

[8] A. Klushyn, R. Kurle, M. Soelch, B. Cseke, and P. van der Smagt. Latent matters: Learning
deep state-space models. Advances in Neural Information Processing Systems, 34, 2021.

[9] A. Kloss, G. Martius, and J. Bohg. How to train your differentiable filter. Autonomous Robots,
pages 1–18, 2021.

[10] D. Ramachandram and G. W. Taylor. Deep multimodal learning: A survey on recent advances
and trends. IEEE signal processing magazine, 34(6):96–108, 2017.

[11] M. Y. Seker, A. Ahmetoglu, Y. Nagai, M. Asada, E. Oztop, and E. Ugur. Imitation and mirror
systems in robots through deep modality blending networks. Neural Networks, 146:22–35,
2022.

[12] M. A. Lee, Y. Zhu, P. Zachares, M. Tan, K. Srinivasan, S. Savarese, L. Fei-Fei, A. Garg, and
J. Bohg. Making sense of vision and touch: Learning multimodal representations for contact-
rich tasks. IEEE Transactions on Robotics, 36(3):582–596, 2020.

[13] T. Xue, W. Wang, J. Ma, W. Liu, Z. Pan, and M. Han. Progress and prospects of multimodal
fusion methods in physical human–robot interaction: A review. IEEE Sensors Journal, 20(18):
10355–10370, 2020.

[14] S. Sonawani, Y. Zhou, and H. B. Amor. Projecting robot intentions through visual cues: Static
vs. dynamic signaling. arXiv preprint arXiv:2308.09871, 2023.

9

http://dx.doi.org/https://doi.org/10.1016/j.rcim.2021.102310
http://dx.doi.org/https://doi.org/10.1016/j.rcim.2021.102310

[15] Z. Yu, M. Chen, Z. Zhang, S. You, and F. Ren. Transupr: A transformer-based uncertain point
refiner for lidar point cloud semantic segmentation. arXiv preprint arXiv:2302.08594, 2023.

[16] J. Huang, A. Mishra, B. C. Kwon, and C. Bryan. Conceptexplainer: Interactive explanation
for deep neural networks from a concept perspective. IEEE Transactions on Visualization and
Computer Graphics, 29(1):831–841, 2022.

[17] Y. Zhou, S. Sonawani, M. Phielipp, H. Ben Amor, and S. Stepputtis. Learning modular
language-conditioned robot policies through attention. Autonomous Robots, pages 1–21, 2023.

[18] M. Shridhar, L. Manuelli, and D. Fox. Perceiver-actor: A multi-task transformer for robotic
manipulation. In Conference on Robot Learning, pages 785–799. PMLR, 2023.

[19] Y. Zhou, S. Sonawani, M. Phielipp, S. Stepputtis, and H. B. Amor. Modularity through atten-
tion: Efficient training and transfer of language-conditioned policies for robot manipulation.
arXiv preprint arXiv:2212.04573, 2022.

[20] S. Stepputtis, J. Campbell, M. Phielipp, S. Lee, C. Baral, and H. Ben Amor. Language-
conditioned imitation learning for robot manipulation tasks. Advances in Neural Information
Processing Systems, 33:13139–13150, 2020.

[21] M. A. Lee, Y. Zhu, K. Srinivasan, P. Shah, S. Savarese, L. Fei-Fei, A. Garg, and J. Bohg.
Making sense of vision and touch: Self-supervised learning of multimodal representations for
contact-rich tasks. In 2019 International Conference on Robotics and Automation (ICRA),
pages 8943–8950. IEEE, 2019.

[22] M. A. Lee, B. Yi, R. Martín-Martín, S. Savarese, and J. Bohg. Multimodal sensor fusion with
differentiable filters. In 2020 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 10444–10451. IEEE, 2020.

[23] A. Corenflos, J. Thornton, G. Deligiannidis, and A. Doucet. Differentiable particle filtering
via entropy-regularized optimal transport. In International Conference on Machine Learning,
pages 2100–2111. PMLR, 2021.

[24] N. A. Piga, U. Pattacini, and L. Natale. A differentiable extended kalman filter for object
tracking under sliding regime. Frontiers in Robotics and AI, 8:686447, 2021.

[25] W. Li, X. Chen, W. Wang, V. Elvira, and Y. Li. Differentiable bootstrap particle filters for
regime-switching models. arXiv preprint arXiv:2302.10319, 2023.

[26] T. Haarnoja, A. Ajay, S. Levine, and P. Abbeel. Backprop kf: Learning discriminative deter-
ministic state estimators. In Advances in neural information processing systems, pages 4376–
4384, 2016.

[27] P. Karkus, X. Ma, D. Hsu, L. P. Kaelbling, W. S. Lee, and T. Lozano-Pérez. Differentiable
algorithm networks for composable robot learning. arXiv preprint arXiv:1905.11602, 2019.

[28] R. Jonschkowski, D. Rastogi, and O. Brock. Differentiable particle filters: End-to-end learning
with algorithmic priors. arXiv preprint arXiv:1805.11122, 2018.

[29] X. Chen, H. Wen, and Y. Li. Differentiable particle filters through conditional normalizing
flow. In 2021 IEEE 24th International Conference on Information Fusion (FUSION), pages
1–6. IEEE, 2021.

[30] Y. Wang, B. Liu, J. Wu, Y. Zhu, S. S. Du, L. Fei-Fei, and J. B. Tenenbaum. Dualsmc:
Tunneling differentiable filtering and planning under continuous pomdps. arXiv preprint
arXiv:1909.13003, 2019.

10

[31] X. Liu, G. Clark, J. Campbell, Y. Zhou, and H. B. Amor. Enhancing state estimation in
robots: A data-driven approach with differentiable ensemble kalman filters. arXiv preprint
arXiv:2308.09870, 2023.

[32] X. Liu, S. Ikemoto, Y. Yoshimitsu, and H. B. Amor. Learning soft robot dynamics using dif-
ferentiable kalman filters and spatio-temporal embeddings. arXiv preprint arXiv:2308.09868,
2023.

[33] Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and new per-
spectives. IEEE transactions on pattern analysis and machine intelligence, 35(8):1798–1828,
2013.

[34] G.-H. Liu, A. Siravuru, S. Prabhakar, M. Veloso, and G. Kantor. Learning end-to-end mul-
timodal sensor policies for autonomous navigation. In Conference on Robot Learning, pages
249–261. PMLR, 2017.

[35] M. Garnelo, D. Rosenbaum, C. Maddison, T. Ramalho, D. Saxton, M. Shanahan, Y. W. Teh,
D. Rezende, and S. A. Eslami. Conditional neural processes. In International conference on
machine learning, pages 1704–1713. PMLR, 2018.

[36] H. Van Hoof, N. Chen, M. Karl, P. van der Smagt, and J. Peters. Stable reinforcement learning
with autoencoders for tactile and visual data. In 2016 IEEE/RSJ international conference on
intelligent robots and systems (IROS), pages 3928–3934. IEEE, 2016.

[37] J. Hansen, F. Hogan, D. Rivkin, D. Meger, M. Jenkin, and G. Dudek. Visuotactile-rl: Learning
multimodal manipulation policies with deep reinforcement learning. In 2022 International
Conference on Robotics and Automation (ICRA), pages 8298–8304. IEEE, 2022.

[38] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polo-
sukhin. Attention is all you need. Advances in neural information processing systems, 30,
2017.

[39] P. P. Liang, A. Zadeh, and L.-P. Morency. Foundations and recent trends in multimodal machine
learning: Principles, challenges, and open questions. arXiv preprint arXiv:2209.03430, 2022.

[40] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous driving? the kitti vision
benchmark suite. In 2012 IEEE conference on computer vision and pattern recognition, pages
3354–3361. IEEE, 2012.

[41] F. Torabi, G. Warnell, and P. Stone. Behavioral cloning from observation. arXiv preprint
arXiv:1805.01954, 2018.

[42] R. E. Skelton and M. C. Oliveira. Tensegrity Systems. Springer Nature, 2009. ISBN 978-1-
4419-4491-7.

[43] E. Jung, V. Ly, N. Cessna, M. L. Ngo, D. Castro, V. SunSpiral, and M. Teodorescu. Bio-
inspired tensegrity flexural joints. In 2018 IEEE International Conference on Robotics and
Automation (ICRA), pages 5561–5566. IEEE, 2018.

[44] K. Kim, A. K. Agogino, and A. M. Agogino. Rolling locomotion of cable-driven soft spherical
tensegrity robots. Soft robotics, 7(3):346–361, 2020.

[45] S. Ikemoto, K. Tsukamoto, and Y. Yoshimitsu. Development of a modular tensegrity robot arm
capable of continuous bending. Frontiers in Robotics and AI, 8, 2021.

[46] R. Ranftl, A. Bochkovskiy, and V. Koltun. Vision transformers for dense prediction. In Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision, pages 12179–12188,
2021.

11

[47] W. Wang, D. Tran, and M. Feiszli. What makes training multi-modal classification networks
hard? In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pages 12695–12705, 2020.

[48] L. V. Jospin, H. Laga, F. Boussaid, W. Buntine, and M. Bennamoun. Hands-on bayesian neural
networks—a tutorial for deep learning users. IEEE Computational Intelligence Magazine, 17
(2):29–48, 2022. doi:10.1109/MCI.2022.3155327.

[49] Y. Gal and Z. Ghahramani. Dropout as a bayesian approximation: Representing model uncer-
tainty in deep learning. In international conference on machine learning, pages 1050–1059.
PMLR, 2016.

[50] D. P. Kingma, T. Salimans, and M. Welling. Variational dropout and the local reparameteriza-
tion trick. Advances in neural information processing systems, 28, 2015.

[51] K. Lenac, J. Ćesić, I. Marković, and I. Petrović. Exactly sparse delayed state filter on lie
groups for long-term pose graph slam. The International Journal of Robotics Research, 37(6):
585–610, 2018.

[52] J. Zhang and S. Singh. Visual-lidar odometry and mapping: Low-drift, robust, and fast. In
2015 IEEE International Conference on Robotics and Automation (ICRA), pages 2174–2181.
IEEE, 2015.

[53] C.-C. Chou and C.-F. Chou. Efficient and accurate tightly-coupled visual-lidar slam. IEEE
Transactions on Intelligent Transportation Systems, 2021.

[54] I. Cvišić, J. Ćesić, I. Marković, and I. Petrović. Soft-slam: Computationally efficient stereo vi-
sual simultaneous localization and mapping for autonomous unmanned aerial vehicles. Journal
of field robotics, 35(4):578–595, 2018.

[55] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026–
5033. IEEE, 2012.

[56] Y. Zhu, J. Wong, A. Mandlekar, and R. Martín-Martín. robosuite: A modular simulation
framework and benchmark for robot learning. In arXiv preprint arXiv:2009.12293, 2020.

[57] J. Lu, A. Liu, F. Dong, F. Gu, J. Gama, and G. Zhang. Learning under concept drift: A review.
IEEE transactions on knowledge and data engineering, 31(12):2346–2363, 2018.

[58] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in deep residual networks. In Computer
Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–
14, 2016, Proceedings, Part IV 14, pages 630–645. Springer, 2016.

[59] I. Loshchilov and F. Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

12

http://dx.doi.org/10.1109/MCI.2022.3155327

A Details in α-MDF

This section provides a detailed overview of the previously mentioned α-MDF modules, and de-
scribes differentiable Ensemble Kalman filters as the underlying DFs framework for α-MDF.

A.1 Model Initialization and Embedding Functions

An auxiliary model A is supplied in the filtering process to support training by starting the filter
via projecting the actual state xxxt−N :t−1 from low-dimensional space to latent space. The model is
implemented using stochastic neural networks (SNNs) [48],

xit−N :t−1 ∼ A(xit−N :t−1|xxxt−N :t−1), ∀i ∈ E, (7)

where xit−N :t−1 is one latent state, the latent state ensemble is obtained by samplingA for E times.
During inference, we employ the trained sensor encoders’ output, which is the latent representation
of RGB, depth, or proprioception, as the initial state to initiate the filtering process.

Regarding the prediction step of α-MDF, we apply positional embedding layers (sinusoidal func-
tions) [38] in the transformer process model (Eq. 3) to generate eeet−N :t−1 as the embedding for
time-series data, eeet−N :t−1 = fL(Xt−N :t−1) ∈ Rdx×(N−1). The positional embedding layer is uti-
lized to label the state by index it with time t. When activating the action at in the process model,
we also utilize a type embedding layer that indexes eeet−N :t−1 and at with 0 and 1, and then fed
to sinusoidal functions. Subsequently, the element-wise summation of outputs obtained from the
aforementioned procedures serve as input to the transformer process model for further processing.

A.2 Differentiable Ensemble Kalman Filter

Unlike prior proposals for differentiable filters, such as dEKF [9] and DPF [28], Differentiable En-
semble Kalman Filter [6] leverages recent advancements in stochastic neural networks (SNNs) [48].
Specifically, we draw inspiration from the work in [49], which established a theoretical connection
between the Dropout training algorithm and Bayesian inference in deep Gaussian processes. As a
result, we can use stochastic forward passes to produce empirical samples from the predictive poste-
rior of a neural network trained with Dropout. Hence, for the purposes of filtering, we can implicitly
model the process noise by sampling state from a neural network trained on the transition dynamics,
i.e., xt ∼ fθθθ(xt−1). In contrast to previous approaches [28, 9], the transition network fθθθ(·) models
the system dynamics, as well as the inherent noise model in a consistent fashion without imposing
diagonality.

Prediction Step: Similar to α-MDF, we use an initial ensemble of E members to represent the
initial state distribution X0 = [x1

0, . . . ,x
E
0], E ∈ Z+. We leverage the stochastic forward passes

from a trained state transition model to update each ensemble member:

xit|t−1 ∼ fθθθ(x
i
t|t−1|x

i
t−1|t−1), ∀i ∈ E. (8)

Matrix Xt|t−1 = [x1
t|t−1, · · · ,x

E
t|t−1] holds the updated ensemble members which are propagated

one step forward through the state space. Note that sampling from the transition model fθθθ(·) (using
the SNN methodology described above) implicitly introduces a process noise.

Update step: Given the updated ensemble members Xt|t−1, a nonlinear observation model hψψψ(·) is
applied to transform the ensemble members from the state space to observation space. Following our
main rationale, the observation model is realized via a neural network with weightsψψψ. Accordingly,
the update equations become:

HtAt = HtXt −

[
1

E

E∑
i=1

hψψψ(x
i
t), · · · ,

1

E

E∑
i=1

hψψψ(x
i
t)

]
, (9) ỹit ∼ s(ỹit|yt), ∀ i ∈ E. (10)

HtXt is the predicted observation, and HtAt is the sample mean of the predicted observation at t.
Traditional Ensemble Kalman Filter treats observations as random variables. Hence, the ensemble

13

can incorporate a measurement perturbed by a small stochastic noise to reflect the error covariance
of the best state estimate [6]. In differentiable Ensemble Kalman Filter, we incorporate a Bayesian
sensor encoder s(·). Sensor encoder serves to learn projections from observation space to latent
space as in Eq. 10, where yt represents the noisy sensor observation. Sampling from sensor encoder
yields latent observations Ỹt = [ỹ1

t , · · · , ỹ
E)
t]. The KF update step can then be continued by using

the learned observation and predicted observation:

Kt =
1

E − 1
At(HtAt)

T (
1

E − 1
(HtAt)(HtAt)

T +R)−1. (11)

The measurement noise model R is implemented using a multilayer perceptron (MLP), similar
to the implementation in [9]. The MLP takes a learned observation Ỹt at time t and produces
a noise covariance matrix. The final estimate of the ensemble X̂t is obtained by performing the
measurement update step, given by:

X̂t = Xt +Kt(Ỹt −HtXt). (12)

In inference, the ensemble mean x̄t|t =
1
E

∑E
i=1 x

i
t|t is used as the updated state.

A.3 Baselines

In our study, we examine two categories of baselines: (a) DFs baselines, which consist of existing
methods such as those proposed in [9, 28, 26], and (b) sensor fusion strategies, as proposed in [22].

Table 4: Dimensions pertinent to each of the robot state estimation tasks.

Method Visual Odometry UR5 Manipulation Soft Robot
State Observation State Observation State Observation Action

dEKF [9] 5 2 10 10 7 7 40
DPF [28] 5 2 10 10 7 7 40

dPF-M-lrn [9] 5 2 10 10 7 7 40

Feature Fusion [22] - - 10/13 10/13 7 7 40
Unimodal [22] - - 10/13 10/13 7 7 40

Crossmodal [22] - - 10/13 10/13 7 7 40
α-MDF 256 256 256 256 256 256 40

Dimensionality: Table 4 presents the dimensions for the state, observations, and actions utilized
for each of the tasks. To ensure consistency, we opt for a dimension of 256 for α-MDF in all tasks,
thus, enabling filtering over high-dimensional spaces. Unlike the baseline methods, which use low-
dimensional state definitions, we filter over higher dimension spaces with α-MDF.

Differentiable Filters: To maintain consistency in the comparison of results against the DFs base-
lines, we train α-MDF with a single modality. The baselines in this category include the differen-
tiable Extended Kalman filter (dEKF) [9], differentiable particle filter (DPF) [28], and the modified
differentiable particle filter (dPF-M-lrn) [9], which uses learned process and process noise models.
For dEKF, the Jacobian matrix in the prediction step can either be learned end-to-end or supplied if
the motion model is known. DPF employs 100 particles for both training and testing and also in-
corporates an observation likelihood estimation model l. This module takes in an image embedding
and produces a likelihood that updates each particle’s weight. Unlike DPF, dPF-M-lrn implements
a learnable process noise model. It also adopts a Gaussian Mixture Model for calculating the like-
lihood for all particles. It is worth noting that all the baseline methods perform Kalman filtering
on low-dimensional actual state space, whereas α-MDF executes the filtering process in the latent
space.

Sensor Fusion: Regarding sensor fusion baselines, we use three strategies discussed in [22], namely,
Feature Fusion, Unimodal Fusion, and Crossmodal Fusion. The Feature Fusion strategy aims to
process each modality individually and subsequently merge the modalities to generate a multimodal
feature set using neural networks, which is then used for state estimation. The Unimodal Fusion

14

treats each modality N ∼ (µµµM1
t ,ΣΣΣM1

t) and N ∼ (µµµM2
t ,ΣΣΣM2

t) as distributions and fuse two uni-
modal distribution as one normally distributed multimodal distribution N ∼ (µµµt,ΣΣΣt):

µµµt =
(ΣΣΣM1

t)−1µµµM1
t + (ΣΣΣM2

t)−1µµµM2
t

(ΣΣΣM1
t)−1 + (ΣΣΣM2

t)−1
, ΣΣΣt = ((ΣΣΣM1

t)−1 + (ΣΣΣM2
t)−1)−1, (13)

where the associative property can be used for fusing more than two modalities. For Crossmodal
Fusion, information from one modality can be used to determine the uncertainty of the other ones,
two coefficients are proposed as βββM1

t and βββM2
t , where each coefficient has the same dimension of

the state, the fused distribution is:

µµµt =
βββM1
t ◦µµµM1

t + βββM2
t ◦µµµM2

t

βββM1
t + βββM2

t

, ΣΣΣt =
BBBM1
t ◦ΣΣΣM1

t +BBBM2
t ◦ΣΣΣM2

t

BBBM1
t +BBBM2

t

, (14)

where BBBMt = (βββMt)TβββMt . As mentioned in [22], each sensor encoder was independently trained
and subsequently used for end-to-end training with DFs. We adopt a similar approach, but with a
differentiable Ensemble Kalman Filter backbone in place instead. The resampling procedure from
the fused distribution in this scenario is achieved by using the reparematerization trick [50].

B Additional Experiments

This section presents supplementary experimental results for each task. For (1) Visual Odometry
Tasks, we offer full detailed experiments; however, for (2) Multimodal Manipulation Tasks and (3)
Soft Robot Modeling Tasks, we concentrate mainly on ablation studies.

B.1 Visual Odometry Tasks

In this experiment, we investigate the performance of α-MDF on the popular KITTI Visual Odom-
etry dataset [40]. We only consider RBG images as the input modality in order to make a fair com-
parison with the baselines [9, 28, 26]. Following the same evaluation procedure as our baselines, we
define the actual state of the moving vehicle as a 5-dimensional vector xxx = [x, y, θ, v, θ̇]T , including
the position and orientation of the vehicle, and the linear and angular velocity w.r.t. the current head-
ing direction θ. The raw observation y corresponds to the RGB camera image of the current frame
and a difference image between the current frame and the previous frame, where y ∈ R150×50×6 as
shown in Fig. 8. The learned observation ỹ is defined as ỹ = [v, θ̇]T , since only the relative changes
of position and orientation can be captured between two frames. We use the latent state x ∈ R256

for α-MDF.

LSTM BKF dEKF DPF dPF-M DEnKF
0.0

0.1

0.2

0.3

0.4

E
rr

or
 r

at
e

Test 100 m/m

Test 100 deg/m

Test 100/200/400/800 m/m

Test 100/200/400/800 deg/m

100 0 100 200 300
x (m)

100

0

100

200

300

400

500

y
(m

)

Ensemble

GT

Prediction

From Obs

(a) Raw observation (b) State estimation - Trajectory 9

(a) RGB images (b) Difference map

Different differentiable filters

E=4 E=8 E=16 E=32 E=64 E=128 E=512
0.000

0.025

0.050

0.075

0.100

0.125

E
rr

or
 r

at
e

Test 100 m/m

Test 100 deg/m

Test 100/200/400/800 m/m

Test 100/200/400/800 deg/m

0 50 100 150 200 250 300 350 400

1

0

0 50 100 150 200 250 300 350 400
2

0

0 50 100 150 200 250 300 350 400

1

0

1 Uncertainty

Prediction

GT

Jo
in

t-
1

Jo
in

t-
2

Timestep

Jo
in

t-
3

Figure 8: KITTI visual inputs.

Data: The KITTI Visual Odometry dataset in-
cludes 11 trajectories capturing the ground truth
pose (translation and rotation matrices) of a ve-
hicle navigating urban areas at a data collec-
tion rate of approximately 10Hz. To facilitate
the learning process, we standardize the data by
normalizing each dimension to have a mean of
0 and a standard deviation of 1 during training.
To process the provided pose data, we convert
them to quaternions to capture the minimal changes between consecutive quaternion pairs. Subse-
quently, the results are converted back to radians to represent the angular velocity θ̇. This conversion
ensures that the angular velocity remains minimal and falls within the range of [−π, π].

B.1.1 Results

The performance of state estimation is evaluated using an 11-fold cross-validation, whereby 1 tra-
jectory is withheld at each time. The standard KITTI benchmark metrics, namely the translational
error (m/m) and rotational error (deg/m), are reported in Table 5. The error metrics are computed
from the test trajectory over all subsequences of 100 timesteps, as well as all subsequences of 100,

15

Table 5: Result evaluations on KITTI Visual Odometry task measured in m/m and deg/m denote the
translational error and the rotational error.

Method Test 100 Test 100/200/400/800
m/m deg/m m/m deg/m

dEKF [9] 0.2646±0.004 0.1386±0.002 0.3159±0.002 0.0923±0.005
DPF [28] 0.1344±0.002 0.1203±0.007 0.2255±0.001 0.0716±0.004

dPF-M-lrn [9] 0.1720±0.010 0.0974±0.009 0.1848±0.004 0.0611±0.003
α-MDF 0.0718±0.001 0.0954±0.001 0.0379±0.002 0.0328±0.001

Means±standard errors.

200, 400, and 800 timesteps. Figure 9 presents the performance of α-MDF and other differentiable
filtering techniques. It is important to note that incorporating domain- and data-specific information,
such as using stereo images [51], integrating LiDAR [52, 53], or applying SLAM and loop-closure
related assumptions [51, 54], can yield lower error metrics. However, to ensure fair and compara-
ble evaluations, we utilize the most commonly used setup when comparing filtering techniques in a
task-agnostic fashion (as performed in [9, 28, 26]).

LSTM BKF dEKF DPF dPF-M -MDF
0.0

0.1

0.2

0.3

0.4
Er

ro
r r

at
e

Test 100 m/m
Test 100 deg/m
Test 100/200/400/800 m/m
Test 100/200/400/800 deg/m

Figure 9: Visual Odometry results with different differen-
tiable filters: the error rate for LSTM and BKF are reported
from [26], dEKF, DPF, and dPF-M are reproduced.

Table 5 presents the outcomes of our pro-
posed method in comparison with the ex-
isting state-of-the-art DFs, namely dEKF,
DPF, and dPF-M-lrn. In order to pro-
vide a fair comparison, we do not include
unstructured LSTM models as baselines
since prior works [26, 9] have shown that
they do not achieve comparable results.
The pre-trained sensor encoder with the
same visual inputs is used and integrated
into all the DF frameworks evaluated. In
this experiment, the motion model of the
vehicle is known, and the only unknown
part of the state is the velocities. In light of the above, we adopt a learnable process model to update
state variables alongside an established motion model to update the (x, y, θ) variables. While the
computed Jacobian matrix is supplied in training and testing for dEKF, our α-MDF demonstrates
significant improvements compared to dEKF, DPF, and dPF-M-lrn. Specifically, we observed a re-
duction in the translational error of approximately 88%, 83%, and 79% for Test 100/200/400/800.
The results also reflect a considerable reduction in rotational error of approximately 64%, 54%, and
46% as compared to each of the baselines. Our analysis of α-MDF reveals that conducting filtering
on high-dimensional observations in the latent space yields better results than conducting filtering
on the actual state space.

B.1.2 Compare to EKF

In this section, we present a comparison of the results obtained from a non-learning Extended
Kalman Filter (EKF) and α-MDF on the KITTI Visual Odometry task. As previously mentioned,
the actual state of the moving vehicle is represented by a 5-dimensional vector xxx = [x, y, θ, v, θ̇]T ,
while the observation ỹ is defined as ỹ = [v, θ̇]T . The EKF can be formulated using the provided
analytical model.

xxxt = f(xxxt−1) = Axxxt−1 + qt qt ∼ N (0,Qt),

ỹ = h(xxxt) + rt = Hxxxt + rt rt ∼ N (0,Rt).
(15)

where H is identity matrix H = [0 0 0 1 0
0 0 0 0 1]. The EKF prediction step is:

x̂̂x̂xt = Axxxt−1 + qt, Σ̂̂Σ̂Σt = FΣΣΣt−1F
T +Qt. (16)

16

where the Jacobian of the process model can be supplied via Taylor expansion,

A =

1 0 0 sin θ∆t 0
0 1 0 cos θ∆t 0
0 0 1 0 ∆t
0 0 0 1 0
0 0 0 0 1

 , F =
∂f(xxxt−1)

∂xxxt−1
=

1 0 v cos θ∆t sin θ∆t 0
0 1 −v sin θ∆t cos θ∆t 0
0 0 1 0 ∆t
0 0 0 1 0
0 0 0 0 1

 .
(17)

The update step for EKF is:

St = HΣ̂̂Σ̂ΣtH
T +Rt, Kt = Σ̂̂Σ̂ΣtH

TS−1
t ,

xxxt = x̂̂x̂xt +Kt(ỹ −Hx̂̂x̂xt), ΣΣΣt = (I−KtH)Σ̂̂Σ̂Σt.
(18)

To ensure a fair and unbiased comparison, both the Extended Kalman Filter (EKF) and α-MDF
models are provided with the same low-dimensional observation ỹ + ϵ, where ϵ is a noise sample
obtained from a Gaussian distribution N ∼ (0, [1.5 0

0 0.1]).

Table 6: Comparison between EKF and α-MDF.

Method Test 100 Test 100/200/400/800
m/m deg/m m/m deg/m

EKF 0.2391±0.02 0.1548±0.02 0.2757±0.03 0.0623±0.01
α-MDF 0.1642±0.02 0.0593±0.01 0.1509±0.01 0.0327±0.01
Means±standard errors.

We report a comparison via
translational and rotational errors
in Table 6. For the EKF model,
the noise covariance matrices Qt

and Rt are manually fine-tuned.
Additionally, we initialize the fil-
ter with ΣΣΣ0 = I. For α-MDF,
we keep the same framework as
when filtering over a latent state with 256 dimensions. However, we substitute the sensor encoder
from s1 to s2 (refer to Table 12). This modification allows for projecting the low-dimensional ob-
servation into the latent space. Our observations indicate that α-MDF, when utilizing attention gain,
reduces the error over the EKF. α-MDF has the additional benefit of automatically learning noise
profiles during the training process, thereby eliminating the manual tuning step required by the EKF.

B.1.3 6D Motion State

To conduct a more comprehensive investigation into the visual odometry task, we extended our
analysis by employing a larger state space. In this section, we consider the 6D motion of the vehicle
where 3 different heading directions are defined namely yaw θ, pitch ψ, and roll ϕ. The actual state
is defined as xxx = [x, y, z, ϕ, ψ, θ, v1, v2, v3, ϕ̇, ψ̇, θ̇]

T . Similar to the previous setup, α-MDF takes
the image pair at t− 1 and t as input, with the observation ỹ is defined as ỹ = [v1, v2, v3, ϕ̇, ψ̇, θ̇]

T .

Table 7: Using 6D motion state for α-MDF.

Method Axis Test 100 Test 100/200/400/800
m/m deg/m m/m deg/m

α-MDF Yaw θ 0.072±0.001 0.097±0.004 0.041±0.003 0.033±0.001
α-MDF Pitch ψ 0.032±0.002 0.013±0.001 0.028±0.003 0.019±0.001
α-MDF Roll ϕ 0.033±0.004 0.032±0.010 0.049±0.001 0.029±0.002
Means±standard errors.

The comparison results
for translational and rota-
tional errors, with an in-
creased state space, are
presented in Table 7. No-
tably, the performance of
α-MDF remains stable
along the yaw axis, as ob-
served in comparison to
the results reported in Table 5. Additionally, we observe smaller translational and rotational er-
rors on the pitch and roll axes. This observation can be attributed to the relatively minor deviations
on the z axis, even during inclined maneuvers such as ascending or descending a hill. In conclusion,
when the search space expands to include a larger state space, α-MDF demonstrates comparable
results, indicating its ability to handle increased complexity and maintain performance.

B.2 Multimodal Manipulation Tasks

Task Setup: For α-MDF, we define the latent state x ∈ R256 for all the manipulation tasks. The
actual state of the UR5 robot is described by xxxR, which consists of the seven joint angles (J1-J7)

17

Table 8: Ablation study on UR5 manipulation task with different combination of the modalities.

RGB Depth Joint F/T Joint (deg) EE (cm) Obj (cm)

Task (1)

✓ 2.78±0.09 1.06±0.01 -
✓ 3.65±0.10 1.38±0.05 -

✓ 9.53±0.20 3.22±0.14 -
✓ ✓ 2.39±0.11 1.01±0.02 -

✓ ✓ 2.69±0.01 1.09±0.03 -
✓ ✓ 1.91±0.08 0.64±0.03 -
✓ ✓ ✓ 2.19±0.09 0.75±0.01 -

Task (2)
✓ 7.49±0.06 3.81±0.17 -

✓ 5.47±0.08 3.32±0.04 -
✓ ✓ 5.24±0.04 3.04±0.01 -

Task (3)

✓ ✓ ✓ 2.93±0.01 2.26±0.02 3.26±0.01
✓ ✓ ✓ 3.16±0.20 2.34±0.04 3.66±0.30
✓ ✓ ✓ 1.42±0.08 0.93±0.01 1.47±0.02
✓ ✓ ✓ 1.37±0.02 0.94±0.01 1.78±0.06
✓ ✓ ✓ ✓ 1.41±0.04 0.90±0.01 1.65±0.01

Means±standard errors.

and the Cartesian coordinates (x, y, z) of the robot’s end-effector. This Cartesian coordinate sys-
tem is centered at the manipulation platform’s origin point (0, 0, 0). On the other hand, the state of
the object being manipulated is represented by xxxO, which only includes the Cartesian coordinates
(x, y, z) of the object. The input modalities for each of the three tasks differ. In task (1), input is
given through three modalities: y1, y2, and y3. The first modality y1 ∈ R224×224×3 is a camera im-
age captured from a frontal angle. The second modality y2 ∈ R224×224×1 depicts depth maps from
the same camera view. Lastly, y3 is a proprioceptive input source with dimensions R7, representing
the joint angles’ values. In this task, the proprioceptive input specifically refers to the joint angles
as the source. In task (2), input is given by only two modalities: y1 and y3, but from a real-world
perspective. In task (3), input is received from four modalities: y1, y2, y3, and y4. y4 contains
the Force/torque (F/T) sensor readings from the robot gripper, where y4 ∈ R6, while the first two
modalities are identical to task (1).

Pick up the red can Put down the Pepsi Push the red can to the left

(a) Task 1 (b) Task 2 (c) Task 3

Figure 10: The multimodal manipulation experiment involves the following subtasks: (a) Task 1 utilizing RGB,
depth, and joint modalities, (b) Task 2 utilizing only RGB and joint modality, and (c) Task 3 utilizing RGB,
depth, joint, and Force/torque (F/T) sensor modalities. The F/T sensor is mounted on the grabber, as depicted
by the orange box.

Data: Data collection is conducted for both simulation with MuJoCo [55] and real-world scenarios.
We record the UR5 robot operating on a random object by performing one of “pick”, “push”, and
“put down” actions. We collect 2,000 demonstrations in simulation for task (1), and 100 on the
real robot for task (2), with changing the location of each object for each demonstration. For task
(3), we collect 2,000 demonstrations in simulation with adding the tactile sensors. We use ABR
control and robosuite [56] in addition to MuJoCo to ensure rigorous dynamics in the simulator. Each
demonstration sequence has a length of approximately 350 steps with a timestep of 0.08 seconds.
An 80/20 data split is utilized for training and testing each task. It should be noted that in all tasks,
we normalize the joint modality y3 and apply Gaussian noise to each joint angle, drawn from the
distribution N ∼ (0, σ2I) where σ2 = 0.1. We collect the F/T sensor readings directly from
MuJoCo’s native touch sensor. Moreover, the depth maps obtained from MuJoCo are with no noise
therefore can be regarded as high-fidelity data.

18

B.2.1 Ablation Study

In addition to the findings presented in Section 4.2, we perform a comprehensive ablation analysis
for each manipulation task to address the question, “How does the use of multiple modalities com-
pare to a subset of modalities for state estimation with differentiable filters?”. Table 8 displays the
outcome for each task with various number of modalities using MAE metric. The highest margin
of error is indicated by the red shading, while the complete modality is labeled by green shading
for each task. Interestingly, even though using all modalities can generate comparable results, in
certain tasks, utilizing all modalities does not necessarily guarantee superior performance compared
to utilizing a subset of modalities. Through our experiments in Task (1), it becomes apparent that
the optimal performance is achieved by utilizing the subset of modalities [y1, y2], which yields
an improvement of joint angles (2.19◦ → 1.91◦). In Task (3), we observe that diverse subsets of
modalities lead to superior state estimation results for joint angles, EE, and the object locations
respectively. Analysis of Table 8 indicates an important role played by the depth map y2 when
considering all observations. This suggests that y2 is treated as high-fidelity data during training,
thereby contributing the most towards the final results.

(5x5) (7x7) (11x11) (13x13) (15x15)
Gaussian Blurring

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Er
ro

r r
at

e

No Proprioception Joint (deg)
No Proprioception EE (cm)
All Modality Joint (deg)
All Modality EE (cm)

Figure 11: State estimation results are shown after introducing di-
verse levels of noise to [y1, y2]. The red group depicts results
using [y1, y2] modality, while the blue group represents results
using [y1, y2, y3] modality.

Henceforth, we conduct an additional
ablation analysis to ascertain whether
or not the use of a combination of
high-fidelity and low-fidelity sensor
inputs offers a potential benefit. As
noted during data collection, the pro-
prioceptive input y3 comprising joint
angles is obtained via adding Gaus-
sian noise and is therefore considered
a low-fidelity input. Figure 11 illus-
trates the scenario of using y3 and not
using y3 while applying distinct lev-
els of Gaussian blur in the image and
depth space. Notably, without em-
ploying y3, the state estimation per-
formance deteriorates as the level of blur increases. On the other hand, y3 - despite being classified
as a low-fidelity modality - contributes to the final state estimation. In particular, at the highest level
of blur, incorporating y3 yields a 29% improvement in joint angle estimation and a 17% improve-
ment for end-effector locations.

B.2.2 Sensitivity Analysis

In this study, we analyze the effects of three key factors on the performance of α-MDF. These fac-
tors are latent dimensions, the length of previous states, the number of latent ensemble members,
whether using Transformers or Multilayer Perceptrons (MLPs) as process model, and with or with-
out the matrix M̃̃M̃M . Our investigation focuses on understanding how these factors impact the overall
performance of the α-MDF framework. In this experiment, we use robot manipulation task (1) as
an example.

The findings from the sensitivity analysis are summarized in Table 9. Regarding latent dimensions,
we observe that a larger latent dimension does not consistently yield better error metrics. The op-
timal latent dimension may vary for different tasks. Regarding the length of the previous state, we
find that using Xt−10:t−1 leads to more accurate results compared to using Xt−30:t−1. This sug-
gests that a longer history of states may not significantly contribute to estimating the current state.
Therefore, we recommend using a smaller or medium window size for state transition models. As
for the number of ensemble members, using a larger value for E does improve accuracy. How-
ever, it is worth noting that increasing the number of ensemble members can result in a larger state
space, which may introduce inefficiency. In terms of utilizing Transformer-style neural networks
for process models, the results from Table 9 indicate an advantage for this approach, as indicated

19

Table 9: Sensitivity analysis within the α-MDF framework, focusing on three factors: latent dimen-
sions, length of previous states, and the number of ensemble members.

RGB Depth Joint F/T Joint (deg) EE (cm)

α-MDF with 64 latents ✓ ✓ ✓ 2.54±0.06 0.87±0.04
α-MDF with 256 latents ✓ ✓ ✓ 2.19±0.09 0.75±0.01
α-MDF with 512 latents ✓ ✓ ✓ 2.38±0.01 0.82±0.01
α-MDF with Xt−5:t−1 ✓ ✓ ✓ 2.19±0.09 0.75±0.01
α-MDF with Xt−10:t−1 ✓ ✓ ✓ 2.16±0.06 0.83±0.04
α-MDF with Xt−30:t−1 ✓ ✓ ✓ 2.72±0.03 0.79±0.07
α-MDF with E = 23 ✓ ✓ ✓ 2.67±0.12 1.10±0.02
α-MDF with E = 25 ✓ ✓ ✓ 2.19±0.09 0.75±0.01
α-MDF with E = 27 ✓ ✓ ✓ 1.77±0.05 0.67±0.01
α-MDF with MLPs ✓ ✓ ✓ 2.45±0.05 0.83±0.02

α-MDF with no M̃̃M̃M ✓ ✓ ✓ 7.25±0.05 2.23±0.09
Means±standard errors.

by the green-shaded row. However, it is important to acknowledge that for certain non-complex
tasks, employing lightweight MLPs as process models can also be a suitable option. It is crucial to
consider the specific task requirements and complexity when deciding between Transformer-style
neural networks and MLPs as process models.

B.2.3 Mask in Attention Gain

Within the attention gain module, we incorporate a matrix M̃̃M̃M that selectively preserves diagonal
elements of the attention map. This approach is based on the assumption that within each latent
vector, each index possesses probabilistic independence. To empirically verify this assumption, we
conducted an additional experiment where we trained an alternative α-MDF framework. In this
framework, we deliberately excluded the matrix M̃̃M̃M in the attention gain module for the specific
purpose of evaluating the effect on robot manipulation task (1). The results of our experiment are
reported in Table 9 as indicated by the red-shaded row. It shows a significant increase in the Mean
Absolute Error (MAE) for joint angle estimation when the causality-enforced map M̃̃M̃M was excluded
from the attention gain module. Specifically, the MAE increased from 2.19◦ to 7.25◦. Moreover, the
MAE for tracking the end effector also deteriorated from 0.75cm to 2.23cm. Based on these results,
it is strongly recommended to utilize the causality-enforced map M̃̃M̃M within the attention gain module
for improved performance in both joint angle estimation and end effector tracking.

B.3 Soft Robot Modeling Tasks

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

IMU5

IMU1

MoCap

Inter-layer Actuator

Strut

Intra-layer Actuator

Cable

Figure 12: The tensegrity robot features 5 flexible layers,
each a tensegrity module with struts, cables, and actuators.

This section presents a comprehensive
analysis of the tensegrity robot structure,
the bending motion mechanism, and per-
tinent sensory information, followed by a
description of additional experimental out-
comes related to this task.

Preliminaries: Our research utilizes a
tensegrity robot arm (developed in [45])
that follows a strict tensegrity structure
featuring struts, cables (including spring-
loaded and actuated cables), and five lay-
ers of arm-like tensegrity structures, which
produce continuous bending postures when exposed to external forces. The longitudinal length is
maintained by stiff cables, while the bending direction is solely determined by external forces. We
determine the robot’s kinematics through data from Inertial Measurement Units (IMUs), optical mo-
tion capture (MoCap), and proportional pressure control valves, with each of the five struts in each

20

1

0

1

0

2

0.5

1.0

1

0

1

0

1

0.5

0.0

0.5

0 250 500 750 1000 1250 1500 1750 2000

0

1 Ensemble

GT

Pred

x
(m

)
y

(m
)

z
(m

)

Timestep

t = 13.2s t = 26.4s t = 39.6s t = 52.8s t = 66.0s

Figure 13: Predicted end-effector (EE) positions and quaternion vectors q in the soft robot modeling task. The
top row displays the actual robot posture at the corresponding time, with the orange circle indicating the EE
positions, which are not included in the RGB modality input.

layer featuring an IMU. We also record the video by placing a camera in front of the robot while
collecting all sensory data.

A soft robot’s state at t is a 7-dimensional vector xt = [x, y, z,qx,qy,qz,qw]
T , indicating its po-

sition and orientation relative to the base frame (layer 1’s bottom). q represents the robot’s posture.
The system’s action is the pressure vector of its 40 pneumatic cylinder actuators (at ∈ R40). Its raw
observation is comprised of 5 IMU readings (y3

t ∈ R30), with each IMU measuring a 6-dimensional
vector of accelerations and angular velocities relative to its location. Fig. 12 illustrates the locations
of the IMUs on the struts (blue cubes) in each layer.

Data: The complete set of modalities comprises [y1,y2,y3], where y1 ∈ R224×224×3 represents
RGB images, y2 ∈ R224×224 is synthetic depth maps which we generate from DPT repo [46]
utilizing “Intel/dpt-large”, and y3 ∈ R30 is proprioceptive inputs (IMUs). The dataset is generated
by performing optical motion capture on the real tensegrity robot hand tip while randomly supplying
desired pressure vectors to the pneumatic cylinder actuators. The action at ∈ R40, 5 IMU readings
y3
t ∈ R30, and a 7-dimensional state xt are recorded, with 40-dimensional pressure vectors being

used as a control signal. A total of 12,000 trials of robot motion are collected, with each trial
involving moving the robot from its current equilibrium posture to the next equilibrium posture by
applying the new desired pressure. All data are collected via a ROS2 network with a sampling
frequency of 30Hz and are synchronized using the “message_filters” package.

21

B.3.1 Ablation Study

Table 10: Ablation study on Tensegrity robot.

RGB Depth IMUs EE (cm) q(101)

✓ 2.07±0.03 0.31±0.08
✓ 2.77±0.01 0.19±0.05

✓ 8.99±0.02 0.79±0.03
✓ ✓ 2.08±0.03 0.14±0.02

✓ ✓ 1.73±0.05 0.12±0.02
✓ ✓ 1.74±0.06 0.10±0.02
✓ ✓ ✓ 1.67±0.09 0.12±0.01

Means±standard errors.

In addition to the results presented in
Section 4.3, we evaluate various com-
binations of modalities to determine
whether an optimal subset of modali-
ties can be identified to attain compara-
ble outcomes without using all modal-
ities during the filtering operation. As
demonstrated in Table10, utilizing only
one modality fails to achieve compara-
ble results, with the highest accuracy
(2.07cm) exclusively from employing
y1 (RGB). The lowest error in pos-
ture estimation for the robot is obtained by leveraging [y1,y2], showing slight improvement
(0.10→0.12) over leveraging the full modalities [y1,y2,y3]. However, the lowest MAE error for the
EE position persists even when all modalities are employed. Interestingly, using solely y3 results in
the highest state estimation error, which aligns with the lowest attention value visualized in Fig 14.
As depicted in Fig. 14, it is evident that α-MDF prioritizes y1 over other modalities. Interestingly,
the attention values change upon turning off certain modalities while the system remains stable and
functional.

1

0

1

0

2

0.5

1.0

1

0

1

0

1

0.5

0.0

0.5

0 250 500 750 1000 1250 1500 1750 2000

0

1 Ensemble

GT

Pred

x
(m

)
y

(m
)

z
(m

)

Timestep

0 250 500 750 1000 1250 1500 1750 Timestep

0

100

200

300

at
te

nt
io

n

Missing modality

State

RGB

Depth

IMUs
No DepthNo RGB

Only IMUs

Figure 14: The corresponding accumulated attention values for each modality during testing. The gray areas
show certain modalities are selected or not selected.

B.3.2 Concept Drifts

To investigate the effects of concept drift and contextual changes [57] on the α-MDF framework,
we incorporated a background change at inference time. In particular, image blending is used to
overlay a different RGB picture into the background. The objective of the experiment is to inference
behavior when changes to the environment occur. We evaluated the tracking performance at various
blending levels, as illustrated in Fig. 15. The results provide an understanding of how effectively
the α-MDF framework handles concept drift at different levels of intensity. It is noteworthy that
despite substantially affecting the visual representation of the scene the achieved results (6.54cm)
are comparable to utilizing only IMUs (8.99cm). This experiment provides an early insight into the
utility of multimodality for mitigating the adverse effects due to contextual changes and concept
drift.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

2

4

6

8

10

Sensor Drifts vs. Accuracy

EE (cm)

q (1e2)

Sensor Drift Intensity Drift Intensity = 0.3 Drift Intensity = 0.5 Drift Intensity = 0.7

Figure 15: Concept drifts analysis by adding background change with scale in RGB space.

22

C Complexity and Training Details

In this section, we present an analysis of the computational complexity associated with each task
by measuring the wall-clock time. Additionally, we provide comprehensive information regarding
the model hyper-parameters and training curriculum employed for the experiments. These details
offer insights into the computational requirements and settings utilized for training the models in
our study.

C.1 Complexity

To assess the computational complexity of the proposed α-MDF framework alongside the baseline
differentiable filters (DFs), we measured the wall-clock time during inference. The results, provided
in Table 11, demonstrate the computational time for each approach. In the comparison with DFs
baselines, we only considered a single modality. It is worth noting that in the multimodality setting,
we observed only a marginal increase in the elapsed time (0.03 sec) when handling multiple types of
observations. This indicates that the proposed framework, α-MDF, is efficient and capable of effec-
tively handling various modalities without significantly compromising computational performance.

Table 11: Wall-clock time (sec) for each task.

Modality Visual Odometry Robot Manipulation Soft Robot
task task(1) task(2) task(3) task

dEKF [9] 1 0.0463±0.004 0.0469±0.003 0.0472±0.002 - 0.0474±0.003
DPF [28] 1 0.0486±0.005 0.0515±0.002 0.0509±0.002 - 0.0600±0.004

dPF-M-lrn [9] 1 0.0693±0.011 0.0854±0.001 0.0844±0.002 - 0.0590±0.002
α-MDF 1 0.0547±0.002 0.0554±0.011 0.0524±0.003 - 0.0633±0.003
α-MDF ≥2 - 0.0836±0.002 0.0873±0.004 0.0890±0.005 0.0910±0.004

Means±standard errors.

C.2 Training Details

Table 12 provides an exhaustive enumeration of all learnable modules utilized in α-MDF,
which includes three primary components: the state transition model fθθθ, the sensor encoders
[s1(·), s2(·), · · · , sM (·)], and the attention gain (AG) module. We adopt self-attention layers with
dimension 256 and 8 heads, denoted as “Self Attn”, in the state transition model. The cross-attention
layers, denoted as “Cross Attn”, is with dimension 32 and 4 heads in the AG module. The sensor
encoders utilized in our approach and all baseline models are identical, with s1 acting on image-
like modalities, utilizing ResNet18 [58] for learning high-dimensional observation representations,
while s2 pertains to low-dimensional modalities such as joint angles. The auxiliary modelA and the
decoder D shares a similar structure to s2, but with different number of neurons. Note that x is the
dimension of the actual state.

Table 12: α-MDF’s learnable sub-modules.
fθθθ: 3× SNN(256, ReLu), Positional Embedding, 3× Self Attn(256,8), 2× SNN(256, ReLu), 1× SNN(dx, -)

s1: 1× ResNet18(h,w,ch), 2× fc(2048, ReLu), 1× SNN(512, ReLu), 1× SNN(dx, -)

s2: 1× SNN(128, ReLu), 1× SNN(256, ReLu), 1× SNN(512, ReLu), 1× SNN(dx, -)

AG: Positional Embedding, 1× Cross Attn(32, 4, mask)

A: 1× SNN(128, ReLu), 1× SNN(256, ReLu), 1× SNN(512, ReLu), 1× SNN(1024, ReLu), 1× SNN(dx, -)

D: 1× fc(256, ReLu), 1× SNN(128, ReLu), 1× SNN(32, ReLu), 1× SNN(x, -)
fc: Fully Connected, SNN: Stochastic Neural network.

During α-MDF training, we employ the curriculum outlined in Algorithm 1. Note that some tasks
may require pre-training the sensor encoders before performing end-to-end training the entire frame-
work. For each task, we train α-MDF model with utilizing batch size of 64 on a single NVIDIA
A100 GPU for roughly 48 hours. For all the tasks, we use the Adamw [59] optimizer with a learning
rate of 1e-4.

23

Algorithm 1 Condition in Latent Space: training algorithm return the weights ω

Input: α-MDF, dataloader
(
{xxxt}t+1

t−N , {ymt }Mm=1, {ymt+1}Mm=1, {at}t+1
t−1

)
Output: weights ω
while not converged do

Call dataloader with a random timestep t.
for timestep t← t to t+ 1 do

e1 ←
∑M
m=1 ∥D(sm(ymt))− xxxt∥22 according to Eq. 6

e2 ← Lfθθθ (Xt) + Le2e(X̂t) according to Eq. 6
et ← e1 + e2

end for
ω ← Train (α-MDF, et + et+1)

end while
return ω

24

	Introduction
	Related Work
	Multimodal Differentiable Filters
	-MDF

	Experiments
	Visual Odometry Task
	Multimodal Manipulation Task
	Soft robot Modeling

	Conclusion
	Details in -MDF
	Model Initialization and Embedding Functions
	Differentiable Ensemble Kalman Filter
	Baselines

	Additional Experiments
	Visual Odometry Tasks
	Results
	Compare to EKF
	6D Motion State

	Multimodal Manipulation Tasks
	Ablation Study
	Sensitivity Analysis
	Mask in Attention Gain

	Soft Robot Modeling Tasks
	Ablation Study
	Concept Drifts

	Complexity and Training Details
	Complexity
	Training Details

